# Feasibility Study for a Chemical Process Particle Size Characterization System for Explosive Environments Using Low Laser Power

^{1}

^{2}

^{3}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Approximation and Curve Fitting

_{1}to x

_{n}is multiplied by the coefficient matrix and is equated with the associated matrix B of the Y-values.

^{T}is multiplied by matrix A and matrix B to matrix C and D, respectively as shown in Equation (2).

_{i}and the corresponding approximation points $\widehat{\mathrm{y}}$ averaged over the number of measuring points n.

_{p}to I

_{q}, in which the slope of the two curves have the same sign, while the other area is composed of the remaining intervals I

_{r}to I

_{s}where the slopes have opposite sign. For each of the two areas, each area is integrated over the respective intervals, see Equation (7). The variables represent a measure for the congruence of the two curve.

_{ss}increases as the difference between derivatives decreases, i.e., higher agreement of the curves, whereby the positive effect is amplified. By computing Equation (7) on all curves to be compared, two vectors containing the positive and negative congruence of each curve is obtained. In the next step, two vectors are divided element wise to determine the overall congruence, as shown in Equation (8). Where f is described in Equation (10). The variable $\mathrm{a}$

_{sum}has the same dimensions as $\mathrm{a}$

_{ss}and $\mathrm{a}$

_{os}.

_{ss}and $\mathrm{a}$

_{os}, the values within the vector are normalized to their respective minimum and maximum. The minimum is not normalized however to zero, so that the curve for which $\mathrm{a}$

_{os,norm}is minimal does not result in division by 0. To further enhance the prediction factors$\text{}\mathrm{f}$

_{ss}and $\mathrm{f}$

_{os}are used, as shown in (8). These factors are formed from the number of intervals with the same and opposite sign, $\mathrm{N}$

_{ss}and $\mathrm{N}$

_{os}respectively, as shown in (10). The factor $\mathrm{z}$ describes a number of power 10, where $\mathrm{z}$ is strictly greater than 10.

_{sum}. An example of curve comparison is shown in Figure 3.

#### 2.2. Particle Systems

^{®}polystyrene particles (PS), purchased from Micromod Partikeltechnologie GmbH (Rostock, Germany), with various particle diameters ranging from 0.5 µm (PDI < 0.2, PDI = polydispersity index) to 2 µm (PDI < 0.2). Spherical sicastar

^{®}silicate particles, sourced from Micromod Partikeltechnologie GmbH in Germany, with particle diameters ranging from 0.5 µm (PDI < 0.2) to 1 µm (PDI < 0.2).

#### 2.3. Experimental Setup

^{3}, thus easily adaptable to micro channels. The holder of the glass cuvette is mounted on a rail which is attached to a laboratory lifting platform. Thus, the glass cuvette has two degrees of freedom, displacement horizontally on the rail and vertically by adjusting the laboratory lifting platform. The laser is mounted on a vertical rod, independent of the test table.

## 3. Results

_{sum}, described previously, which is the congruence of the measurement signal to each simulation, where a single peak is present at approximately 700 nm.

