Xenon Flash Lamp Lift-Off Technology without Laser for Flexible Electronics
Abstract
:1. Introduction
2. Experimental Details
2.1. Materials
2.2. Fabrication
2.3. Methods
2.3.1. SEM Analysis
2.3.2. Thermal Gravimetric Analysis (TA Instruments, TGA Q500)
2.3.3. FTIR Analysis (Thermo Fisher Scientific, Nicolet iS50 FTIR Spectrometer)
2.3.4. Transmittance Analysis (Sninco, UV–VIS Spectrophotometer, Mega-800).
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Sakurai, R.; Ohno, S.; Kita, S.; Masuda, Y.; Hattori, R. Color and Flexible Electronic Paper Display using QR-LPD® Technology. Soc. Inf. Disp. 2012, 37, 1922–1925. [Google Scholar] [CrossRef]
- Schindler, A.; Brill, J.; Fruehauf, N.; Novak, J.P.; Yaniv, Z. Solution-deposited carbon nanotube layers for flexible display applications. SienceDirect 2007, 37, 119–123. [Google Scholar] [CrossRef]
- Ihlemann, J.; Wolff-Rottke, B. Excimer laser micro machining of inorganic dielectrics. Appl. Surf. Sci. 1996, 106, 282–286. [Google Scholar] [CrossRef]
- Brannon, J.; Lankard, J.R.; Baise, A.I.; Burns, F.; Kaufman, J. Excimer laser etching of polyamide. J. Appl. Phys. 1985, 58, 2036–2043. [Google Scholar] [CrossRef]
- Joe, D.J.; Kim, S.J.; Park, J.H.; Park, D.Y.; Lee, H.E.; Im, T.H.; Choi, I.; Ruoff, R.S.; Lee, K.J. Laser–Material Interactions for Flexible Applications. Adv. Mater. 2017, 29, 1606586. [Google Scholar] [CrossRef]
- Ihlemann, J.; Scholl, A.; Schmidt, H.; Wolff-Rottke, B. Nanosecond and femtosecond excimer-laser ablation of oxide ceramics. J. Appl. Phys. 1994, 60, 411–417. [Google Scholar] [CrossRef]
- Kim, K.S.; Kim, S.Y.; Lee, J.L. Flexible organic light-emitting diodes using a laser lift-off method. J. Mater. Chem. C 2014, 2, 2144–2149. [Google Scholar] [CrossRef] [Green Version]
- Delmdahl, R.F.; Patzel, R.; Brune, J. Large-area laser-lift-off processing in microelectronics. Phys. Procedia 2013, 41, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Evans, C.C.; Liu, C.; Suntivich, J. Low-loss titanium dioxide waveguides and resonators using a dielectric lift-off fabrication process. Opt. Express 2015, 23, 11160–11169. [Google Scholar] [CrossRef]
- Delmdahl, R.; Fricke, M.; Burkhard, F. Laser lift-off systems for flexible-display production. J. Inf. Disp. 2014, 15, 1–4. [Google Scholar] [CrossRef]
- Bian, J.; Zhou, L.B.Y.; Wan, X.D.; Liu, M.X.; Zhu, C.; Huang, Y.A.; Yin, Z.P. Experimental study of laser lift-off of ultra-thin polyimide film for flexible electronics. Sci. China 2019, 62, 233–242. [Google Scholar] [CrossRef]
- Bian, J.; Zhou, L.B.Y.; Yang, B.; Yin, Z.; Huang, Y.A. Theoretical and experimental studies of laser lift-off of nonwrinkled ultrathin polyimide film for flexible electronics. Appl. Surf. Sci. 2020, 429, 143910. [Google Scholar] [CrossRef]
- Singleton, D.L.; Paraskevopoulos, G.; Irwin, R.S. XeCl laser ablation of polyimide: Influence of ambient atmosphere on particulate and gaseous products. J. Appl. Phys. 1989, 66, 3324–3328. [Google Scholar] [CrossRef]
- Kim, S.J.; Lee, H.E.; Choi, H.D.; We, J.H.; Shin, S.J.; Lee, K.J.; Cho, B.J. High-Performance Flexible Thermoelectric Power Generator Using Laser Multiscanning Lift-Off Process. ACS Nano 2016, 10, 10851–10857. [Google Scholar] [CrossRef]
