Investigation on Cutting Performance of Micro-Textured Cutting Tools
Abstract
:1. Introduction
2. Optimizing Cutting Parameters
2.1. Design Experiments
2.2. Analysis of Experiment Results
3. Finite Element Analysis (FEA)
3.1. Finite Element Model of Micro-Hole Tools
3.2. Analyzing the Effect of Micro-Hole Textures on Tool Wear
4. Cutting Experiment
4.1. Fabrication and Machined of Micro Texture on Tool Surface
4.2. Analyzing Tool Wear of Cutting Experiments
4.3. Analyzing Machined Surface Roughness of Workpiece
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pettersson, U.; Jacobson, S. Influence of surface texture on boundary lubricated sliding contacts. Tribol. Int. 2003, 36, 857–864. [Google Scholar] [CrossRef]
- Etsion, I. Improving Tribological Performance of Mechanical Components by Laser Surface Texturing. Tribol. Lett. 2004, 17, 733–737. [Google Scholar] [CrossRef]
- Menezes, P.L.; Kishore; Kailas, S.V. Influence of surface texture on coefficient of friction and transfer layer formation during sliding of pure magnesium pin on 080 M40 (EN8) steel plate. Wear 2006, 261, 578–591. [Google Scholar] [CrossRef]
- Wang, L.; Pei, S.Y.; Xu, H. Surface Texture Influence on Rotor-Bearing System Stability. J. Xi’an Jiaotong Univ. 2014, 48, 84–88. [Google Scholar]
- Yin, M.H.; Chen, G.D.; Gao, D.C.; Wang, L. Influence mechanism of micro texture on load carrying capacity of journal bearing. J. Huanzhong Univ. Sci. Tech. (Nat. Sci. Ed.) 2015, 43, 27–31. [Google Scholar]
- Yin, M.H.; Chen, G.D.; Gao, D.C.; Wang, L. Effects of three of surface texture on the performances of journal bearing. J. Harbin Inst. Technol. 2016, 48, 159–164. [Google Scholar]
- Zhang, G.L.; Deng, J.X.; Ge, D.L.; Wang, W.; Zhang, X.; Liu, Y.Y. Effect of Sine-type Surface Macrotexture on Tribological Property of Carbide. Tool Eng. 2018, 2, 12–17. [Google Scholar]
- Samanta, M.; Punetha, P.; Sharma, M. Influence of surface texture on sand-steel interface strength response. Géotech. Lett. 2018, 8, 1–25. [Google Scholar] [CrossRef]
- Hao, X.Q.; Song, X.L.; Li, L. Development and Perspective of Surface Texturing Tools. Surf. Technol. 2016, 45, 170–181. [Google Scholar]
- Xie, J.; Luo, M.J.; Wu, K.K.; Yang, L.F.; Li, D.H. Experimental Study on Cutting Temperature and Cutting Force in Dry Turning of Titanium Alloy Using a Non-coated Micro-grooved Tool. Int. J. Mach. Tools Manuf. 2013, 73, 25–36. [Google Scholar] [CrossRef]
- Chen, C.; Chen, Y.J.; Li, N.; Liu, Y. Performance of Carbide Tools with Micro-Texture on Titanium Alloys Cutting in Dry Conditions. Adv. Mater. Res. 2012, 590, 17–22. [Google Scholar] [CrossRef]
- Kümmel, J.; Braun, D.; Gibmeier, J.; Schneider, J.; Greiner, C.; Schulze, V.; Wanner, A. Study on micro texturing of uncoated cemented carbide cutting tools for wear improvement and built-up edge stabilisation. J. Mater. Process. Technol. 2015, 215, 62–70. [Google Scholar] [CrossRef]