## 4. Discussion and Future Work

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Assenhaimer, C.; Machado, L.J.; Glasse, B.; Fritsching, U.; Guardani, R. Use of a spectroscopic sensor to monitor droplet size distribution in emulsions using neural networks. Can. J. Chem. Eng.
**2014**, 92, 318–323. [Google Scholar] [CrossRef] - Bain, A.; Rafferty, A.; Preston, T.C. Determining the size and refractive index of single aerosol particles using angular light scattering and Mie resonances. J. Quant. Spectrosc. Radiat. Transf.
**2018**, 221, 61–70. [Google Scholar] [CrossRef] - Hargesheimer, E.E.; McTigue, N.E.; Mielke, J.L.; Yee, P.; Elford, T. Tracking filter performance with particle counting. J. Am. Water Work. Assoc.
**1998**, 90, 32–41. [Google Scholar] [CrossRef] - Jantunen, M.; Hänninen, O.; Koistinen, K.; Hashim, J.H. Fine PM measurements: Personal and indoor air monitoring. Chemosphere
**2002**, 49, 993–1007. [Google Scholar] [CrossRef] - Silva, W.K.; Chicoma, D.L.; Giudici, R. In-situ real-time monitoring of particle size, polymer, and monomer contents in emulsion polymerization of methyl methacrylate by near infrared spectroscopy. Polym. Eng. Sci.
**2011**, 51, 2024–2034. [Google Scholar] [CrossRef] - Abbasi, T.; Pasman, H.J.; Abbasi, S.A. A scheme for the classification of explosions in the chemical process industry. J. Hazard. Mater.
**2010**, 174, 270–280. [Google Scholar] [CrossRef] - Khan, F.I.; Abbasi, S.A. Major accidents in process industries and an analysis of causes and consequences. J. Loss Prev. Process Ind.
**1999**, 12, 361–378. [Google Scholar] [CrossRef] - Yuan, Z.; Khakzad, N.; Khan, F.; Amyotte, P. Dust explosions: A threat to the process industries. Process Saf. Environ. Prot.
**2015**, 98, 57–71. [Google Scholar] [CrossRef] - DIN EN IEC 60079-0 VDE 0170-1:2019-09 Explosionsgefährdete Bereiche. Available online: https://www.vde-verlag.de/normen/0100536/din-en-iec-60079-0-vde-0170-1-2019-09.html (accessed on 3 February 2020).
- Dahn, C.J.; Reyes, B.N.; Kusmierz, A. A methodology to evaluate industrial vapor and dust explosion hazards. Proc. Saf. Prog.
**2000**, 19, 86–90. [Google Scholar] [CrossRef] - Scheffler, N.E. Improved fire and explosion index hazard classification. Proc. Saf. Prog.
**1994**, 13, 214–218. [Google Scholar] [CrossRef] - DIN EN 60825-1 VDE 0837-1:2015-07 Sicherheit von Lasereinrichtungen Teil. Available online: https://www.vde-verlag.de/normen/0800254/din-en-60825-1-vde-0837-1-2015-07.html (accessed on 3 February 2020).
- Barth, H.G.; Flippen, R.B. Particle Size Analysis. Anal. Chem.
**1995**, 67, 257–272. [Google Scholar] [CrossRef] - Emmerich, J.; Tang, Q.; Wang, Y.; Neubauer, P.; Junne, S.; Maaß, S. Optical inline analysis and monitoring of particle size and shape distributions for multiple applications: Scientific and industrial relevance. Chin. J. Chem. Eng.
**2019**, 27, 257–277. [Google Scholar] [CrossRef] - Foqué, D.; Zwertvaegher, I.K.; Devarrewaere, W.; Verboven, P.; Nuyttens, D. Characteristics of dust particles abraded from pesticide treated seeds: 1. Size distribution using different measuring techniques: Physicochemical properties of particles abraded from pesticide-treated seeds. Pest. Manag. Sci.
**2017**, 73, 1310–1321. [Google Scholar] [CrossRef][Green Version] - Ruscitti, O.; Franke, R.; Hahn, H.; Babick, F.; Richter, T.; Stintz, M. Application of Particle Measurement Technology in Process Intensification. Chem. Eng. Technol.
**2008**, 31, 270–277. [Google Scholar] [CrossRef] - Kaasalainen, M.; Aseyev, V.; von Haartman, E.; Karaman, D.Ş.; Mäkilä, E.; Tenhu, H.; Rosenholm, J.; Salonen, J. Size, Stability, and Porosity of Mesoporous Nanoparticles Characterized with Light Scattering. Nanoscale Res. Lett.
**2017**, 12, 74. [Google Scholar] [CrossRef][Green Version] - Juvonen, R.; Haikara, A. Amplification Facilitators and Pre-Processing Methods for PCR Detection of Strictly Anaerobic Beer-Spoilage Bacteria of the Class Clostridia in Brewery Samples. J. Inst. Brew.
