Electrochemical Biosensors for Detection of Foodborne Pathogens
Abstract
:1. Introduction
2. The Principle of Electrochemical Biosensors
3. Detection of Foodborne Pathogens Using Electrochemical Biosensing Techniques
3.1. Escherichia coli
3.2. Vibrio cholerae
3.3. Bacillus cereus
3.4. Staphylococcus aureus
3.5. Clostridium Perfringens
3.6. Simultaneous Detection of Multiple Foodborne Pathogens
4. Conclusions and Perspective
Author Contributions
Funding
Conflicts of Interest
References
- Lawrence, F. The Poison Squad: One Chemist’s Single-Minded Crusade for Food Safety at the Turn of the Twentieth Century. Nature 2018, 562, 334–335. [Google Scholar] [CrossRef]
- Cep, M. The Poison Squad: One Chemist’s Single-Minded Crusade for Food Safety at the Turn of the Twentieth Century. Science 2018, 361, 971. [Google Scholar]
- Inoue, H.; Suzuki, T.; Hyodo, M.; Miyake, M. Evaluation of multinomial logistic regression models for predicting causative pathogens of food poisoning cases. J. Vet. Med. Sci. 2018, 80, 1223–1227. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Huang, T. Food poisoning associated with ingestion of wild wasp broods in the upstream region of the Lancang river valley, Yunnan province, China. Toxicon 2018, 145, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Markevych, I.; Standl, M.; Lehmann, I.; von Berg, A.; Heinrich, J. Food diversity during the first year of life and allergic diseases until 15 years. J. Allergy Clin. Immun. 2017, 140, 1751–1754. [Google Scholar] [CrossRef] [PubMed]
- Rosa, J.S.; Hernandez, J.D.; Sherr, J.A.; Smith, B.M.; Brown, K.D.; Farhadian, B.; Mahony, T.; McGhee, S.A.; Lewis, D.B.; Thienemann, M.; et al. Allergic Diseases and Immune-Mediated Food Disorders in Pediatric Acute-Onset Neuropsychiatric Syndrome. Pediatr. Allergy Immunol. Pulmonol. Impact 2018, 31, 158–165. [Google Scholar] [CrossRef]
- Hirsch, A.G.; Pollak, J.; Glass, T.A.; Poulsen, M.N.; Bailey-Davis, L.; Mowery, J.; Schwartz, B.S. Early-life antibiotic use and subsequent diagnosis of food allergy and allergic diseases. Clin. Exp. Allergy 2017, 47, 236–244. [Google Scholar] [CrossRef]
- Hose, A.J.; Pekkanen, J.; Roduit, C.; Riedler, J.; Dalphin, J.; Von Mutius, E.; Ege, M.J. Food introduction styles in the first year of life and risk of allergic diseases in the PASTURE birth cohort. Allergy 2018, 73, 80. [Google Scholar]
- Berhe, H.W.; Makinde, O.D.; Theuri, D.M. Co-dynamics of measles and dysentery diarrhea diseases with optimal control and cost-effectiveness analysis. Appl. Math. Comput. 2019, 347, 903–921. [Google Scholar] [CrossRef]
- Oliver, S.P. Foodborne Pathogens and Disease Celebrates Its Fifteen Year Anniversary. Foodborne Pathog. Dis. 2018, 15, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Zhao, X.Y.; Yao, Y.; Dai, F.F.; He, H.; Li, R.Q.; Jin, R.H.; Liang, L.C.; Li, N. A new factor influencing pathogen detection by molecular assay in children with both mild and severe hand, foot, and mouth disease. Diagn. Microbiol. Infect. Dis. 2013, 76, 162–167. [Google Scholar] [CrossRef]
