Recent Advances of Fluid Manipulation Technologies in Microfluidic Paper-Based Analytical Devices (μPADs) toward Multi-Step Assays
Abstract
1. Introduction
2. Fluid Manipulation Technologies in Microfluidic Paper-based Analytical Devices (μPADs)
2.1. Passive Fluid Manipulation
2.1.1. Chemical-Based Fluid Manipulation
2.1.2. Geometry-Based Fluid Manipulation
2.2. Active Fluid Manipulation
2.2.1. Wettability-Based Active Valves
2.2.2. Geometry Transformation-based Active Valves
2.2.3. Mechanical Actuation-Based Active Valves
3. Applications
3.1. Nucleic Acid Amplification Testing (NAAT)
3.2. Enzyme-Linked Immunosorbent Assay (ELISA)
3.3. Signal Enhancement Assay
3.4. Colorimetric Enzymatic Assay
4. Challenges and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dungchai, W.; Chailapakul, O.; Henry, C.S. Use of multiple colorimetric indicators for paper-based microfluidic devices. Anal. Chim. Acta 2010, 674, 227–233. [Google Scholar] [CrossRef]
 - Martinez, A.W.; Phillips, S.T.; Butte, M.J.; Whitesides, G.M. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. Engl 2007, 46, 1318–1320. [Google Scholar] [CrossRef] [PubMed]
 - Wang, S.; Ge, L.; Song, X.; Yu, J.; Ge, S.; Huang, J.; Zeng, F. Paper-based chemiluminescence ELISA: Lab-on-paper based on chitosan modified paper device and wax-screen-printing. Biosens. Bioelectron. 2012, 31, 212–218. [Google Scholar] [CrossRef] [PubMed]
 - Govindarajan, A.V.; Ramachandran, S.; Vigil, G.D.; Yager, P.; Bohringer, K.F. A low cost point-of-care viscous sample preparation device for molecular diagnosis in the developing world; an example of microfluidic origami. Lab Chip 2012, 12, 174–181. [Google Scholar] [CrossRef] [PubMed]
 - Jiang, X.; Fan, Z.H. Fabrication and Operation of Paper-Based Analytical Devices. Annu. Rev. Anal. Chem. 2016, 9, 203–222. [Google Scholar] [CrossRef]
 - He, Y.; Wu, Y.; Fu, J.Z.; Wu, W.B. Fabrication of paper-based microfluidic analysis devices: A review. RSC Adv. 2015, 5, 78109–78127. [Google Scholar] [CrossRef]
 - Akyazi, T.; Basabe-Desmonts, L.; Benito-Lopez, F. Review on microfluidic paper-based analytical devices towards commercialisation. Anal. Chim. Acta 2018, 1001, 1–17. [Google Scholar] [CrossRef]
 - Lee, V.B.C.; Mohd-Naim, N.F.; Tamiya, E.; Ahmed, M.U. Trends in Paper-based Electrochemical Biosensors: From Design to Application. Anal. Sci. 2018, 34, 7–18. [Google Scholar] [CrossRef]
 - Yamada, K.; Shibata, H.; Suzuki, K.; Citterio, D. Toward practical application of paper-based microfluidics for medical diagnostics: State-of-the-art and challenges. Lab Chip 2017, 17, 1206–1249. [Google Scholar] [CrossRef]
 - Kirk, K.A.; Othman, A.; Andreescu, S. Nanomaterial-functionalized Cellulose: Design, Characterization and Analytical Applications. Anal. Sci. 2018, 34, 19–31. [Google Scholar] [CrossRef]
 - Lim, H.; Jafry, A.T.; Lee, K. Fabrication, Flow Control, and Applications of Microfluidic Paper-Based Analytical Devices. Molecules 2019, 24, 2869. [Google Scholar] [CrossRef] [PubMed]
 - Fu, E.; Downs, C. Progress in the development and integration of fluid flow control tools in paper microfluidics. Lab Chip 2017, 17, 614–628. [Google Scholar] [CrossRef] [PubMed]
 - Martinez, A.W.; Phillips, S.T.; Wiley, B.J.; Whitesides, G.M. FLASH: A rapid method for prototyping paper-based microfluidic devices. Lab Chip 2008, 8, 2146–2150. [Google Scholar] [CrossRef] [PubMed]
 - Yu, W.W.; White, I.M. Inkjet printed surface enhanced raman spectroscopy array on cellulose paper. Anal. Chem. 2010, 82, 9626–9630. [Google Scholar] [CrossRef] [PubMed]
 - Xu, C.; Cai, L.; Zhong, M.; Zheng, S. Low-cost and rapid prototyping of microfluidic paper-based analytical devices by inkjet printing of permanent marker ink. RSC Adv. 2015, 5, 4770–4773. [Google Scholar] [CrossRef]
 - Lu, Y.; Shi, W.; Qin, J.; Lin, B. Fabrication and Characterization of Paper-Based Microfluidics Prepared in nitrocellulose membrane by wax printing. Anal. Chem. 2010, 82, 329–335. [Google Scholar] [CrossRef]
 - Cai, L.; Wu, Y.; Xu, C.; Chen, Z. A Simple Paper-Based Microfluidic Device for the Determination of the Total Amino Acid Content in a Tea Leaf Extract. J. Chem. Educ. 2012, 90, 232–234. [Google Scholar] [CrossRef]
 - Li, X.; Tian, J.; Nguyen, T.; Shen, W. Paper-based microfluidic devices by plasma treatment. Anal. Chem. 2008, 80, 9131–9134. [Google Scholar] [CrossRef]
 - Fenton, E.M.; Mascarenas, M.R.; Lopez, G.P.; Sibbett, S.S. Multiplex lateral-flow test strips fabricated by two-dimensional shaping. ACS Appl. Mater. Interfaces 2009, 1, 124–129. [Google Scholar] [CrossRef]
 - Fu, E.; Kauffman, P.; Lutz, B.; Yager, P. Chemical signal amplification in two-dimensional paper networks. Sens. Actuators B 2010, 149, 325–328. [Google Scholar] [CrossRef]
 - Dungchai, W.; Chailapakul, O.; Henry, C.S. A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst 2011, 136, 77–82. [Google Scholar] [CrossRef] [PubMed]
 - Sun, J.Y.; Cheng, C.M.; Liao, Y.C. Screen printed paper-based diagnostic devices with polymeric inks. Anal. Sci. 2015, 31, 145–151. [Google Scholar] [CrossRef] [PubMed]
 - Chitnis, G.; Ding, Z.; Chang, C.L.; Savran, C.A.; Ziaie, B. Laser-treated hydrophobic paper: An inexpensive microfluidic platform. Lab Chip 2011, 11, 1161–1165. [Google Scholar] [CrossRef] [PubMed]
 - Olkkonen, J.; Lehtinen, K.; Erho, T. Flexographically Printed Fluidic Structures in Paper. Anal. Chem. 2010, 82, 10246–10250. [Google Scholar] [CrossRef]