**2009**, 115, 167–176. [Google Scholar] [CrossRef] - Perretti, G.; Floridi, S.; Turchetti, B.; Marconi, O.; Fantozzi, P. Quality Control of Malt: Turbidity Problems of Standard Worts Given by the Presence of Microbial Cells. J. Inst. Brew.
**2011**, 117, 212–216. [Google Scholar] [CrossRef] - Baxter, N.J.; Lilley, T.H.; Haslam, E.; Williamson, M.P. Multiple Interactions between Polyphenols and a Salivary Proline-Rich Protein Repeat Result in Complexation and Precipitation. Biochemistry
**1997**, 36, 5566–5577. [Google Scholar] [CrossRef] - Siebert, K.J. Haze formation in beverages. LWT-Food Sci. Technol.
**2006**, 39, 987–994. [Google Scholar] [CrossRef] - Qi, Y.; Wang, H.; Wei, K.; Yang, Y.; Zheng, R.-Y.; Kim, I.; Zhang, K.-Q. A Review of Structure Construction of Silk Fibroin Biomaterials from Single Structures to Multi-Level Structures. Int. J. Mol. Sci.
**2017**, 18, 237. [Google Scholar] [CrossRef] - Arias, M.L.; Frontini, G.L. Particle Size Distribution Retrieval from Elastic Light Scattering Measurements by a Modified Regularization Method. Part. Part. Syst. Charact.
**2006**, 23, 374–380. [Google Scholar] [CrossRef] - Caumont-Prim, C.; Yon, J.; Coppalle, A.; Ouf, F.-X.; Fang Ren, K. Measurement of aggregates’ size distribution by angular light scattering. J. Quant. Spectrosc. Radiat. Transf.
**2013**, 126, 140–149. [Google Scholar] [CrossRef] - Gulari, E.; Bazzi, G.; Gulari, E.; Annapragada, A. Latex Particle Size Distributions from Multiwavelength Turbidity Spectra. Part. Part. Syst. Charact.
**1987**, 4, 96–100. [Google Scholar] [CrossRef] - Light Scattering from Polymer Solutions and Nanoparticle Dispersions; Springer Laboratory; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-540-71950-2.
- Li, L.; Yu, L.; Yang, K.; Li, W.; Li, K.; Xia, M. Angular dependence of multiangle dynamic light scattering for particle size distribution inversion using a self-adapting regularization algorithm. J. Quant. Spectrosc. Radiat. Transf.
**2018**, 209, 91–102. [Google Scholar] [CrossRef] - Mroczka, J.; Szczuczyński, D. Improved technique of retrieving particle size distribution from angular scattering measurements. J. Quant. Spectrosc. Radiat. Transf.
**2013**, 129, 48–59. [Google Scholar] [CrossRef] - Billot, P.; Couty, M.; Hosek, P. Application of ATR-UV Spectroscopy for Monitoring the Crystallisation of UV Absorbing and Nonabsorbing Molecules. Org. Process Res. Dev.
**2010**, 14, 511–523. [Google Scholar] [CrossRef] - Van Eerdenbrugh, B.; Alonzo, D.E.; Taylor, L.S. Influence of Particle Size on the Ultraviolet Spectrum of Particulate-Containing Solutions: Implications for In-Situ Concentration Monitoring Using UV/Vis Fiber-Optic Probes. Pharm Res
**2011**, 28, 1643–1652. [Google Scholar] [CrossRef] - Philip Laven. MiePlot. Available online: http://www.philiplaven.com/mieplot.htm#Download%20MiePlot (accessed on 26 March 2019).
- Arndt, K.-F.; Witkowski, K.; Schimmel, K.-H. Quasielastische Lichtstreuung von gequollenen Siliconnetzwerken. Acta Polym.
**1988**, 39, 475–479. [Google Scholar] [CrossRef] - Horvath, H. Gustav Mie and the scattering and absorption of light by particles: Historic developments and basics. J. Quant. Spectrosc. Radiat. Transf.
**2009**, 110, 787–799. [Google Scholar] [CrossRef] - O’Neil, A.; Jee, R.; Moffat, A. Measurement of the cumulative particle size distribution of microcrystalline cellulose using near infrared reflectance spectroscopy. Analyst
**1999**, 124, 33–36. [Google Scholar] [CrossRef] - Kätzel, U.; Stintz, M.; Ripperger, S. Applikationsuntersuchungen zur Photonenkorrelationsspektroskopie im Rückstreubereich. Chem. Ing. Tech.
**2004**, 76, 66–69. [Google Scholar] [CrossRef] - Leschonski, K. Die On-Line-Messung von Partikelgrößenverteilungen in Gasen und Flüssigkeiten: Die On-Line-Messung von Partikelgrößenverteilungen in Gasen und Flüssigkeiten. Chem. Ing. Tech.