- Riddle, M.S.; Murray, J.A.; Cash, B.D.; Pimentel, M.; Porter, C.K. Pathogen-Specific Risk of Celiac Disease Following Bacterial Causes of Foodborne Illness: A Retrospective Cohort Study. Digest. Dis. Sci. 2013, 58, 3242–3245. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Wu, J.Q.; Zhang, Y.Y.; Guo, L.H.; Cong, X.Y.; Du, Y.J.; Li, J.; Sun, W.B.; Shi, J.L.; Peng, J.; et al. Concurrent highly pathogenic porcine reproductive and respiratory syndrome virus infection accelerates Haemophilus parasuis infection in conventional pigs. Vet. Microbiol. 2012, 158, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.L.; Sun, L.; Lian, J.J.; Gao, X.L.; Zhao, L.; Ding, M.Y.; Li, J.; Liang, Y.C. The phospholipase C (FgPLC1) is involved in regulation of development, pathogenicity, and stress responses in Fusarium graminearum. Fungal Genet. Biol. 2016, 97, 1–9. [Google Scholar] [CrossRef]
- Zheng, S.; Wu, X.; Zhang, L.; Xin, C.; Liu, Y.; Shi, J.; Peng, Z.; Xu, S.; Fu, F.; Yu, J.; et al. The occurrence of porcine circovirus 3 without clinical infection signs in Shandong Province. Transbound. Emerg. Dis. 2017, 64, 1337–1341. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.L.; Ren, Q. New records of Ochrolechia and Placopsis from the Hengduan Mountains, China. Mycotaxon 2012, 122, 461–466. [Google Scholar] [CrossRef]
- Yang, H.T.; Zou, S.S.; Zhai, L.J.; Wang, Y.; Zhang, F.M.; An, L.G.; Yang, G.W. Pathogen invasion changes the intestinal microbiota composition and induces innate immune responses in the zebrafish intestine. Fish Shellfish Immunol. 2017, 71, 35–42. [Google Scholar] [CrossRef]
- He, C.Q.; Liu, Y.X.; Wang, H.M.; Hou, P.L.; He, H.B.; Ding, N.Z. New genetic mechanism, origin and population dynamic of bovine ephemeral fever virus. Vet. Microbiol. 2016, 182, 50–56. [Google Scholar] [CrossRef]
- Ammar, A.M.; Attia, A.M.; Abd El-Aziz, N.K.; Abd El Hamid, M.I.; El-Demerdash, A.S. Class 1 integron and associated gene cassettes mediating multiple-drug resistance in some food borne pathogens. Int. Food Res. J. 2016, 23, 332–339. [Google Scholar]
- Oliver, S.P. My, How Time Flies: Foodborne Pathogens and Disease to Begin Its Seventh Year with Publication Frequency to Increase in 2010. Foodborne Pathog. Dis. 2010, 7, 1. [Google Scholar] [CrossRef]
- Huang, J.Y.; Henao, O.L.; Griffin, P.M.; Vugia, D.J.; Cronquist, A.B.; Hurd, S.; Tobin-D’Angelo, M.; Ryan, P.; Smith, K.; Lathrop, S.; et al. Infection with Pathogens Transmitted Commonly Through Food and the Effect of Increasing Use of Culture-Independent Diagnostic Tests on Surveillance—Foodborne Diseases Active Surveillance Network, 10 US Sites, 2012-2015. Morb. Mortal. Wkly. 2016, 65, 368–371. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Qi, C.C.; Shan, S.J.; Zhang, F.M.; Li, H.; An, L.G.; Yang, G.W. Characterization of common carp (Cyprinus carpio L.) interferon regulatory factor 5 (IRF5) and its expression in response to viral and bacterial challenges. BMC Vet. Res. 2016, 12. [Google Scholar] [CrossRef]
- Li, H.; Zhang, F.M.; Guo, H.Y.; Zhu, Y.Y.; Yuan, J.D.; Yang, G.W.; An, L.G. Molecular characterization of hepcidin gene in common carp (Cyprinus carpio L.) and its expression pattern responding to bacterial challenge. Fish Shellfish Immunol. 2013, 35, 1030–1038. [Google Scholar] [CrossRef]
- Hou, P.L.; Wang, H.M.; Zhao, G.M.; He, C.Q.; He, H.B. Rapid detection of infectious bovine Rhinotracheitis virus using recombinase polymerase amplification assays. BMC Vet. Res. 2017, 13. [Google Scholar] [CrossRef]