 - Määttänen, A.; Fors, D.; Wang, S.; Valtakari, D.; Ihalainen, P.; Peltonen, J. Paper-based planar reaction arrays for printed diagnostics. Sens. Actuators B 2011, 160, 1404–1412. [Google Scholar] [CrossRef]
 - Dou, M.; Sanjay, S.T.; Benhabib, M.; Xu, F.; Li, X. Low-cost bioanalysis on paper-based and its hybrid microfluidic platforms. Talanta 2015, 145, 43–54. [Google Scholar] [CrossRef]
 - Shih, C.M.; Chang, C.L.; Hsu, M.Y.; Lin, J.Y.; Kuan, C.M.; Wang, H.K.; Huang, C.T.; Chung, M.C.; Huang, K.C.; Hsu, C.E.; et al. Paper-based ELISA to rapidly detect Escherichia coli. Talanta 2015, 145, 2–5. [Google Scholar] [CrossRef]
 - Meredith, N.A.; Quinn, C.; Cate, D.M.; Reilly, T.H., 3rd; Volckens, J.; Henry, C.S. Paper-based analytical devices for environmental analysis. Analyst 2016, 141, 1874–1887. [Google Scholar] [CrossRef]
 - Lee, S.; Park, J.; Park, J.K. Foldable paper-based analytical device for the detection of an acetylcholinesterase inhibitor using an angle-based readout. Sens. Actuators B 2018, 273, 322–327. [Google Scholar] [CrossRef]
 - Wang, H.; Wang, J.; Timchalk, C.; Lin, Y. Magnetic electrochemical immunoassays with quantum dot labels for detection of phosphorylated acetylcholinesterase in plasma. Anal. Chem. 2008, 80, 8477–8484. [Google Scholar] [CrossRef]
 - Ansari, N.; Lodha, A.; Pandya, A.; Menon, S.K. Determination of cause of death using paper-based microfluidic device as a colorimetric probe. Anal. Methods 2017, 9, 5632–5639. [Google Scholar] [CrossRef]
 - Jahanshahi-Anbuhi, S.; Henry, A.; Leung, V.; Sicard, C.; Pennings, K.; Pelton, R.; Brennan, J.D.; Filipe, C.D. Paper-based microfluidics with an erodible polymeric bridge giving controlled release and timed flow shutoff. Lab Chip 2014, 14, 229–236. [Google Scholar] [CrossRef] [PubMed]
 - Jahanshahi-Anbuhi, S.; Chavan, P.; Sicard, C.; Leung, V.; Hossain, S.M.; Pelton, R.; Brennan, J.D.; Filipe, C.D. Creating fast flow channels in paper fluidic devices to control timing of sequential reactions. Lab Chip 2012, 12, 5079–5085. [Google Scholar] [CrossRef] [PubMed]
 - Renault, C.; Li, X.; Fosdick, S.E.; Crooks, R.M. Hollow-channel paper analytical devices. Anal. Chem. 2013, 85, 7976–7979. [Google Scholar] [CrossRef] [PubMed]
 - Giokas, D.L.; Tsogas, G.Z.; Vlessidis, A.G. Programming fluid transport in paper-based microfluidic devices using razor-crafted open channels. Anal. Chem. 2014, 86, 6202–6207. [Google Scholar] [CrossRef] [PubMed]
 - Verma, M.S.; Tsaloglou, M.N.; Sisley, T.; Christodouleas, D.; Chen, A.; Milette, J.; Whitesides, G.M. Sliding-strip microfluidic device enables ELISA on paper. Biosens. Bioelectron. 2018, 99, 77–84. [Google Scholar] [CrossRef] [PubMed]
 - Liu, F.; Zhang, C. A novel paper-based microfluidic enhanced chemiluminescence biosensor for facile, reliable and highly-sensitive gene detection of Listeria monocytogenes. Sens. Actuators B 2015, 209, 399–406. [Google Scholar] [CrossRef]
 - Renault, C.; Anderson, M.J.; Crooks, R.M. Electrochemistry in hollow-channel paper analytical devices. J. Am. Chem. Soc. 2014, 136, 4616–4623. [Google Scholar] [CrossRef]
 - Qi, J.; Li, B.; Wang, X.; Fu, L.; Luo, L.; Chen, L. Rotational Paper-Based Microfluidic-Chip Device for Multiplexed and Simultaneous Fluorescence Detection of Phenolic Pollutants Based on a Molecular-Imprinting Technique. Anal. Chem. 2018, 90, 11827–11834. [Google Scholar] [CrossRef]
 - Wu, L.; Ma, C.; Zheng, X.; Liu, H.; Yu, J. Paper-based electrochemiluminescence origami device for protein detection using assembled cascade DNA-carbon dots nanotags based on rolling circle amplification. Biosens. Bioelectron. 2015, 68, 413–420. [Google Scholar] [CrossRef]
 - Strong, E.B.; Knutsen, C.; Wells, J.T.; Jangid, A.R.; Mitchell, M.L.; Martinez, N.W.; Martinez, A.W. Wax-Printed Fluidic Time Delays for Automating Multi-Step Assays in Paper-Based Microfluidic Devices (MicroPADs). Inventions 2019, 4, 20. [Google Scholar] [CrossRef]
 - Washburn, E.W. The Dynamics of Capillary Flow. Phys. Rev. 1921, 17, 273–283. [Google Scholar] [CrossRef]
 - Lucas, R. Ueber das Zeitgesetz des kapillaren Aufstiegs von Flüssigkeiten. Kolloid Z. 2018, 23, 15–22. [Google Scholar] [CrossRef]
 - Mendez, S.; Fenton, E.M.; Gallegos, G.R.; Petsev, D.N.; Sibbett, S.S.; Stone, H.A.; Zhang, Y.; Lopez, G.P. Imbibition in porous membranes of complex shape: Quasi-stationary flow in thin rectangular segments. Langmuir 2010, 26, 1380–1385. [Google Scholar] [CrossRef]
 - Soum, V.; Park, S.; Brilian, A.I.; Kwon, O.S.; Shin, K. Programmable Paper-Based Microfluidic Devices for Biomarker Detections. Micromachines 2019, 10, 516. [Google Scholar] [CrossRef]
 - Fu, E.; Ramsey, S.A.; Kauffman, P.; Lutz, B.; Yager, P. Transport in two-dimensional paper networks. Microfluid. Nanofluid. 2011, 10, 29–35. [Google Scholar] [CrossRef]
 - Chen, H.; Cogswell, J.; Anagnostopoulos, C.; Faghri, M. A fluidic diode, valves, and a sequential-loading circuit fabricated on layered paper. Lab Chip 2012, 12, 2909–2913. [Google Scholar] [CrossRef]
 - Kim, T.H.; Hahn, Y.K.; Lee, J.; van Noort, D.; Kim, M.S. Solenoid Driven Pressure Valve System: Toward Versatile Fluidic Control in Paper Microfluidics. Anal. Chem. 2018, 90, 2534–2541. [Google Scholar] [CrossRef]