**1978**, 50, 194–203. [Google Scholar] [CrossRef] - van der Meeren, P.; Bogaert, H.; Vanderdeelen, J.; Baert, L. Relevance of Light Scattering Theory in Photon correlation spectroscopic experiments. Part. Part. Syst. Charact.
**1992**, 9, 138–143. [Google Scholar] [CrossRef] - Roy, D.; Fendler, J. Reflection and Absorption Techniques for Optical Characterization of Chemically Assembled Nanomaterials. Adv. Mater.
**2004**, 16, 479–508. [Google Scholar] [CrossRef] - Satinover, S.J.; Dove, J.D.; Borden, M.A. Single-Particle Optical Sizing of Microbubbles. Ultrasound Med. Biol.
**2014**, 40, 138–147. [Google Scholar] [CrossRef] - Steinke, L.; Wessely, B.; Ripperger, S. Optische Extinktionsmessverfahren zur Inline-Kontrolle disperser Stoffsysteme. Chem. Ing. Tech.
**2009**, 81, 735–747. [Google Scholar] [CrossRef] - Surbek, M.; Esen, C.; Schweiger, G.; Ostendorf, A. Pollen characterization and identification by elastically scattered light. J. Biophoton.
**2011**, 4, 49–56. [Google Scholar] [CrossRef] - Teumer, T.; Rädle, M.; Methner, F.-J. Possibility of monitoring beer haze with static light scattering, a theoretical background. Brew. Sci.
**2019**, 132–140. [Google Scholar] [CrossRef] - Lorenz, L. Ueber die Refractionsconstante. Ann. Phys. Chem.
**1880**, 247, 70–103. [Google Scholar] [CrossRef][Green Version] - Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys.
**1908**, 330, 377–445. [Google Scholar] [CrossRef] - Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles, 1st ed.John Wiley & Sons: New York, NY, USA, 1998; ISBN 978-0-471-29340-8. [Google Scholar]
- Mishchenko, M.I. Gustav Mie and the fundamental concept of electromagnetic scattering by particles: A perspective. J. Quant. Spectrosc. Radiat. Transf.
**2009**, 110, 1210–1222. [Google Scholar] [CrossRef] - Debye, P. Light Scattering in Solutions. J. Appl. Phys.
**1944**, 15, 338–342. [Google Scholar] [CrossRef] - Enderlein, R.; Peuker, K.; Bechstedt, F. General theory of light scattering in solids. Phys. Stat. Sol. (B)
**1979**, 92, 149–158. [Google Scholar] [CrossRef] - Kraemer, B. Laboruntersuchungen zum Gefrierprozeß in polaren stratosphärischen Wolken. Ph.D. Thesis, FU Berlin, Berlin, Germany, 1998. Available online: http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000000058 (accessed on 15 April 2019).
- Stein, R.S.; Srinivasarao, M. Fifty years of light scattering: A perspective. J. Polym. Sci. B Polym. Phys.
**1993**, 31, 2003–2010. [Google Scholar] [CrossRef] - Polyanskiy, M. Refractive Index Database. Available online: https://refractiveindex.info (accessed on 30 September 2020).
- Gaponov, A.V.; Ostrovskii, L.A.; Rabinovich, M.I. One-dimensional waves in disperse nonlinear systems. Radiophys Quantum Electron
**1970**, 13, 121–161. [Google Scholar] [CrossRef] - Schätzel, K. Correlation techniques in dynamic light scattering. Appl. Phys. B
**1987**, 42, 193–213. [Google Scholar] [CrossRef] - Shinpaugh, K.A.; Simpson, R.L.; Wicks, A.L.; Ha, S.M.; Fleming, J.L. Signal-processing techniques for low signal-to-noise ratio laser Doppler velocimetry signals. Exp. Fluids
**1992**, 12, 319–328. [Google Scholar] [CrossRef] - Efrat, A.; Fan, Q.; Venkatasubramanian, S. Curve Matching, Time Warping, and Light Fields: New Algorithms for Computing Similarity between Curves. J Math Imaging Vis
**2007**, 27, 203–216. [Google Scholar] [CrossRef][Green Version] - Buchin, K.; Buchin, M.; Wang, Y. Exact Algorithms for Partial Curve Matching via the Fréchet Distance. In Proceedings of the Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, New York, NY, USA, 4–6 January 2009; pp. 645–654. [Google Scholar]
- Teumer, T.; Hufnagel, T.; Schäfer, T.; Schlarp-Horvath, R.; Karbstein, H.P.; Methner, F.; Rädle, M. Entwicklung eines Partikelmesssystems zur Erfassung geringer Streulicht-Intensitäten optimiert für den Einsatz sehr schwacher Laserstrahlen. Chem. Ing. Tech.
**2019**, 91, 529–533. [Google Scholar] [CrossRef]

