Near-Infrared Organic Phototransistors with Polymeric Channel/Dielectric/Sensing Triple Layers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Solutions
2.2. Thin Film and Device Fabrication
2.3. Measurement
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hu, Y.; Dong, G.; Liu, C.; Wang, L.; Qiu, Y. Dependency of Organic Phototransistor Properties on the Dielectric Layers. Appl. Phys. Lett. 2006, 89, 072108. [Google Scholar] [CrossRef]
- Milvich, J.; Zaki, T.; Aghamohammadi, M.; Rödel, R.; Kraft, U.; Klauk, H.; Burghartz, J.N. Flexible Low-Voltage Organic Phototransistors Based on Air-Stable Dinaphtho[2,3-B:2′,3′-F]Thieno[3,2-B]Thiophene (DNTT). Org. Electron. 2015, 20, 63–68. [Google Scholar] [CrossRef]
- Huang, J.; Du, J.; Cevher, Z.; Ren, Y.; Wu, X.; Chu, Y. Printable and Flexible Phototransistors Based on Blend of Organic Semiconductor and Biopolymer. Adv. Funct. Mater. 2017, 27, 1604163. [Google Scholar] [CrossRef]
- Liu, M.; Wang, H.; Tang, Q.; Zhao, X.; Tong, Y.; Liu, Y. Ultrathin Air-Stable N-Type Organic Phototransistor Array for Conformal Optoelectronics. Sci. Rep. 2018, 8, 16612–16617. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Wu, X.; Lan, S.; Fang, Y.; Chen, H.; Guo, T. High Performance Flexible Organic Phototransistors with Ultrashort Channel Length. ACS Photonics 2018, 5, 3712–3722. [Google Scholar] [CrossRef]
- Lee, C.; Han, H.; Song, M.; Seo, J.; Kim, H.; Kim, Y. Organic Phototransistors with Chemically Doped Conjugated Polymer Interlayers for Visible and Near Infrared Light Detection. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–7. [Google Scholar] [CrossRef]
- Han, H.; Nam, S.; Seo, J.; Jeong, J.; Kim, H.; Bradley, D.D.C.; Kim, Y. Organic Phototransistors with all-Polymer Bulk Heterojunction Layers of P-Type and N-Type Sulfur-Containing Conjugated Polymers. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 147–153. [Google Scholar]
- Zhao, Q.; Wang, H.; Jiang, L.; Zhen, Y.; Dong, H.; Hu, W. Solution-Processed Flexible Organic Ferroelectric Phototransistor. ACS Appl. Mater. Interfaces 2017, 9, 43880–43885. [Google Scholar] [CrossRef] [PubMed]
- Yoo, D.; Kang, K.; Kim, Y.; Ahn, H.; Lee, W.; Pak, J.; Chung, S.; Lee, T. Solution-Processed Transparent Superhydrophobic Protection Layers for Enhancing the Device Reliability of Flexible Organic Optoelectronics. Adv. Mater. Technol. 2020, 5, 2000449. [Google Scholar] [CrossRef]
- Forrest, S.R. The Path to Ubiquitous and Low-Cost Organic Electronic Appliances on Plastic. Nature 2004, 428, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Lucas, B.; Trigaud, T.; Videlot-Ackermann, C. Organic Transistors and Phototransistors Based on Small Molecules. Polym. Int. 2012, 61, 374–389. [Google Scholar] [CrossRef]
- Tung, V.C.; Chen, L.; Allen, M.J.; Wassei, J.K.; Nelson, K.; Kaner, R.B.; Yang, Y. Low-Temperature Solution Processing of Graphene−Carbon Nanotube Hybrid Materials for High-Performance Transparent Conductors. Nano Lett. 2009, 9, 1949–1955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baeg, K.; Binda, M.; Natali, D.; Caironi, M.; Noh, Y. Organic Light Detectors: Photodiodes and Phototransistors. Adv. Mater. 2013, 25, 4267–4295. [Google Scholar] [CrossRef] [PubMed]