 - Lutz, B.; Liang, T.; Fu, E.; Ramachandran, S.; Kauffman, P.; Yager, P. Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics. Lab Chip 2013, 13, 2840–2847. [Google Scholar] [CrossRef]
 - Fu, E.; Lutz, B.; Kauffman, P.; Yager, P. Controlled reagent transport in disposable 2D paper networks. Lab Chip 2010, 10, 918–920. [Google Scholar] [CrossRef]
 - Schilling, K.M.; Lepore, A.L.; Kurian, J.A.; Martinez, A.W. Fully enclosed microfluidic paper-based analytical devices. Anal. Chem. 2012, 84, 1579–1585. [Google Scholar] [CrossRef] [PubMed]
 - Noh, H.; Phillips, S.T. Metering the Capillary-Driven Flow of Fluids in paper-based microfluidic devices. Anal. Chem. 2010, 82, 4181–4187. [Google Scholar] [CrossRef] [PubMed]
 - Noh, H.; Phillips, S.T. Fluidic Timers for Time-Dependent, Point-of-Care Assays on Paper. Anal. Chem. 2010, 82, 8071–8078. [Google Scholar] [CrossRef] [PubMed]
 - Weng, C.H.; Chen, M.Y.; Shen, C.H.; Yang, R.J. Colored wax-printed timers for two-dimensional and three-dimensional assays on paper-based devices. Biomicrofluidics 2014, 8, 066502. [Google Scholar] [CrossRef]
 - Apilux, A.; Ukita, Y.; Chikae, M.; Chailapakul, O.; Takamura, Y. Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing. Lab Chip 2013, 13, 126–135. [Google Scholar] [CrossRef]
 - Houghtaling, J.; Liang, T.; Thiessen, G.; Fu, E. Dissolvable bridges for manipulating fluid volumes in paper networks. Anal. Chem. 2013, 85, 11201–11204. [Google Scholar] [CrossRef]
 - Salentijn, G.I.; Hamidon, N.N.; Verpoorte, E. Solvent-dependent on/off valving using selectively permeable barriers in paper microfluidics. Lab Chip 2016, 16, 1013–1021. [Google Scholar] [CrossRef]
 - Gerbers, R.; Foellscher, W.; Chen, H.; Anagnostopoulos, C.; Faghri, M. A new paper-based platform technology for point-of-care diagnostics. Lab Chip 2014, 14, 4042–4049. [Google Scholar] [CrossRef]
 - Wei, X.; Tian, T.; Jia, S.; Zhu, Z.; Ma, Y.; Sun, J.; Lin, Z.; Yang, C.J. Target-responsive DNA hydrogel mediated "stop-flow" microfluidic paper-based analytic device for rapid, portable and visual detection of multiple targets. Anal. Chem. 2015, 87, 4275–4282. [Google Scholar] [CrossRef]
 - Tian, T.; Wei, X.; Jia, S.; Zhang, R.; Li, J.; Zhu, Z.; Zhang, H.; Ma, Y.; Lin, Z.; Yang, C.J. Integration of target responsive hydrogel with cascaded enzymatic reactions and microfluidic paper-based analytic devices (microPADs) for point-of-care testing (POCT). Biosens. Bioelectron. 2016, 77, 537–542. [Google Scholar] [CrossRef]
 - Chu, W.; Chen, Y.; Liu, W.; Zhao, M.; Li, H. Paper-based chemiluminescence immunodevice with temporal controls of reagent transport technique. Sens. Actuators B 2017, 250, 324–332. [Google Scholar] [CrossRef]
 - Songok, J.; Toivakka, M. Controlling capillary-driven surface flow on a paper-based microfluidic channel. Microfluid. Nanofluid. 2016, 20, 63. [Google Scholar] [CrossRef]
 - Toley, B.J.; McKenzie, B.; Liang, T.; Buser, J.R.; Yager, P.; Fu, E. Tunable-delay shunts for paper microfluidic devices. Anal. Chem. 2013, 85, 11545–11552. [Google Scholar] [CrossRef] [PubMed]
 - Glavan, A.C.; Martinez, R.V.; Maxwell, E.J.; Subramaniam, A.B.; Nunes, R.M.; Soh, S.; Whitesides, G.M. Rapid fabrication of pressure-driven open-channel microfluidic devices in omniphobic RF paper. Lab Chip 2013, 13, 2922–2930. [Google Scholar] [CrossRef] [PubMed]
 - da Silva, E.T.; Santhiago, M.; de Souza, F.R.; Coltro, W.K.; Kubota, L.T. Triboelectric effect as a new strategy for sealing and controlling the flow in paper-based devices. Lab Chip 2015, 15, 1651–1655. [Google Scholar] [CrossRef]
 - Shin, J.H.; Lee, G.J.; Kim, W.; Choi, S. A stand-alone pressure-driven 3D microfluidic chemical sensing analytic device. Sensor Actuat B-Chem 2016, 230, 380–387. [Google Scholar] [CrossRef]
 - Shin, J.H.; Park, J.; Kim, S.H.; Park, J.K. Programmed sample delivery on a pressurized paper. Biomicrofluidics 2014, 8, 054121. [Google Scholar] [CrossRef]
 - Park, J.; Shin, J.H.; Park, J.K. Pressed Paper-Based Dipstick for Detection of Foodborne Pathogens with Multistep Reactions. Anal. Chem. 2016, 88, 3781–3788. [Google Scholar] [CrossRef]
 - Park, J.; Park, J.K. Pressed region integrated 3D paper-based microfluidic device that enables vertical flow multistep assays for the detection of C-reactive protein based on programmed reagent loading. Sens. Actuators B 2017, 246, 1049–1055. [Google Scholar] [CrossRef]
 - Fu, E.; Liang, T.; Spicar-Mihalic, P.; Houghtaling, J.; Ramachandran, S.; Yager, P. Two-dimensional paper network format that enables simple multistep assays for use in low-resource settings in the context of malaria antigen detection. Anal. Chem. 2012, 84, 4574–4579. [Google Scholar] [CrossRef]
 - Fridley, G.E.; Le, H.; Yager, P. Highly sensitive immunoassay based on controlled rehydration of patterned reagents in a 2-dimensional paper network. Anal. Chem. 2014, 86, 6447–6453. [Google Scholar] [CrossRef] [PubMed]
 - Martinez, A.W.; Phillips, S.T.; Whitesides, G.M. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc. Natl. Acad. Sci. USA 2008, 105, 19606–19611. [Google Scholar] [CrossRef]
 - Liu, H.; Crooks, R.M. Three-dimensional paper microfluidic devices assembled using the principles of origami. J. Am. Chem. Soc. 2011, 133, 17564–17566. [Google Scholar] [CrossRef] [PubMed]
 - Deraney, R.N.; Mace, C.R.; Rolland, J.P.; Schonhorn, J.E. Multiplexed, Patterned-Paper Immunoassay for Detection of Malaria and Dengue Fever. Anal. Chem. 2016, 88, 6161–6165. [Google Scholar] [CrossRef] [PubMed]