- Zheng, S.; Wu, X.; Shi, J.; Peng, Z.; Gao, M.; Xin, C.; Liu, Y.; Wang, S.; Xu, S.; Han, H.; et al. Rapid specific and visible detection of porcine circovirus type 3 using loop-mediated isothermal amplification (LAMP). Transbound. Emerg. Dis. 2018, 65, 597–601. [Google Scholar] [CrossRef]
- Zheng, S.; Shi, J.; Wu, X.; Peng, Z.; Xin, C.; Zhang, L.; Liu, Y.; Gao, M.; Xu, S.; Han, H.; et al. Presence of Torque teno sus virus 1 and 2 in porcine circovirus 3-positive pigs. Transbound. Emerg. Dis. 2018, 65, 327–330. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Lou, M.F.; Shen, W.; Fu, R.S.; Wang, D.H. A Maternal Low-Fiber Diet Predisposes Offspring to Improved Metabolic Phenotypes in Adulthood in an Herbivorous Rodent. Physiol. Biochem. Zool. 2017, 90, 75–84. [Google Scholar] [CrossRef]
- Cam, D.; Oktem, H.A. Development of rapid dipstick assay for food pathogens, Salmonella, by optimized parameters. J. Food Sci. Technol. 2019, 56, 140–148. [Google Scholar] [CrossRef]
- Yuan, F.; Chen, M.; Leng, B.Y.; Wang, B.S. An efficient autofluorescence method for screening Limonium bicolor mutants for abnormal salt gland density and salt secretion. S. Afr. J. Bot. 2013, 88, 110–117. [Google Scholar] [CrossRef]
- Choi, J.R.; Yong, K.W.; Choi, J.Y.; Cowie, A.C. Emerging Point-of-care Technologies for Food Safety Analysis. Sensor 2019, 19, 817. [Google Scholar] [CrossRef]
- Ishii, S.; Segawa, T.; Okabe, S. Simultaneous Quantification of Multiple Food- and Waterborne Pathogens by Use of Microfluidic Quantitative PCR. Appl Environ. Microb 2013, 79, 2891–2898. [Google Scholar] [CrossRef]
- Wang, Y.L.; Ravindranath, S.; Irudayaraj, J. Separation and detection of multiple pathogens in a food matrix by magnetic SERS nanoprobes. Anal. Bioanal. Chem. 2011, 399, 1271–1278. [Google Scholar] [CrossRef]
- Hayashi, M.; Natori, T.; Kubota-Hayashi, S.; Miyata, M.; Ohkusu, K.; Kawamoto, K.; Kurazono, H.; Makino, S.; Ezaki, T. A New Protocol to Detect Multiple Foodborne Pathogens with PCR Dipstick DNA Chromatography after a Six-Hour Enrichment Culture in a Broad-Range Food Pathogen Enrichment Broth. Biomed. Res. Int. 2013. [Google Scholar] [CrossRef]
- Chen, J.Z.; Fu, Y.F.; Ju, L.W.; Miao, X.Y.; Shen, Y.J.; He, L.; Wang, W.J.; Jin, J.L.; Shao, L.Y.; Sampath, R.; et al. Detection and identification of viral pathogens in patients with hand, foot, and mouth disease by multilocus PCR, reverse-transcription PCR and electrospray ionization mass spectrometry. J. Clin. Virol. 2014, 59, 115–119. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, Y.; Wang, T.; Dong, Q.G.; Li, J.W.; Niu, C. Detection of 12 Common Food-Borne Bacterial Pathogens by TaqMan Real-Time PCR Using a Single Set of Reaction Conditions. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef]
- Li, L.; Liang, B.; Shi, J.G.; Li, F.; Mascini, M.; Liu, A.H. A selective and sensitive D-xylose electrochemical biosensor based on xylose dehydrogenase displayed on the surface of bacteria and multi-walled carbon nanotubes modified electrode. Biosens. Bioelectron. 2012, 33, 100–105. [Google Scholar] [CrossRef]
- Reta, N.; Saint, C.P.; Michelmore, A.; Prieto-Simon, B.; Voelcker, N.H. Nanostructured Electrochemical Biosensors for Label-Free Detection of Water- and Food-Borne Pathogens. ACS Appl. Mater. Interface 2018, 10, 6055–6072. [Google Scholar] [CrossRef]