- Kelley, T.W.; Baude, P.F.; Gerlach, C.; Ender, D.E.; Muyres, D.; Haase, M.A.; Vogel, D.E.; Theiss, S.D. Recent Progress in Organic Electronics: Materials, Devices, and Processes. Chem. Mater. 2004, 16, 4413–4422. [Google Scholar] [CrossRef]
- Yu, H.; Bao, Z.; Oh, J.H. High-Performance Phototransistors Based on Single-Crystalline N-Channel Organic Nanowires and Photogenerated Charge-Carrier Behaviors. Adv. Funct. Mater. 2013, 23, 629–639. [Google Scholar] [CrossRef]
- Pal, T.; Arif, M.; Khondaker, S.I. High Performance Organic Phototransistor Based on Regioregular Poly(3-hexylthiophene). Nanotechnology 2010, 21, 325201. [Google Scholar] [CrossRef]
- Nam, S.; Seo, J.; Han, H.; Kim, H.; Bradley, D.D.C.; Kim, Y. Efficient Deep Red Light-Sensing All-Polymer Phototransistors with P-Type/N-Type Conjugated Polymer Bulk Heterojunction Layers. ACS Appl. Mater. Interfaces 2017, 9, 14983–14989. [Google Scholar] [CrossRef]
- Carr, J.A.; Franke, D.; Caram, J.R.; Perkinson, C.F.; Saif, M.; Askoxylakis, V.; Datta, M.; Fukumura, D.; Jain, R.K.; Bawendi, M.G.; et al. Shortwave Infrared Fluorescence Imaging with the Clinically Approved Near-Infrared Dye Indocyanine Green. Proc. Natl. Acad. Sci. USA 2018, 115, 4465. [Google Scholar] [CrossRef] [Green Version]
- Hong, G.; Antaris, A.L.; Dai, H. Near-Infrared Fluorophores for Biomedical Imaging. Nat. Biomed. Eng. 2017, 1, 0010. [Google Scholar] [CrossRef]
- Hemmer, E.; Acosta-Mora, P.; Méndez-Ramos, J.; Fischer, S. Optical Nanoprobes for Biomedical Applications: Shining a Light on Upconverting and Near-Infrared Emitting Nanoparticles for Imaging, Thermal Sensing, and Photodynamic Therapy. J. Mater. Chem. B 2017, 5, 4365–4392. [Google Scholar] [CrossRef]
- Huang, Z.; McWilliams, A.; Lui, H.; McLean, D.I.; Lam, S.; Zeng, H. Near-Infrared Raman Spectroscopy for Optical Diagnosis of Lung Cancer. Int. J. Cancer 2003, 107, 1047–1052. [Google Scholar] [CrossRef]
- Reutebuch, S.E.; Andersen, H.; McGaughey, R.J. Light Detection and Ranging (LIDAR): An Emerging Tool for Multiple Resource Inventory. J. For. 2005, 103, 286–292. [Google Scholar]
- Song, E.; Jiang, X.; Zhou, Y.; Lin, Z.; Ye, S.; Xia, Z.; Zhang, Q. Heavy Mn2+ Doped MgAl2O4 Phosphor for High-Efficient Near-Infrared Light-Emitting Diode and the Night-Vision Application. Adv. Opt. Mater. 2019, 7, 1901105. [Google Scholar] [CrossRef]
- Okamoto, D.; Fujikata, J.; Nishi, K.; Ohashi, K. Numerical Study of Near-Infrared Photodetectors with Surface-Plasmon Antenna for Optical Communication. Jpn. J. Appl. Phys. 2008, 47, 2921–2923. [Google Scholar] [CrossRef]
- Dou, L.; Liu, Y.; Hong, Z.; Li, G.; Yang, Y. Low-Bandgap Near-IR Conjugated Polymers/Molecules for Organic Electronics. Chem. Rev. 2015, 115, 12633–12665. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhai, Y.; Kim, H.; Azoulay, J.D.; Ng, T.N. Emerging Design and Characterization Guidelines for Polymer-Based Infrared Photodetectors. Acc. Chem. Res. 2018, 51, 3144–3153. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Wang, D.; Zhang, T.; Chaker, M.; Ma, D. Two-Step Synthesis of High-Quality Water-Soluble Near-Infrared Emitting Quantum Dots via Amphiphilic Polymers. Chem. Commun. 2010, 46, 5301–5303. [Google Scholar] [CrossRef]