- Chang, W.; Sun, J.; Luo, X. Investigation of microstructured milling tool for deferring tool wear. Wear 2011, 271, 2433–2437. [Google Scholar] [CrossRef]
- Sawant, M.S.; Jain, N.K.; Palani, I.A. Influence of dimple and spot-texturing of HSS cutting tool on machining of Ti-6Al-4V. J. Mater. Process. Technol. 2018, 261, 1–11. [Google Scholar] [CrossRef]
- Yang, C.; Liu, X.J.; Yang, H.D.; Liu, K. Effect of the Textured Surface on the Cutting Performance of the Tool and the Friction Property for the Rake Face. Tribology 2015, 2, 228–235. [Google Scholar]
- Liu, Z.Y.; Wei, X.; Xie, X.Z.; Hua, X.G.; Hong, J.W. Influence of Surface Micro Texture with Laser Processing on the Friction and Wear Performance of Ceramic Cutter. Surf. Technol. 2015, 10, 33–39. [Google Scholar] [CrossRef]
- Qi, B.Y.; Li, L.; He, N.; Zhao, W.; Wang, Z. Experimental Study on Orthogonal Cutting of Ti6Al4V with Micro-texture Tool. Tribology 2011, 31, 346–351. [Google Scholar]
- Long, Y.Q.; Deng, J.X.; Zhou, H.M.; Yi, B. Performance of Self-lubricating Micro-textured Tool on Dry Cutting 0Cr18Ni9 Austenitic Stainless Steel. Mater. Mech. Eng. 2015, 3, 75–79. [Google Scholar]
- Lei, S.; Devarajan, S.; Chang, Z. A study of micropool lubricated cutting tool in machining of mild steel. J. Mater. Process. Tech. 2009, 209, 1612–1620. [Google Scholar] [CrossRef]
- Sugihara, T.; Enomoto, T. Crater and flank wear resistance of cutting tools having micro textured surfaces. Precis. Eng. 2013, 37, 888–896. [Google Scholar] [CrossRef]
- Sugihara, T.; Enomoto, T. Improving anti-adhesion in aluminum alloy cutting by micro stripe texture. Precis. Eng. 2012, 36, 229–237. [Google Scholar] [CrossRef]
- Obikawa, T.; Kamio, A.; Takaoka, H.; Osada, A. Micro-texture at the coated tool face for high performance cutting. Int. J. Mach. Tools Manuf. 2011, 51, 966–972. [Google Scholar] [CrossRef]
- Obikawa, T.; Kani, B. Micro Ball End Milling of Titanium Alloy Using a Tool with a Microstructured Rake Face. J. Adv. Mech. Des. Syst. Manuf. 2012, 6, 1121–1131. [Google Scholar] [CrossRef] [Green Version]
- Ling, T.D.; Liu, P.Z.; Xiong, S.W.; Grzina, D.; Cao, J.; Wang, Q.J.; Xia, Z.C.; Talwar, R. Surface texturing of drill bits for adhesion reduction and tool life enhancement. Tribol. Lett. 2013, 52, 113–122. [Google Scholar] [CrossRef]
- Xu, M.G.; Zhang, Z.; Ma, X.L.; Huang, W.Y. Simulation Analysis of Micro Texture Tool Cutting Nature Based on DEFORM-3D. Modul. Mach. Tool Autom. Manuf. Tech. 2016, 31, 346–351. [Google Scholar]
- Kandráč, L.; Maňková, I.; Marek, V.; Beňo, J. Finite Element Simulation of Cutting Forces in Orthogonal Machining of Titanium Alloy Ti-6Al-4V. Appl. Mech. Mater. 2014, 474, 192–199. [Google Scholar] [CrossRef]
- Ulutan, D.; Tuğrul, Ö. Determination of tool friction in presence of flank wear and stress distribution based validation using finite element simulations in machining of titanium and nickel based alloys. J Mater Process Technol. J. Mater. Process. Technol. 2013, 213, 2217–2237. [Google Scholar] [CrossRef]