- Viswanathan, S.; Rani, C.; Ho, J.A.A. Electrochemical immunosensor for multiplexed detection of food-borne pathogens using nanocrystal bioconjugates and MWCNT screen-printed electrode. Talanta 2012, 94, 315–319. [Google Scholar] [CrossRef]
- Camacho, C.; Chico, B.; Cao, R.; Matias, J.C.; Hernandez, J.; Palchetti, I.; Simpson, B.K.; Mascini, M.; Villalonga, R. Novel enzyme biosensor for hydrogen peroxide via supramolecular associations. Biosens. Bioelectron. 2009, 24, 2028–2033. [Google Scholar] [CrossRef]
- Smith, S.R.; Seenath, R.; Kulak, M.R.; Lipkowski, J. Characterization of a Self-Assembled Monolayer of 1-Thio-beta-D-Glucose with Electrochemical Surface Enhanced Raman Spectroscopy Using a Nanoparticle Modified Gold Electrode. Langmuir 2015, 31, 10076–10086. [Google Scholar] [CrossRef]
- Kralj, J.M.; Hochbaum, D.R.; Douglass, A.D.; Cohen, A.E. Electrical Spiking in Escherichia coli Probed with a Fluorescent Voltage-Indicating Protein. Science 2011, 333, 345–348. [Google Scholar] [CrossRef]
- Liu, G.; Lao, R.J.; Xu, L.; Xu, Q.; Li, L.Y.; Zhang, M.; Shen, H.; Mathur, S.; Fan, C.H.; Song, S.P. Detection of Single-Nucleotide Polymorphism on uidA Gene of Escherichia coli by a Multiplexed Electrochemical DNA Biosensor with Oligonucleotide-Incorporated Nonfouling Surface. Sensor 2011, 11, 8018–8027. [Google Scholar] [CrossRef]
- Guo, S.Y.; Tay, M.Y.F.; Aung, K.T.; Seow, K.L.G.; Ng, L.C.; Purbojati, R.W.; Drautz-Moses, D.I.; Schuster, S.C.; Schlundt, J. Phenotypic and genotypic characterization of antimicrobial resistant Escherichia coli isolated from ready-to-eat food in Singapore using disk diffusion, broth microdilution and whole genome sequencing methods. Food Control 2019, 99, 89–97. [Google Scholar] [CrossRef]
- Zhang, S.H.; Yang, G.Z.; Huang, Y.B.; Zhang, J.M.; Cui, L.H.; Wu, Q.P. Prevalence and Characterization of Atypical Enteropathogenic Escherichia coli Isolated from Retail Foods in China. J. Food Prot. 2018, 81, 1761–1767. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, J.; Fan, J.; Wang, Z.Y.; Li, L. Detection of catechol using an electrochemical biosensor based on engineered Escherichia coli cells that surface-display laccase. Anal. Chim. Acta 2018, 1009, 65–72. [Google Scholar] [CrossRef]
- Ertl, P.; Wagner, M.; Corton, E.; Mikkelsen, S.R. Rapid identification of viable Escherichia coli subspecies with an electrochemical screen-printed biosensor array. Biosens. Bioelectron. 2003, 18, 907–916. [Google Scholar] [CrossRef]
- Giovanni, M.; Setyawati, M.I.; Tay, C.Y.; Qian, H.; Kuan, W.S.; Leong, D.T. Electrochemical Quantification ofEscherichia coliwith DNA Nanostructure. Adv. Funct. Mater. 2015, 25, 3840–3846. [Google Scholar] [CrossRef]
- Pandey, C.M.; Tiwari, I.; Singh, V.N.; Sood, K.N.; Sumana, G.; Malhotra, B.D. Highly sensitive electrochemical immunosensor based on graphene-wrapped copper oxide-cysteine hierarchical structure for detection of pathogenic bacteria. Sens. Actuators B Chem. 2017, 238, 1060–1069. [Google Scholar] [CrossRef]
- Huang, H.; Liu, M.; Wang, X.; Zhang, W.; Yang, D.P.; Cui, L.; Wang, X. Label-Free 3D Ag Nanoflower-Based Electrochemical Immunosensor for the Detection of Escherichia coli O157:H7 Pathogens. Nanoscale Res. Lett. 2016, 11, 507. [Google Scholar] [CrossRef]