- Harrison, M.T.; Kershaw, S.V.; Burt, M.G.; Eychmüller, A.; Weller, H.; Rogach, A.L. Wet Chemical Synthesis and Spectroscopic Study of CdHgTe Nanocrystals with Strong Near-Infrared Luminescence. Mater. Sci. Eng. B 2000, 69–70, 355–360. [Google Scholar] [CrossRef]
- Guo, X.; Guo, H.; Fu, L.; Carlos, L.D.; Ferreira, R.A.S.; Sun, L.; Deng, R.; Zhang, H. Novel Near-Infrared Luminescent Hybrid Materials Covalently Linking with Lanthanide [Nd(III), Er(III), Yb(III), and Sm(III)] Complexes Via a Primary Β-Diketone Ligand: Synthesis and Photophysical Studies. J. Phys. Chem. C 2009, 113, 12538–12545. [Google Scholar] [CrossRef]
- Walker, W.; Veldman, B.; Chiechi, R.; Patil, S.; Bendikov, M.; Wudl, F. Visible and Near-Infrared Absorbing, Low Band Gap Conjugated Oligomers Based on Cyclopentadieneones. Macromolecules 2008, 41, 7278–7280. [Google Scholar] [CrossRef]
- Qiao, W.; Zheng, J.; Wang, Y.; Zheng, Y.; Song, N.; Wan, X.; Wang, Z.Y. Efficient Synthesis and Properties of Novel Near-Infrared Electrochromic Anthraquinone Imides. Org. Lett. 2008, 10, 641–644. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Liang, Y.; Shrotriya, V.; Xiao, S.; Yu, L.; Yang, Y. Plastic Near-Infrared Photodetectors Utilizing Low Band Gap Polymer. Adv. Mater. 2007, 19, 3979–3983. [Google Scholar] [CrossRef]
- Hendriks, K.H.; Li, W.; Wienk, M.M.; Janssen, R.A.J. Small-Bandgap Semiconducting Polymers with High Near-Infrared Photoresponse. J. Am. Chem. Soc. 2014, 136, 12130–12136. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Chen, C.; Chan, S.; Hwang, G.; Ting, C. Thiophene/Phenylene/Thiophene-Based Low-Bandgap Conjugated Polymers for Efficient Near-Infrared Photovoltaic Applications. Chem. Mater. 2009, 21, 3262–3269. [Google Scholar] [CrossRef]
- Hong, G.; Zou, Y.; Antaris, A.L.; Diao, S.; Wu, D.; Cheng, K.; Zhang, X.; Chen, C.; Liu, B.; He, Y.; et al. Ultrafast Fluorescence Imaging in Vivo with Conjugated Polymer Fluorophores in the Second Near-Infrared Window. Nat. Commun. 2014, 5, 4206. [Google Scholar] [CrossRef] [Green Version]
- Qin, C.; Fu, Y.; Chui, C.; Kan, C.; Xie, Z.; Wang, L.; Wong, W. Tuning the Donor–Acceptor Strength of Low-Bandgap Platinum-Acetylide Polymers for Near-Infrared Photovoltaic Applications. Macromol. Rapid Commun. 2011, 32, 1472–1477. [Google Scholar] [CrossRef]
- Qian, G.; Qi, J.; Wang, Z.Y. Synthesis and Study of Low-Bandgap Polymers Containing the Diazapentalene and Diketopyrrolopyrrole Chromophores for Potential use in Solar Cells and Near-Infrared Photodetectors. J. Mater. Chem. 2012, 22, 12867–12873. [Google Scholar] [CrossRef]
- Feng, R.; Sato, N.; Nomura, M.; Saeki, A.; Nakanotani, H.; Adachi, C.; Yasuda, T.; Furuta, H.; Shimizu, S. Near-Infrared Absorbing Pyrrolopyrrole Aza-BODIPY-Based Donor–acceptor Polymers with Reasonable Photoresponse. J. Mater. Chem. C 2020, 8, 8770–8776. [Google Scholar] [CrossRef]
- Han, H.; Nam, S.; Seo, J.; Lee, C.; Kim, H.; Bradley, D.D.; Ha, C.S.; Kim, Y. Broadband All-Polymer Phototransistors with Nanostructured Bulk Heterojunction Laters of NIR-Sensing n-Type and Visible Light-Sensing P-Type Polymers. Sci. Rep. 2015, 5, 16457. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Lee, C.; Kim, H.; Kim, Y. Flexible Near-infrared Plastic Phototransistors with Conjugated Polymer Gate-Sensing Layers. Adv. Funct. Mater. 2018, 28, 1800704. [Google Scholar] [CrossRef]
