Paper-Supported High-Throughput 3D Culturing, Trapping, and Monitoring of Caenorhabditis Elegans
Abstract
:1. Introduction
2. Results and Discussion
2.1. High-Throughput Culturing, Trapping, and Monitoring of C. elegans
2.2. Transparent 3D Culture Systems for C. elegans
2.3. 3D Behavioral Dynamics of C. elegans
2.4. C. elegans’ Growth in 3D Culture System
3. Conclusions
4. Experimental Sections
4.1. C. elegans and Culture
4.2. Preparing E. coli OP50 Bacteria
4.3. A Paper-Based 96-Well Culturing Platform
4.4. A Transparent 3D Culture System
4.5. Stereological Cell Counting
4.6. Fertility and Distribution Analysis
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Mirbagheri, M.; Adibnia, V.; Hughes, B.R.; Waldman, S.D.; Banquy, X.; Hwang, D.K. Advanced cell culture platforms: A growing quest for emulating natural issues. Mater. Horiz. 2019, 6, 45–71. [Google Scholar] [CrossRef]
- Yeon, J.H.; Park, J. Microfluidic cell culture systems for cellular analysis. Biochip J. 2007, 1, 17–27. [Google Scholar]
- Coluccio, M.L.; Perozziello, G.; Malara, N.; Parrotta, E.; Zhang, P.; Gentile, F.; Limongi, T.; Raj, P.M.; Cuda, G.; Candeloro, P.; et al. Microfluidic platforms for cell cultures and investigations. Microelectron. Eng. 2019, 208, 14–28. [Google Scholar] [CrossRef]
- Dou, X.; Feng, C. Amino acids and peptide-based supramolecular hydrogels for three-dimensional cell culture. Adv. Mater. 2017, 29, 1604062. [Google Scholar]
- Baumeister, R.; Ge, L. The worm in us–Caenorhabditis elegans as a model of human disease. Trends Biotechnol. 2002, 20, 147–148. [Google Scholar] [CrossRef]
- Markaki, M.; Tavernarakis, N. Modeling human diseases in Caenorhabditis elegans. Biotechnol. J. 2010, 5, 1261–1276. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.Y.; Yoon, K.; Lee, J.I. NGT-3D: A simple nematode cultivation system to study Caenorhabditis elegans biology in 3D. Biol. Open 2016, 5, 529. [Google Scholar] [CrossRef] [Green Version]
- Ben-Yakar, A. High-content and high-throughput in vivo drug screening platforms using microfluidics. ASSAY Drug Dev. Technol. 2019, 17, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Krajniak, J.; Lu, H. Long-term high-resolution imaging and culture of C. elegans in chip-gel hybrid microfluidic device for developmental studies. Lab Chip 2010, 10, 1862–1868. [Google Scholar] [CrossRef]
- Wang, J.; Meng, J.; Ding, G.; Kang, Y.; Zhao, W. A novel microfluidic capture and monitoring method for assessing physiological damage of C. elegans under microgravity. Electrophoresis 2019, 40, 922–929. [Google Scholar] [CrossRef]
- Bakhtina, N.A.; Korvink, J.G. Microfluidic laboratories for C. elegans enhance fundamental studies in biology. RSC Adv. 2014, 4, 4691–4709. [Google Scholar] [CrossRef]
- Gilleland, C.L.; Rohde, C.B.; Zeng, F.; Yanik, M.F. Microfluidic immobilization of physiologically active Caenorhabditis elegans. Nat. Protoc. 2010, 5, 1888–1902. [Google Scholar] [CrossRef] [PubMed]
- Deiss, F.; Mazzeo, A.; Hong, E.; Ingber, D.E.; Derda, R.; Whitesides, G.M. Platform for high-throughput testing of the effect of soluble compounds on 3D cell culture. Anal. Chem. 2013, 85, 8085–8094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, G.G.; DiTucci, M.J.; Baker, M.S.; Phillips, S.T. High throughput method for prototyping three-dimensional, paper-based microfluidic devices. Lab Chip 2012, 12, 2630–2633. [Google Scholar] [CrossRef] [PubMed]