- Wang, D.; Chen, J.; Nugen, S.R. Electrochemical Detection of Escherichia coli from Aqueous Samples Using Engineered Phages. Anal. Chem. 2017, 89, 1650–1657. [Google Scholar] [CrossRef]
- Zhong, M.; Yang, L.; Yang, H.; Cheng, C.; Deng, W.; Tan, Y.; Xie, Q.; Yao, S. An electrochemical immunobiosensor for ultrasensitive detection of Escherichia coli O157:H7 using CdS quantum dots-encapsulated metal-organic frameworks as signal-amplifying tags. Biosens. Bioelectron. 2019, 126, 493–500. [Google Scholar] [CrossRef]
- Zhang, F.; Huang, Y.H.; Liu, S.Z.; Zhang, L.; Li, B.T.; Zhao, X.X.; Fu, Y.; Liu, J.J.; Zhang, X.X. Pseudomonas reactans, a Bacterial Strain Isolated From the Intestinal Flora of Blattella germanica With Anti-Beauveria bassiana Activity. Environ. Entomol. 2013, 42, 453–459. [Google Scholar] [CrossRef]
- Huang, Y.H.; Wang, X.J.; Zhang, F.; Huo, X.B.; Fu, R.S.; Liu, J.J.; Sun, W.B.; Kang, D.M.; Jing, X. The Identification of a Bacterial Strain BGI-1 Isolated From the Intestinal Flora of Blattella Germanica, and Its Anti-Entomopathogenic Fungi Activity. J. Econ. Entomol. 2013, 106, 43–49. [Google Scholar] [CrossRef]
- Li, L.; Yang, H.J.; Liu, D.C.; He, H.B.; Wang, C.F.; Zhong, J.F.; Gao, Y.D.; Zeng, Y.J. Analysis of Biofilms Formation and Associated Genes Detection in Staphylococcus Isolates from Bovine Mastitis. Int. J. Appl. Res. Vet. Med. 2012, 10, 62–68. [Google Scholar] [CrossRef]
- Yuan, F.; Leng, B.Y.; Wang, B.S. Progress in Studying Salt Secretion from the Salt Glands in Recretohalophytes: How Do Plants Secrete Salt? Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef]
- Sharma, M.K.; Goel, A.K.; Singh, L.; Rao, V.K. Immunological Biosensor for Detection of Vibrio cholerae O1in Environmental Water Samples. World J. Microbiol. Biotechnol. 2006, 22, 1155–1159. [Google Scholar] [CrossRef]
- Laczka, O.; Labbate, M.; Doblin, M. Application of an ELISA-type amperometric assay to the detection of Vibrio species with screen-printed electrodes. Anal. Methods-UK 2014, 6, 2020–2023. [Google Scholar] [CrossRef]
- Tam, P.D.; Thang, C.X. Label-free electrochemical immunosensor based on cerium oxide nanowires for Vibrio cholerae O1 detection. Mat. Sci. Eng. C-Mater. 2016, 58, 953–959. [Google Scholar] [CrossRef]
- Nwaru, B.I.; Virtanen, S.M. Allergenic Food Introduction and Childhood Risk of Allergic or Autoimmune Disease. JAMA-J. Am. Med. Assoc. 2017, 317, 86. [Google Scholar] [CrossRef]
- Xie, W.; Zhou, J. Aberrant regulation of autophagy in mammalian diseases. Biol. Lett. 2018, 14. [Google Scholar] [CrossRef]
- Sun, Z.B.; Qi, X.Y.; Wang, Z.L.; Li, P.H.; Wu, C.X.; Zhang, H.; Zhao, Y.X. Overexpression of TsGOLS2, a galactinol synthase, in Arabidopsis thaliana enhances tolerance to high salinity and osmotic stresses. Plant Physiol. Biochem. 2013, 69, 82–89. [Google Scholar] [CrossRef]
- Hou, P.L.; Zhao, G.M.; He, C.Q.; Wang, H.M.; He, H.B. Biopanning of polypeptides binding to bovine ephemeral fever virus G(1) protein from phage display peptide library. BMC Vet. Res. 2018, 14. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.; Zhang, X.; Zhang, L.; Zhang, H.; Wang, L.; Wood, L.G.; Wang, G. Do Fast Foods Relate To Asthma Or Other Allergic Diseases? Am. J. Resp. Crit. Care 2017, 195, A3005. [Google Scholar]