 - Morbioli, G.G.; Mazzu-Nascimento, T.; Milan, L.A.; Stockton, A.M.; Carrilho, E. Improving Sample Distribution Homogeneity in Three-Dimensional Microfluidic Paper-Based Analytical Devices by Rational Device Design. Anal. Chem. 2017, 89, 4786–4792. [Google Scholar] [CrossRef] [PubMed]
 - Lutz, B.R.; Trinh, P.; Ball, C.; Fu, E.; Yager, P. Two-dimensional paper networks: Programmable fluidic disconnects for multi-step processes in shaped paper. Lab Chip 2011, 11, 4274–4278. [Google Scholar] [CrossRef]
 - Jeong, S.G.; Lee, S.H.; Choi, C.H.; Kim, J.; Lee, C.S. Toward instrument-free digital measurements: A three-dimensional microfluidic device fabricated in a single sheet of paper by double-sided printing and lamination. Lab Chip 2015, 15, 1188–1194. [Google Scholar] [CrossRef]
 - Matsuda, Y.; Shibayama, S.; Uete, K.; Yamaguchi, H.; Niimi, T. Electric conductive pattern element fabricated using commercial inkjet printer for paper-based analytical devices. Anal Chem 2015, 87, 5762–5765. [Google Scholar] [CrossRef]
 - Jiang, Y.; Hao, Z.; He, Q.; Chen, H. A simple method for fabrication of microfluidic paper-based analytical devices and on-device fluid control with a portable corona generator. RSC Adv. 2016, 6, 2888–2894. [Google Scholar] [CrossRef]
 - Koo, C.K.; He, F.; Nugen, S.R. An inkjet-printed electrowetting valve for paper-fluidic sensors. Analyst 2013, 138, 4998–5004. [Google Scholar] [CrossRef]
 - Ainla, A.; Hamedi, M.M.; Guder, F.; Whitesides, G.M. Electrical Textile Valves for Paper Microfluidics. Adv. Mater. 2017, 29, 1702894. [Google Scholar] [CrossRef] [PubMed]
 - Rosenfeld, T.; Bercovici, M. Dynamic control of capillary flow in porous media by electroosmotic pumping. Lab Chip 2019, 19, 328–334. [Google Scholar] [CrossRef] [PubMed]
 - Cai, L.; Zhong, M.; Li, H.; Xu, C.; Yuan, B. Defining microchannels and valves on a hydrophobic paper by low-cost inkjet printing of aqueous or weak organic solutions. Biomicrofluidics 2015, 9, 046503. [Google Scholar] [CrossRef] [PubMed]
 - Lafleur, L.K.; Bishop, J.D.; Heiniger, E.K.; Gallagher, R.P.; Wheeler, M.D.; Kauffman, P.; Zhang, X.; Kline, E.C.; Buser, J.R.; Kumar, S.; et al. A rapid, instrument-free, sample-to-result nucleic acid amplification test. Lab Chip 2016, 16, 3777–3787. [Google Scholar] [CrossRef]
 - Phillips, E.A.; Shen, R.; Zhao, S.; Linnes, J.C. Thermally actuated wax valves for paper-fluidic diagnostics. Lab Chip 2016, 16, 4230–4236. [Google Scholar] [CrossRef]
 - Wang, Y.; Ge, L.; Wang, P.; Yan, M.; Ge, S.; Li, N.; Yu, J.; Huang, J. Photoelectrochemical lab-on-paper device equipped with a porous Au-paper electrode and fluidic delay-switch for sensitive detection of DNA hybridization. Lab Chip 2013, 13, 3945–3955. [Google Scholar] [CrossRef]
 - Glavan, A.C.; Christodouleas, D.C.; Mosadegh, B.; Yu, H.D.; Smith, B.S.; Lessing, J.; Fernandez-Abedul, M.T.; Whitesides, G.M. Folding analytical devices for electrochemical ELISA in hydrophobic RH paper. Anal. Chem. 2014, 86, 11999–12007. [Google Scholar] [CrossRef]
 - Ding, J.; Li, B.; Chen, L.; Qin, W. A Three-Dimensional Origami Paper-Based Device for Potentiometric Biosensing. Angew. Chem. Int. Ed. Engl. 2016, 55, 13033–13037. [Google Scholar] [CrossRef]
 - Li, X.; Liu, X. A Microfluidic Paper-Based Origami Nanobiosensor for Label-Free, Ultrasensitive Immunoassays. Adv. Healthc. Mater. 2016, 5, 1326–1335. [Google Scholar] [CrossRef]
 - Robinson, R.; Wong, L.; Monnat, R.J.; Fu, E. Development of a Whole Blood Paper-Based Device for Phenylalanine Detection in the Context of PKU Therapy Monitoring. Micromachines 2016, 7, 28. [Google Scholar] [CrossRef]
 - Wang, C.C.; Hennek, J.W.; Ainla, A.; Kumar, A.A.; Lan, W.J.; Im, J.; Smith, B.S.; Zhao, M.; Whitesides, G.M. A Paper-Based “Pop-up” Electrochemical Device for Analysis of Beta-Hydroxybutyrate. Anal. Chem. 2016, 88, 6326–6333. [Google Scholar] [CrossRef]
 - Chen, C.A.; Yeh, W.S.; Tsai, T.T.; Li, Y.D.; Chen, C.F. Three-dimensional origami paper-based device for portable immunoassay applications. Lab Chip 2019, 19, 598. [Google Scholar] [CrossRef]
 - Martinez, A.W.; Phillips, S.T.; Nie, Z.; Cheng, C.M.; Carrilho, E.; Wiley, B.J.; Whitesides, G.M. Programmable diagnostic devices made from paper and tape. Lab Chip 2010, 10, 2499–2504. [Google Scholar] [CrossRef]
 - Liu, H.; Li, X.; Crooks, R.M. Paper-based SlipPAD for high-throughput chemical sensing. Anal. Chem. 2013, 85, 4263–4267. [Google Scholar] [CrossRef]
 - Scida, K.; Cunningham, J.C.; Renault, C.; Richards, I.; Crooks, R.M. Simple, sensitive, and quantitative electrochemical detection method for paper analytical devices. Anal. Chem. 2014, 86, 6501–6507. [Google Scholar] [CrossRef]
 - Connelly, J.T.; Rolland, J.P.; Whitesides, G.M. “Paper Machine” for Molecular Diagnostics. Anal. Chem. 2015, 87, 7595–7601. [Google Scholar] [CrossRef]
 - Cunningham, J.C.; Scida, K.; Kogan, M.R.; Wang, B.; Ellington, A.D.; Crooks, R.M. Paper diagnostic device for quantitative electrochemical detection of ricin at picomolar levels. Lab Chip 2015, 15, 3707–3715. [Google Scholar] [CrossRef]
 - Li, X.; Scida, K.; Crooks, R.M. Detection of hepatitis B virus DNA with a paper electrochemical sensor. Anal. Chem. 2015, 87, 9009–9015. [Google Scholar] [CrossRef]