- Inoue, S.; Utsunomiya, S.; Saeki, T.; Shimoda, T. Surface-Free Technology by Laser Annealing (SUFTLA) and Its Application to Poly-Si TFT-LCDs on Plastic Film With Integrated Drivers. IEEE Trans. Electron Devices 2002, 49, 1353–1360. [Google Scholar] [CrossRef]
- Lakatos, A.I. Flexible microelectronics becoming a reality with Suftla transfer technology. Soc. Inf. Disp. 2012, 8, 479–484. [Google Scholar]
- Chen, G.K.J.; Chen, J. Flexible Displays: Flexible AMOLED Manufacturing. In Handbook of Visual Display Technology; Chen, J., Cranton, W., Fihn, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Li, Z.; Palacios, E.; Butun, S.; Kocer, H.; Aydin, K. Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings. Sci. Rep. 2015, 5, 15137. [Google Scholar] [CrossRef]
- Park, C.I.; Seong, M.R.; Kim, M.A.; Kim, D.J.; Jung, H.J.; Cho, M.G.; Lee, S.H.; Lee, H.K.; Min, S.J.; Kim, J.Y.; et al. World 1st Large Size 77-inch Transparent Flexible OLED Display. Soc. Inf. Disp. 2018, 26, 287–295. [Google Scholar] [CrossRef]
- Wang, S.; Yu, Y.; Li, R.; Feng, G.; Wu, Z.; Compagnini, G.; Gulino, A.; Feng, Z.; Hu, A. High-performance stacked in-plane supercapacitors and supercapacitor array fabricated by femtosecond laser 3D direct writing on polyimide sheets, Electrochim. Acta Electrochim. Acta 2017, 241, 153–161. [Google Scholar] [CrossRef]
- Zhou, W.; Bai, S.; Ma, Y.; Ma, D.; Hou, T.; Shi, X.; Hu, A. Laser-Direct Writing of Silver Metal Electrodes on Transparent Flexible Substrates with High-Bonding Strength. Appl. Mater. Interface 2016, 8, 24887–24892. [Google Scholar] [CrossRef]
- Ghosh, M.K.; Mittal, K.L. Polyimides: Fundamentals and Applications. Marcel Dekker: New York, NY, USA, 1996. [Google Scholar]
- Hasegawa, M.; Kasamatsu, K.; Koseki, K. Colorless poly (ester imide)s derivedfrom hydrogenated trimellitic anhydride. Eur. Polym. J. 2012, 48, 483–498. [Google Scholar] [CrossRef]
- Hasegawa, M.; Fujii, M.; Ishii, J.; Yamaguchi, S.; Takezawa, E.; Kagayama, T.; Ishikawa, A. Colorless polyimides derived from 1S,2S,4R,5R-cyclohexanetetracarboxylic dianhydride, self-orientation behavior during solution casting, and their optoelectronic applications. Polymer 2014, 55, 4693–4708. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.I.; Jang, S.H.; Han, Y.J.; Lee, J.y.; Choi, J.; Cho, K.H. Xenon Flash Lamp Lift-Off Technology without Laser for Flexible Electronics. Micromachines 2020, 11, 953. https://doi.org/10.3390/mi11110953
Lee SI, Jang SH, Han YJ, Lee Jy, Choi J, Cho KH. Xenon Flash Lamp Lift-Off Technology without Laser for Flexible Electronics. Micromachines. 2020; 11(11):953. https://doi.org/10.3390/mi11110953
Chicago/Turabian StyleLee, Sang Il, Seong Hyun Jang, Young Joon Han, Jun yeub Lee, Jun Choi, and Kwan Hyun Cho. 2020. "Xenon Flash Lamp Lift-Off Technology without Laser for Flexible Electronics" Micromachines 11, no. 11: 953. https://doi.org/10.3390/mi11110953
APA StyleLee, S. I., Jang, S. H., Han, Y. J., Lee, J. y., Choi, J., & Cho, K. H. (2020). Xenon Flash Lamp Lift-Off Technology without Laser for Flexible Electronics. Micromachines, 11(11), 953. https://doi.org/10.3390/mi11110953