- Tahernia, M.; Mohammadifar, M.; Hassett, D.J.; Choi, S. A fully disposable 64-well papertronic sensing array for screening electroactive microorganisms. Nano Energy 2019, 65, 104026. [Google Scholar] [CrossRef]
- Mosadegh, B.; Dabiri, B.E.; Lockett, M.R.; Derda, R.; Campbell, P.; Parker, K.K.; Whitesides, G.M. Three-dimensional paper-based model for cardiac ischemia. Adv. Healthc. Mater. 2014, 3, 1036–1043. [Google Scholar] [CrossRef]
- Liu, H.; Li, X.; Crooks, R.M. Paper-based SlipPAD for high-throughput chemical sensing. Anal. Chem. 2013, 85, 4263–4267. [Google Scholar] [CrossRef]
- Dong, X.; Song, P.; Liu, X. An automated microfluidic system for morphological measurement and size-based sorting of C. elegans. IEEE Trans. Nanobioscience 2019, 18, 373–380. [Google Scholar] [CrossRef]
- Chen, Q.; He, Z.; Liu, W.; Lin, X.; Wu, J.; Li, H.; Lin, J. Engineering Cell-Compatible Paper Chips for Cell Culturing, Drug Screening, and Mass Spectrometric Sensing. Adv. Healthc. Mater. 2015, 28, 2291–2296. [Google Scholar] [CrossRef]
- Stehman, S.V. Comparison of systematic and random sampling for estimating the accuracy of maps generated from remotely sensed data. Photogramm. Eng. Remote Sens. 1992, 58, 1343–1350. [Google Scholar]
- Chaudhuri, J.; Parihar, M.; Pires-daSilva, A. An introduction to Worm Lab: From culturing worms to mutagenesis. J. Vis. Exp. 2011, 47, e2293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutak, C.M.; Kavanagh, M.E.; Reddy, I.K. Comparative Development of SIRC Rabbit Corneal Cells Grown on Polycarbonate- and Polyester-Based Filters. Skin Pharmacol. Appl. Skin Physiol. 2002, 15, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Cheng, Y.; Tu, M.; Chen, Y.; Peng, C.; Liao, W.; Tung, Y. A polydimethylsiloxane–polycarbonate hybrid microfluidic device capable of generating perpendicular chemical and oxygen gradients for cell culture studies. Lab Chip 2014, 14, 3762–3772. [Google Scholar] [CrossRef] [PubMed]
- McDiarmid, T.A.; Yu, A.J.; Rankin, C.H. Beyond the response—High throughput behavioral analyses to link genome to phenome in Caenorhabditis elegans. Genes Brain Behav. 2018, 17, e12437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tahernia, M.; Mohammadifar, M.; Choi, S. Paper-Supported High-Throughput 3D Culturing, Trapping, and Monitoring of Caenorhabditis Elegans. Micromachines 2020, 11, 99. https://doi.org/10.3390/mi11010099
Tahernia M, Mohammadifar M, Choi S. Paper-Supported High-Throughput 3D Culturing, Trapping, and Monitoring of Caenorhabditis Elegans. Micromachines. 2020; 11(1):99. https://doi.org/10.3390/mi11010099
Chicago/Turabian StyleTahernia, Mehdi, Maedeh Mohammadifar, and Seokheun Choi. 2020. "Paper-Supported High-Throughput 3D Culturing, Trapping, and Monitoring of Caenorhabditis Elegans" Micromachines 11, no. 1: 99. https://doi.org/10.3390/mi11010099
APA StyleTahernia, M., Mohammadifar, M., & Choi, S. (2020). Paper-Supported High-Throughput 3D Culturing, Trapping, and Monitoring of Caenorhabditis Elegans. Micromachines, 11(1), 99. https://doi.org/10.3390/mi11010099