 - DeGregory, P.R.; Tsai, Y.J.; Scida, K.; Richards, I.; Crooks, R.M. Quantitative electrochemical metalloimmunoassay for TFF3 in urine using a paper analytical device. Analyst 2016, 141, 1734–1744. [Google Scholar] [CrossRef]
 - Han, K.N.; Choi, J.S.; Kwon, J. Three-dimensional paper-based slip device for one-step point-of-care testing. Sci. Rep. 2016, 6, 25710. [Google Scholar] [CrossRef]
 - Shin, J.H.; Park, J.K. Functional Packaging of Lateral Flow Strip Allows Simple Delivery of Multiple Reagents for Multistep Assays. Anal. Chem. 2016, 88, 10374–10378. [Google Scholar] [CrossRef]
 - Li, B.; Yu, L.; Qi, J.; Fu, L.; Zhang, P.; Chen, L. Controlling Capillary-Driven Fluid Transport in Paper-Based Microfluidic Devices Using a Movable Valve. Anal. Chem. 2017, 89, 5707–5712. [Google Scholar] [CrossRef]
 - Han, J.; Qi, A.; Zhou, J.; Wang, G.; Li, B.; Chen, L. Simple Way To Fabricate Novel Paper-Based Valves Using Plastic Comb Binding Spines. ACS Sens. 2018, 3, 1789–1794. [Google Scholar] [CrossRef]
 - Toley, B.J.; Wang, J.A.; Gupta, M.; Buser, J.R.; Lafleur, L.K.; Lutz, B.R.; Fu, E.; Yager, P. A versatile valving toolkit for automating fluidic operations in paper microfluidic devices. Lab Chip 2015, 15, 1432–1444. [Google Scholar] [CrossRef]
 - Li, X.; Zwanenburg, P.; Liu, X. Magnetic timing valves for fluid control in paper-based microfluidics. Lab Chip 2013, 13, 2609–2614. [Google Scholar] [CrossRef]
 - Fratzl, M.; Chang, B.S.; Oyola-Reynoso, S.; Blaire, G.; Delshadi, S.; Devillers, T.; Ward, T.; Dempsey, N.M.; Bloch, J.F.; Thuo, M.M. Magnetic Two-Way Valves for Paper-Based Capillary-Driven Microfluidic Devices. ACS Omega 2018, 3, 2049–2057. [Google Scholar] [CrossRef]
 - Kong, T.; Flanigan, S.; Weinstein, M.; Kalwa, U.; Legner, C.; Pandey, S. A fast, reconfigurable flow switch for paper microfluidics based on selective wetting of folded paper actuator strips. Lab Chip 2017, 17, 3621–3633. [Google Scholar] [CrossRef]
 - Choi, J.R.; Hu, J.; Gong, Y.; Feng, S.; Wan Abas, W.A.; Pingguan-Murphy, B.; Xu, F. An integrated lateral flow assay for effective DNA amplification and detection at the point of care. Analyst 2016, 141, 2930–2939. [Google Scholar] [CrossRef]
 - Linnes, J.C.; Fan, A.; Rodriguez, N.M.; Lemieux, B.; Kong, H.; Klapperich, C.M. Paper-based molecular diagnostic for Chlamydia trachomatis. RSC Adv. 2014, 4, 42245–42251. [Google Scholar] [CrossRef]
 - Cordray, M.S.; Richards-Kortum, R.R. A paper and plastic device for the combined isothermal amplification and lateral flow detection of Plasmodium DNA. Malar. J. 2015, 14, 472. [Google Scholar] [CrossRef]
 - Tang, R.; Yang, H.; Gong, Y.; You, M.; Liu, Z.; Choi, J.R.; Wen, T.; Qu, Z.; Mei, Q.; Xu, F. A fully disposable and integrated paper-based device for nucleic acid extraction, amplification and detection. Lab Chip 2017, 17, 1270–1279. [Google Scholar] [CrossRef]
 - Rodriguez, N.M.; Wong, W.S.; Liu, L.; Dewar, R.; Klapperich, C.M. A fully integrated paperfluidic molecular diagnostic chip for the extraction, amplification, and detection of nucleic acids from clinical samples. Lab Chip 2016, 16, 753–763. [Google Scholar] [CrossRef]
 - Rodriguez, N.M.; Linnes, J.C.; Fan, A.; Ellenson, C.K.; Pollock, N.R.; Klapperich, C.M. Paper-Based RNA Extraction, in Situ Isothermal Amplification, and Lateral Flow Detection for Low-Cost, Rapid Diagnosis of Influenza A (H1N1) from Clinical Specimens. Anal. Chem. 2015, 87, 7872–7879. [Google Scholar] [CrossRef]
 - Su, J.; Liu, X.; Cui, H.; Li, Y.; Chen, D.; Li, Y.; Yu, G. Rapid and simple detection of methicillin-resistance Staphylococcus aureus by orfX loop-mediated isothermal amplification assay. BMC Biotechnol. 2014, 14, 8. [Google Scholar] [CrossRef]
 - Guven, B.; Basaran-Akgul, N.; Temur, E.; Tamer, U.; Boyaci, I.H. SERS-based sandwich immunoassay using antibody coated magnetic nanoparticles for Escherichia coli enumeration. Analyst 2011, 136, 740–748. [Google Scholar] [CrossRef]
 - Ramezani, R.; Kardoost Parizi, Z.; Ghorbanmehr, N.; Mirshafiee, H. Rapid and Simple Detection of Escherichia coli by Loop-Mediated Isothermal Amplification Assay in Urine Specimens. Avicenna. J. Med. Biotechnol. 2018, 10, 269–272. [Google Scholar]
 - Fulgione, A.; Cimafonte, M.; Della Ventura, B.; Iannaccone, M.; Ambrosino, C.; Capuano, F.; Proroga, Y.T.R.; Velotta, R.; Capparelli, R. QCM-based immunosensor for rapid detection of Salmonella Typhimurium in food. Sci. Rep. 2018, 8, 16137. [Google Scholar] [CrossRef]
 - Panning, M.; Eickmann, M.; Landt, O.; Monazahian, M.; Olschlager, S.; Baumgarte, S.; Reischl, U.; Wenzel, J.J.; Niller, H.H.; Gunther, S.; et al. Detection of influenza A(H1N1)v virus by real-time RT-PCR. Eurosurveill. 2009, 14. [Google Scholar]
 - Shigeishi, H.; Sugiyama, M.; Ohta, K.; Yokoyama, S.; Sakuma, M.; Murozumi, H.; Kato, H.; Takechi, M. High HPV16 E6 viral load in the oral cavity is associated with an increased number of bacteria: A preliminary study. Biomed. Rep. 2018, 8, 59–64. [Google Scholar] [CrossRef]
 - Preechakasedkit, P.; Siangproh, W.; Khongchareonporn, N.; Ngamrojanavanich, N.; Chailapakul, O. Development of an automated wax-printed paper-based lateral flow device for alpha-fetoprotein enzyme-linked immunosorbent assay. Biosens. Bioelectron. 2018, 102, 27–32. [Google Scholar] [CrossRef]
 - Grant, B.D.; Smith, C.A.; Karvonen, K.; Richards-Kortum, R. Highly Sensitive Two-Dimensional Paper Network Incorporating Biotin-Streptavidin for the Detection of Malaria. Anal. Chem. 2016, 88, 2553–2557. [Google Scholar] [CrossRef]