- Cui, B.D.; Yin, B.L.; Guo, J.L. Experimental Investigation of Surface Roughness in High Speed Turning of Hardened Steel. Mach. Des. Manuf. 2012, 8, 198–200. [Google Scholar] [CrossRef]
- Gao, S.L.; An, L.B.; Li, C.H.; Gao, S. Test and prediction of surface roughness machining hardened steel using CBN tool. Mod. Manuf. Eng. 2015, 10, 102–105. [Google Scholar]
- Chen, T.; Liu, X.L. Surface Roughness Experiment and Prediction in the Hard Turning of Hardened Bearing Steel GCr15 Using PCBN Cutting Tools. China Mech. Eng. 2007, 18, 2973–2976. [Google Scholar]
- Johson, G.R.; Cook, W.H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proc. 7th Inf. Sympo. Ballist. 1983, 21, 541–547. [Google Scholar]
- Qiu, H.; Ban, J.X.; Ji, L.Q.; Wang, M.Y. Study on Simulation and Experiment of Cutting Force in High Speed Cutting GCr15. Modul. Mach. Tool Autom. Manuf. Tech. 2016, 4, 154–157. [Google Scholar]
- He, Y.; Wang, Y.; Chen, X.A.; Zhang, Y.; Liu, X. Finite Element Simulation of Chip Formation Mechanism in Hard Turning GCr15 Steel. J. Shanghai Tong Univ. 2013, 47, 800–805. [Google Scholar]
Group | Cutting Speed v (m/min) | Feed f (mm/r) | Cutting Depth ap (mm) |
---|---|---|---|
1 | 60 | 0.1 | 0.2 |
2 | 72 | 0.1 | 0.2 |
3 | 85 | 0.1 | 0.2 |
4 | 60 | 0.1 | 0.3 |
5 | 72 | 0.1 | 0.3 |
6 | 85 | 0.1 | 0.3 |
A (GPa) | B (GPa) | c | m | n | T0 | Tm |
---|---|---|---|---|---|---|
1.204 | 1.208 | 0.036 | 0.89 | 0.12 | 20 °C | 1180 °C |
Material Properties | Young’s Modulus (GPa) | Thermal Conductivity (W/m·K) | Poisson Ratio | Density (g/cm3) | Specific Heat (J/kg·°C) |
---|---|---|---|---|---|
value | 210 | 38 | 0.3 | 7.85 | 480 |
Material Properties | Young’s Modulus (GPa) | Thermal Conductivity (W/m·K) | Poisson Ratio | Density (g/cm3) | Specific Heat (J/kg·°C) |
---|---|---|---|---|---|
value | 690 | 120 | 0.2 | 3.8 | 700 |
- | The Wear Width w (mm) | The Arc Wear Length L (mm) | The Wear Area (mm2) = w × L |
---|---|---|---|
d = 80 µm micro-hole tool | 0.218438 | 0.883576 | 0.19300657 |
d = 120 µm micro-hole tool | 0.255809 | 0.888923 | 0.2273945 |
Non-textured tool | 0.345120 | 0.882480 | 0.30456152 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Pan, C.; Jiao, Y.; Hu, K. Investigation on Cutting Performance of Micro-Textured Cutting Tools. Micromachines 2019, 10, 352. https://doi.org/10.3390/mi10060352
Li Q, Pan C, Jiao Y, Hu K. Investigation on Cutting Performance of Micro-Textured Cutting Tools. Micromachines. 2019; 10(6):352. https://doi.org/10.3390/mi10060352
Chicago/Turabian StyleLi, Qinghua, Chen Pan, Yuxin Jiao, and Kaixing Hu. 2019. "Investigation on Cutting Performance of Micro-Textured Cutting Tools" Micromachines 10, no. 6: 352. https://doi.org/10.3390/mi10060352
APA StyleLi, Q., Pan, C., Jiao, Y., & Hu, K. (2019). Investigation on Cutting Performance of Micro-Textured Cutting Tools. Micromachines, 10(6), 352. https://doi.org/10.3390/mi10060352