- Park, J.; Kim, H.; Kim, T.; Lee, C.; Song, D.-I.; Kim, Y. Effect of Top Channel Thickness in Near Infrared Organic Phototransistors with Conjugated Polymer Gate-Sensing Layers. Electronics 2019, 8, 1493. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Lv, W.; Luo, X.; He, L.; Xu, K.; Zhao, F.; Huang, F.; Lu, F.; Peng, Y. A Comprehensive Investigation of Organic Active Layer Structures Toward High Performance Near-Infrared Phototransistors. Synth. Met. 2018, 240, 44–51. [Google Scholar] [CrossRef]
- Kim, H.; Wu, Z.; Eedugurala, N.; Azoulay, J.D.; Ng, T.N. Solution-Processed Phototransistors Combining Organic Absorber and Charge Transporting Oxide for Visible to Infrared Light Detection. ACS Appl. Mater. Interfaces 2019, 11, 36880–36885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, C.; You, P.; Liu, Z.; Li, L.; Yan, F. Ultrasensitive Broadband Phototransistors Based on Perovskite/Organic-Semiconductor Vertical Heterojunctions. Light Sci. Appl. 2017, 6, e17023. [Google Scholar] [CrossRef]
- Gao, Y.; Yi, Y.; Wang, X.; Meng, H.; Lei, D.; Yu, X.; Chu, P.K.; Li, J. A Novel Hybrid-Layered Organic Phototransistor Enables Efficient Intermolecular Charge Transfer and Carrier Transport for Ultrasensitive Photodetection. Adv. Mater. 2019, 31, 1900763. [Google Scholar] [CrossRef]
- Seo, J.; Song, M.; Han, H.; Kim, H.; Lee, J.; Park, S.; Kang, I.; Kim, Y. Ultrasensitive Tactile Sensors Based on Planar Liquid Crystal-Gated-Organic Field-Effect Transistors with Polymeric Dipole Control Layers. RSC Adv. 2015, 5, 56904–56907. [Google Scholar] [CrossRef]
- Seo, J.; Song, M.; Lee, C.; Nam, S.; Kim, H.; Park, S.; Kang, I.; Lee, J.; Kim, Y. Physical Force-Sensitive Touch Responses in Liquid Crystal-Gated-Organic Field-Effect Transistors with Polymer Dipole Control Layers. Org. Electron. 2016, 28, 184–188. [Google Scholar] [CrossRef]
- Song, M.; Seo, J.; Kim, H.; Kim, Y. Ultrasensitive Multi-Functional Flexible Sensors Based on Organic Field-Effect Transistors with Polymer-Dispersed Liquid Crystal Sensing Layers. Sci. Rep. 2017, 7, 2630. [Google Scholar] [CrossRef]
- White, S.H.; Thompson, T.E. Capacitance, Area, and Thickness Variations in Thin Lipid Films. Biochim. Biophys. Acta. Biomembr. 1973, 323, 7–22. [Google Scholar] [CrossRef]
t (nm) | ID,max (nA) | VTH (V) | RON/OFF | μh (10−4 cm2/V∙s) |
---|---|---|---|---|
20 | 17.7 | 36.7 | 23.8 | 0.7 |
50 | 28.5 | 17.5 | 2930 | 3.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.; Lee, C.; Kim, Y. Near-Infrared Organic Phototransistors with Polymeric Channel/Dielectric/Sensing Triple Layers. Micromachines 2020, 11, 1061. https://doi.org/10.3390/mi11121061
Kim T, Lee C, Kim Y. Near-Infrared Organic Phototransistors with Polymeric Channel/Dielectric/Sensing Triple Layers. Micromachines. 2020; 11(12):1061. https://doi.org/10.3390/mi11121061
Chicago/Turabian StyleKim, Taehoon, Chulyeon Lee, and Youngkyoo Kim. 2020. "Near-Infrared Organic Phototransistors with Polymeric Channel/Dielectric/Sensing Triple Layers" Micromachines 11, no. 12: 1061. https://doi.org/10.3390/mi11121061
APA StyleKim, T., Lee, C., & Kim, Y. (2020). Near-Infrared Organic Phototransistors with Polymeric Channel/Dielectric/Sensing Triple Layers. Micromachines, 11(12), 1061. https://doi.org/10.3390/mi11121061