 - Ramachandran, S.; Fu, E.; Lutz, B.; Yager, P. Long-term dry storage of an enzyme-based reagent system for ELISA in point-of-care devices. Analyst 2014, 139, 1456–1462. [Google Scholar] [CrossRef]
 - Kerman, K.; Nagatani, N.; Chikae, M.; Yuhi, T.; Takamura, Y.; Tamiya, E. Label-free electrochemical immunoassay for the detection of human chorionic gonadotropin hormone. Anal. Chem. 2006, 78, 5612–5616. [Google Scholar] [CrossRef]
 - Wang, Q.; Li, R.; Shao, K.; Lin, Y.; Yang, W.; Guo, L.; Qiu, B.; Lin, Z.; Chen, G. A Portable Immunosensor with Differential Pressure Gauges Readout for Alpha Fetoprotein Detection. Sci. Rep. 2017, 7, 45343. [Google Scholar] [CrossRef]
 - Tsai, H.; Lu, Y.H.; Liao, H.X.; Wu, S.W.; Yu, F.Y.; Fuh, C.B. Detection of rabbit IgG by using functional magnetic particles and an enzyme-conjugated antibody with a homemade magnetic microplate. Chem. Cent. J. 2015, 9, 8. [Google Scholar] [CrossRef][Green Version]
 - Soraya, G.V.; Abeyrathne, C.D.; Buffet, C.; Huynh, D.H.; Uddin, S.M.; Chan, J.; Skafidas, E.; Kwan, P.; Rogerson, S.J. Ultrasensitive and label-free biosensor for the detection of Plasmodium falciparum histidine-rich protein II in saliva. Sci. Rep. 2019, 9, 17495. [Google Scholar] [CrossRef]
 - Kosaka, P.M.; Pini, V.; Calleja, M.; Tamayo, J. Ultrasensitive detection of HIV-1 p24 antigen by a hybrid nanomechanical-optoplasmonic platform with potential for detecting HIV-1 at first week after infection. PLoS ONE 2017, 12, e0171899. [Google Scholar] [CrossRef][Green Version]
 - Vestergaard, E.M.; Poulsen, S.S.; Gronbaek, H.; Larsen, R.; Nielsen, A.M.; Ejskjaer, K.; Clausen, J.T.; Thim, L.; Nexo, E. Development and evaluation of an ELISA for human trefoil factor 3. Clin. Chem. 2002, 48, 1689–1695. [Google Scholar] [CrossRef]
 - Khuseyinova, N.; Imhof, A.; Trischler, G.; Rothenbacher, D.; Hutchinson, W.L.; Pepys, M.B.; Koenig, W. Determination of C-reactive protein: Comparison of three high-sensitivity immunoassays. Clin. Chem. 2003, 49, 1691–1695. [Google Scholar] [CrossRef]
 - Chen, M.; Khusbu, F.Y.; Ma, C.; Wu, K.; Zhao, H.; Chena, H.; Wang, K. A sensitive detection method of carcinoembryonic antigen based on dsDNA-templated copper nanoparticles. New J. Chem. 2018, 42, 13702–13707. [Google Scholar] [CrossRef]
 - Kim, K.S.; Park, J.K. Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel. Lab Chip 2005, 5, 657–664. [Google Scholar] [CrossRef] [PubMed]
 - Jung, B.; Bharadwaj, R.; Santiago, J.G. On-chip millionfold sample stacking using transient isotachophoresis. Anal. Chem. 2006, 78, 2319–2327. [Google Scholar] [CrossRef] [PubMed]
 - Li, X.; Luo, L.; Crooks, R.M. Low-voltage paper isotachophoresis device for DNA focusing. Lab Chip 2015, 15, 4090–4098. [Google Scholar] [CrossRef] [PubMed]
 - Xu, C.; Zhong, M.; Cai, L.; Zheng, Q.; Zhang, X. Sample injection and electrophoretic separation on a simple laminated paper based analytical device. Electrophoresis 2016, 37, 476–481. [Google Scholar] [CrossRef]
 - Ge, L.; Wang, S.; Ge, S.; Yu, J.; Yan, M.; Li, N.; Huang, J. Electrophoretic separation in a microfluidic paper-based analytical device with an on-column wireless electrogenerated chemiluminescence detector. Chem. Commun. 2014, 50, 5699–5702. [Google Scholar] [CrossRef]
 - OuYang, L.; Wang, C.; Du, F.; Zheng, T.; Liang, H. Electrochromatographic separations of multicomponent metal complexes on a microfluidic paper-based device with a simplified photolithography. RSC Adv. 2014, 4, 1093–1101. [Google Scholar] [CrossRef]
 - Rodrigues, N.F.M.; Neto, S.Y.; Luz, R.C.S.; Damos, F.S.; Yamanaka, H. Ultrasensitive Determination of Malathion Using Acetylcholinesterase Immobilized on Chitosan-Functionalized Magnetic Iron Nanoparticles. Biosensors 2018, 8, 16. [Google Scholar] [CrossRef]
 - Ismail, M.; Baumert, M.; Stevenson, D.; Watts, J.; Webb, R.; Costa, C.; Robinsonc, F.; Baileya, M. A diagnostic test for cocaine and benzoylecgonine in urine and oral fluid using portable mass spectrometry. Anal. Methods 2017, 9, 1839–1847. [Google Scholar] [CrossRef]
 - Khamehchian, S.; Madani, R.; Golchinfar, F.; Taghavian, M. Development of a sandwich enzyme-linked immunosorbent assay (ELISA) for determining of bovine serum albumin (BSA) in trivalent measles-mump-rubella (MMR) vaccines. Hum. Vaccin. Immunother. 2008, 4, 375–378. [Google Scholar] [CrossRef][Green Version]
 - Beaton, A.D.; Cardwell, C.L.; Thomas, R.S.; Sieben, V.J.; Legiret, F.E.; Waugh, E.M.; Statham, P.J.; Mowlem, M.C.; Morgan, H. Lab-on-chip measurement of nitrate and nitrite for in situ analysis of natural waters. Environ. Sci. Technol. 2012, 46, 9548–9556. [Google Scholar] [CrossRef]
 















| Method | Function | Application | Ref. | 
|---|---|---|---|
| Dissolvable material (Sucrose) | Fluid velocity control | Signal enhancement assay (# PfHRP2 malaria assay)  | [49] | 
| Dissolvable material (Trehalose) | Fluid velocity control | - | [50] | 
| Toner (laser printer) | Fluid velocity control | Enzymatic–colorimetric assay  (glucose and alkaline phosphatase; ALP)  | [51] | 
| Parraffin wax | Fluid velocity control | - | [52] | 
| Parraffin wax | Fluid velocity control | Enzymatic–colorimetric assay  (glucose)  | [53] | 
| Colored wax | Fluid velocity control | Enzymatic–colorimetric assay (nitrite/oxalate assay) | [54] | 