**Figure 1.**Batch file for MiePlot to automate stepping through particle sizes for intensity versus scattering angle simulations.

**Figure 3.**Classification of curves and division into intervals based on their gradient direction ((

**a**) data normalized; (

**b**) data normalized and differentiated)

**.**

**Figure 4.**Example of a congruence diagram of the 500 nm scattering pattern compared to the simulation.

**Figure 5.**Diagram illustrating the calculation of congruence to determine the particle size of a fitted curve from the simulation database.

**Figure 7.**Particle size characterization for 681 nm silica particles (particle size displayed is rounded to 680). Light scatter measured in 2° increments from 20° to 160°. (

**a**) Measurement and sinusoidal fit with 95% confidence intervals shown in gray; (

**b**) comparison to best fit result; (

**c**) comparison to actual particle size.

**Figure 9.**Particle size characterization for 1000 nm polystyrene particles. Light scatter measured in 2° increments from 20° to 160°. (

**a**) Measurement and sinusoidal fit; (

**b**) comparison to best fit result with 95% confidence intervals shown in gray; (

**c**) comparison to actual particle size.

**Figure 11.**Particle size characterization for 1000 nm polystyrene particles after filtering simulation database for signals with similar number of local extrema. Light scatter measured in 2° increments from 20° to 160°. (

**a**) Measurement and sinusoidal fit; (

**b**) comparison to best fit result with 95% confidence intervals shown in gray; (

**c**) comparison to actual particle size. Using the signal feature of number of local extrema allows confounding signals to be filtered out and prediction is improved.

**Figure 12.**Overall congruence of 1000 nm measurement to simulation database after filtering for signals with similar number of local extrema.

**Figure 13.**(

**a**) Fiber sensor in a semi circle form to detect scattered light over a range of angles and forward it to the customized photon multiplier (CPM). Between the sensor and the CPM is a rotating slit which allows only the signal from one fiber at a time to reach the CPM. (

**b**) The fiber ends are placed next to each other in an arc, and through each rotation of the slit the array of fibers is exposed sequentially.

**Table 1.**Wavelength dependent refractive index for silica and polystyrene [51].

Wavelength (µm) | Silica | Polystyrene |
---|---|---|

0.43584 | 1.4667 | 1.6170 |

0.47998 | 1.4635 | 1.6070 |

0.58756 | 1.4585 | 1.5916 |

0.70652 | 1.4551 | 1.5825 |

Polarization | Predicted Result (nm) | Data Sheet (nm) | Relative Error |
---|---|---|---|

Unpolarized | 330 | 310 | 6.5% |

Unpolarized | 480 | 507 | 5.3% |

Unpolarized | 690 | 681 | 1.3% |

Unpolarized | 880 | 900 | 2.2% |

Unpolarized | 960 | 987 | 2.8% |

Polarization | Predicted Result (nm) | Data Sheet (nm) | Relative Error |
---|---|---|---|

Unpolarized | 460 | 500 | 8.0% |

Unpolarized | 990 | 1000 | 1.0% |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ross-Jones, J.; Teumer, T.; Wunsch, S.; Petri, L.; Nirschl, H.; Krause, M.J.; Methner, F.-J.; Rädle, M. Feasibility Study for a Chemical Process Particle Size Characterization System for Explosive Environments Using Low Laser Power. *Micromachines* **2020**, *11*, 911.
https://doi.org/10.3390/mi11100911

**AMA Style**

Ross-Jones J, Teumer T, Wunsch S, Petri L, Nirschl H, Krause MJ, Methner F-J, Rädle M. Feasibility Study for a Chemical Process Particle Size Characterization System for Explosive Environments Using Low Laser Power. *Micromachines*. 2020; 11(10):911.
https://doi.org/10.3390/mi11100911

**Chicago/Turabian Style**

Ross-Jones, Jesse, Tobias Teumer, Susann Wunsch, Lukas Petri, Hermann Nirschl, Mathias J. Krause, Frank-Jürgen Methner, and Matthias Rädle. 2020. "Feasibility Study for a Chemical Process Particle Size Characterization System for Explosive Environments Using Low Laser Power" *Micromachines* 11, no. 10: 911.
https://doi.org/10.3390/mi11100911