| Inkjet printing | Fluid velocity control | ELISA  (human chorionic gonadotropin; hCG)  | [55] | 
| Dissolvable bridge (sugar bridge) | Switching (OFF) | - | [56] | 
| Dissolvable bridge (pullulan) | Switching (OFF) | Enzymatic–colorimetric assay (Malathion) | [32] | 
| Alkyl ketene dimer (AKD) | Switching (ON) | - | [57] | 
| Surfactant | Switching (ON) | Enzymatic–colorimetric assay (ALP) | [47] | 
| Surfactant | Switching (ON) | ELISA (Rabbit IgG) | [58] | 
| Target responsive hydrogel | Switching (ON) | Enzymatic–colorimetric assay  (Pb2+, Cocaine, and adenosine)  | [59] | 
| Target responsive hydrogel | Switching (ON) | Enzymatic–colorimetric assay  (Cocaine, adenosine, uridine, and cytidine)  | [60] | 
| Method | Function | Application | Ref. | 
|---|---|---|---|
| Changing  the area of the channel  | Fluid velocity control | - | [44,46,50,62] | 
| Shunt | Fluid velocity control | Signal enhancement assay (malaria protein PfHRP2)  | [63] | 
| Covered film | Fluid velocity control | Colorimetric–enzymatic assay (Malathion) | [33] | 
| Hollow channel | Fluid velocity control | Colorimetric–enzymatic assay  (Glucose and protein)  | [34] | 
| Hollow channel | Fluid velocity control | - | [64] | 
| Hollow channel | Fluid velocity control | Colorimetric–enzymatic assay  (Fe3+, Ni2+)  | [35] | 
| Hollow channel | Fluid velocity control | Electrochemical detection (FcMeOH) | [38] | 
| Hollow channel (with triboelectric effect)  | Fluid velocity control | - | [65] | 
| Hollow channel | Fluid velocity control | Colorimetric–enzymatic assay  (glucose, albumin, pH)  | [66] | 
| Pressurized paper | Fluid velocity control | Signal enhancement assay (progesterone receptor)  | [67] | 
| Pressurized paper | Fluid velocity control | Signal enhancement assay (Escherichia coli O157:H7 and Salmonella typhimurium) | [68] | 
| Pressurized paper (with three-dimensional stacking)  | Fluid velocity control | Signal enhancement assay (C-reactive protein)  | [69] | 
| Source pad of different sizes (# 2DPNs) | Fluid velocity control | Signal enhancement assay (BSA-biotin) | [20] | 
| Source pad of different sizes (2DPNs) | Fluid velocity control | Signal enhancement assay (malaria protein PfHRP2)  | [70,71] | 
| Three-dimensional device | Fluid velocity control | Enzymatic assay (glucose and protein) | [72] | 
| Three-dimensional device | Fluid velocity control | Colorimetric–enzymatic assay (protein) | [73] | 
| Three-dimensional device | Fluid velocity control | Immunoassay  (malaria protein PfHRP2)  | [74] | 
| Three-dimensional device | Fluid velocity control | Colorimetric–enzymatic assay (glucose) | [75] | 
| Vertical paper legs of different lengths (2DPNs) | Fluid velocity control | - | [76] | 
| Three-dimensional device | Fluid velocity control | Colorimetric–enzymatic assay  (glucose, albumin)  | [77] | 
| Method | Function | Application | Ref. | 
|---|---|---|---|
| Corona discharge treatment | Switching (ON) | Colorimetric–enzymatic assay (nitrite) | [79] | 
| Electrowetting | Switching (ON) | Lateral flow assay (S. cerevisiae rRNA) | [80] | 
| Electrowetting | Switching (ON) | Colorimetric–enzymatic assay (KIO3) | [81] | 
| Electro-osmotic pumping | Switching (ON, OFF),  Fluid velocity control  | - | [82] | 
| Temperature | Switching (ON) | Enzymatic assay (Fe3+ and SCN-) | [83] | 
| Temperature | Switching (ON) | # NAAT (methicillin-resistant Staphylococcus Aureus; MRSA bacteria)  | [84] | 
| Temperature | Switching (ON, OFF) | Signal enhancement assay (Escherichia coli) | [85] | 
| Method | Function | Application | Ref. | 
|---|---|---|---|
| Cut switch | Switching (ON) | - | [18] | 
| Folding | Switching (ON) | Cell lysis and DNA extraction (Escherichia coli) | [4] | 
| Folding | Switching (ON) | Photoelectrochemical detection (Target-ssDNA) | [86] | 
| Folding | Switching (ON) | Electrochemical ELISA (malaria protein PfHRP2)  | [87] | 
| Folding | Switching (ON) | Chemiluminescence (CL) detection (Listeria monocytogenes hlyA gene)  | [37] | 
| Folding | Switching (ON) | Electrochemical enzymatic assay  (methyl parathion)  | [88] | 
| Folding | Switching (ON) | Electrochemical ELISA (p24 antigen) | [89] | 
| Folding | Switching (ON) | Colorimetric–enzymatic assay (Phe) | [90] | 
| Folding (pop-up)  | Switching (ON) | Electrochemical enzymatic assay  (Glucose and beta-hydroxybutyrate; BHB)  | [91] | 
| Folding (pop-up)  | Switching (ON) | Colorimetric–enzymatic assay  (acetylcholinesterases; AChE)  | [29] | 
| Folding | Switching (ON) | Colorimetric–enzymatic assay (protein A) | [92] | 
| Push-button | Switching (ON) | Colorimetric–enzymatic assay  (glucose, ketones, nitrite, and protein)  | [93] | 
| Sliding action | Switching (ON) | Colorimetric–enzymatic assay (glucose and protein) | [94] | 
| Sliding action | Switching (ON) | Electrochemical detection (MnO4-) | [95] | 
| Sliding action | Switching (ON) | NAAT (Escherichia coli malB gene) | [96] | 
| Sliding action | Switching (ON) | Electrochemical detection (Ricin) | [97] | 
| Sliding action | Switching (ON) | Electrochemical detection  (hepatitis B virus; HBV DNA)  | [98] | 
| Sliding action | Switching (ON) | Electrochemical ELISA (Trefoil Factor 3) | [99] | 
| Sliding action | Switching (ON) | Signal enhancement assay (human norovirus) | [100] | 
| Sliding action | Switching (ON) | ELISA (C-reactive protein; CRP) | [36] | 
| Rotational valve (circular disk)  | Switching  (ON, OFF, diversion)  | Signal enhancement assay  (Escherichia coli O157:H7)  | [101] | 
| Rotational valve (hollow rivet)  | Switching (ON) | ELISA (carcino-embryonic antigen; CEA) | [102] | 
| Rotational valve (comb binding)  | Switching (ON) | Colorimetric–enzymatic assay (Fe2+ and nitrite)  | [103] | 
| Rotational valve (circular disk)  | Switching (ON) | Fluorescence-based molecular-imprinting detection (4-nitrophenol and 2,4,6-trinitrophenol) | [39] | 
| Method | Function | Application | Ref. | 
|---|---|---|---|
| Pressure valve | Switching (ON, OFF), Fluid velocity control | ELISA (mouse IgG) | [48] | 
| Expandable material | Switching (ON, OFF, diversion)  | Signal enhancement assay (malaria protein PfHRP2)  | [104] | 
| Magnetic valve | Switching (ON, OFF) | Enzyme-based colorimetric detection (ALP) | [105] | 
| Magnetic valve | Switching (ON, OFF) | - | [106] | 
| Reconfigurable flow switch | Switching (ON, OFF, diversion)  | Colorimetric–enzymatic assay  (glucose, protein, and nitrite)  | [107] | 
| Method | Analyte | Detection Limit (μPAD) | Detection Limit (Conventional Method) | 
|---|---|---|---|
| Temperature | Methicillin-resistant Staphylococcus aureus;  MRSA bacteria  | 5 × 103 genomic copies [84] | #1 LAMP,  10 genomic copies [114]  | 
| Folding | Escherichia coli | 33 CFU mL−1 [4] | #2 SERS, 8 CFU mL−1 [115] | 
| Sliding action | Escherichia coli malB gene | 500 cells mL−1 [96] | LAMP, 1.02 copies [116] | 
| Sliding action | Salmonella typhimurium | 102 CFU mL−1 [111] | #3 QCM, 100 CFU mL−1 [117] | 
| Folding | Influenza A (H1N1) | 106 copies mL−1 [113] | RT-PCR,  384 copies mL−1 [118]  | 
| Folding | Human papillomavirus (HPV) 16 DNA | 104 copies [112] | qPCR, 1.65 copies [119] | 
| Method | Analyte | Detection Limit (μPAD) | Detection Limit  (Conventional Method)  | 
|---|---|---|---|
| Inkjet printing | Human chorionic gonadotropin; hCG | 1 ng mL−1 [55] | Electrochemical immunoassay,  20 pM in human urine [123]  | 
| Inkjet printing | Alpha-fetoprotein; AFP | 1 ng mL−1 [120] | Sandwich immunoassay,  3.4 ng mL−1 [124]  | 
| Surfactant | Rabbit IgG | 4.8 fM [58] | ELISA, 3.4 ng mL−1 [125] | 
| Folding | Malaria protein PfHRP2 | 4 ng mL−1 [87] | ELISA, 2.5 pg mL−1 [126] | 
| Folding | Human immunodeficiency virus p24 antigen | 300 fg mL−1 [89] | Sandwich immunoassay,  10−17 g mL−1 [127]  | 
| Sliding action | Trefoil factor 3 | 12.5 ng mL−1 [99] | ELISA, 3 pM [128] | 
| Sliding action | C-reactive protein; CRP | 1 ng mL−1 [36] | Immunonephelometric assay, 0.17 mg L−1 [129]  | 
| Rotational valve (hollow rivet)  | Carcino-embryonic antigen; CEA | 0.3 ng mL−1 [102] | dsDNA-templated # CuNPs coupled with a CEA-specific aptamer, 0.0065 ng mL−1 [130] | 
| Pressure valve | Mouse IgG | 50 ng mL−1 [48] | Sandwich immunoassay, 15.6 ng mL−1 [131]  | 
| Method | Analyte | Amplification Ratio | Ref. | 
|---|---|---|---|
| Dissolvable material (Sucrose) | PfHRP2 malaria | 2.6-fold | [49] | 
| Shunt | Malaria protein PfHRP2 | Not marked | [63] | 
| Pressurized paper | Progesterone receptor | 4.3-fold | [67] | 
| Pressurized paper | Escherichia coli O157:H7 and Salmonella typhimurium | 10-fold | [68] | 
| Pressurized paper (with 3D stacking)  | C-reactive protein | 3.47-fold | [69] | 
| Source pad of different sizes (2DPNs)  | BSA-biotin | 7.3-fold | [20] | 
| Source pad of different sizes (2DPNs)  | Malaria protein PfHRP2 | 4-fold | [70] | 
| Source pad of different sizes (2DPNs)  | Malaria protein PfHRP2 | 3.2-fold | [71] | 
| Temperature | Escherichia coli | 6-fold | [85] | 
| Sliding action | Human norovirus | 3-fold | [100] | 
| Expandable material | Malaria protein PfHRP2 | Not marked | [104] | 
| Method | Analyte | Detection Limit (μPAD) | Detection Limit  (Conventional Method)  | 
|---|---|---|---|
| Dissolvable bridge (pullulan) | Malathion | 6 nM [32] | Enzyme assay,  0.3 nM [137]  | 
| Covered film | Malathion | 75 nM [33] | |
| Target-responsive hydrogel | Cocaine | 7.3 μM [60] | Mass spectrometry,  30 ng mL−1 [138]  | 
| Hollow channel | Glucose/BSA | 0.7 mM/18 μM [34] | ELISA,  32 ng mL−1 [139]  | 
| Sliding action | BSA | 4.8 nM [94] | |
| Corona discharge treatment | Nitrite | 7.8 μmol L−1 [79] | Griess assay,  0.02 µM [140]  | 
| Rotational valve (comb binding)  | Fe2+/nitrite | 8.9/0.28 mg L−1 [103] | 
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.H.; Hahn, Y.K.; Kim, M.S. Recent Advances of Fluid Manipulation Technologies in Microfluidic Paper-Based Analytical Devices (μPADs) toward Multi-Step Assays. Micromachines 2020, 11, 269. https://doi.org/10.3390/mi11030269
Kim TH, Hahn YK, Kim MS. Recent Advances of Fluid Manipulation Technologies in Microfluidic Paper-Based Analytical Devices (μPADs) toward Multi-Step Assays. Micromachines. 2020; 11(3):269. https://doi.org/10.3390/mi11030269
Chicago/Turabian StyleKim, Taehoon H., Young Ki Hahn, and Minseok S. Kim. 2020. "Recent Advances of Fluid Manipulation Technologies in Microfluidic Paper-Based Analytical Devices (μPADs) toward Multi-Step Assays" Micromachines 11, no. 3: 269. https://doi.org/10.3390/mi11030269
APA StyleKim, T. H., Hahn, Y. K., & Kim, M. S. (2020). Recent Advances of Fluid Manipulation Technologies in Microfluidic Paper-Based Analytical Devices (μPADs) toward Multi-Step Assays. Micromachines, 11(3), 269. https://doi.org/10.3390/mi11030269
        