- Jiang, D.; Liu, F.; Zhang, L.; Liu, L.; Liu, C.; Pu, X. An electrochemical strategy with molecular beacon and hemin/G-quadruplex for the detection of Clostridium perfringens DNA on screen-printed electrodes. RSC Adv. 2014, 4, 57064–57070. [Google Scholar] [CrossRef]
- Liang, J.W.; Tian, F.L.; Lan, Z.R.; Huang, B.; Zhuang, W.Z. Selection characterization on overlapping reading frame of multiple-protein-encoding P gene in Newcastle disease virus. Vet. Microbiol. 2010, 144, 257–263. [Google Scholar] [CrossRef]
- Izadi, Z.; Sheikh-Zeinoddin, M.; Ensafi, A.A.; Soleimanian-Zad, S. Fabrication of an electrochemical DNA-based biosensor for Bacillus cereus detection in milk and infant formula. Biosens. Bioelectron. 2016, 80, 582–589. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Xing, W.X.; Shan, S.J.; Zhang, S.Q.; Li, Y.Q.; Li, T.; An, L.; Yang, G.W. Characterization and immune response expression of the Rig-I-like receptor mda5 in common carp Cyprinus carpio. J. Fish Biol. 2016, 88, 2188–2202. [Google Scholar] [CrossRef]
- Ait Lahcen, A.; Arduini, F.; Lista, F.; Amine, A. Label-free electrochemical sensor based on spore-imprinted polymer for Bacillus cereus spore detection. Sens. Actuators B Chem. 2018, 276, 114–120. [Google Scholar] [CrossRef]
- Wang, X.G.; Huang, J.M.; Feng, M.Y.; Ju, Z.H.; Wang, C.F.; Yang, G.W.; Yuan, J.D.; Zhong, J.F. Regulatory mutations in the A2M gene are involved in the mastitis susceptibility in dairy cows. Anim. Genet. 2014, 45, 28–37. [Google Scholar] [CrossRef]
- Wang, N.; Liu, T.T.; Xu, J.S.; Jiang, B. The leaf-mining genus Antispila Hubner, 1825 feeding on Vitaceae in Shandong Peninsula, China with one new species (Lepidoptera, Heliozelidae). ZooKeys 2018, 744, 49–65. [Google Scholar] [CrossRef]
- Wang, F.; Yang, H.J.; He, H.B.; Wang, C.F.; Gao, Y.D.; Zhong, Q.F.; Wang, X.H.; Zeng, Y.J. Study on the Hemolysin Phenotype and the Genetype Distribution of Staphyloccocus aureus Caused Bovine Mastitis in Shandong Dairy Farms. Int. J. Appl. Res. Vet. Med. 2011, 9, 416–421. [Google Scholar]
- Liu, M.; Xie, S.B.; Zhou, J. Use of animal models for the imaging and quantification of angiogenesis. Exp. Anim. 2018, 67, 1–6. [Google Scholar] [CrossRef]
- Ren, Q. A new species and new records of the lichen genus Pertusaria from China. Mycotaxon 2015, 130, 689–693. [Google Scholar] [CrossRef]
- Chang, J.; Zhang, E.L.; Liu, E.F.; Sun, W.W.; Langdon, P.G.; Shulmeister, J. A 2500-year climate and environmental record inferred from subfossil chironomids from Lugu Lake, southwestern China. Hydrobiologia 2018, 811, 193–206. [Google Scholar] [CrossRef]
- Lu, M.; Zhang, Y.Y.; Tang, S.K.; Pan, J.B.; Yu, Y.K.; Han, J.; Li, Y.Y.; Du, X.H.; Nan, Z.J.; Sun, Q.P. AtCNGC2 is involved in jasmonic acid-induced calcium mobilization. J. Exp. Bot. 2016, 67, 809–819. [Google Scholar] [CrossRef]
- Wang, X.Y.; Zhang, L.L.; Joshi, Y.; Wang, H.Y.; Hur, J.S. New species and new records of the lichen genus Porpidia (Lecideaceae) from western China. Lichenologist 2012, 44, 619–624. [Google Scholar] [CrossRef]
- Escamilla-Gómez, V.; Campuzano, S.; Pedrero, M.; Pingarrón, J.M. Development of an Amperometric Immunosensor for the Quantification of Staphylococcus aureus Using Self-Assembled Monolayer-Modified Electrodes as Immobilization Platforms. Electroanalysis 2007, 19, 1476–1482. [Google Scholar] [CrossRef]
- Escamillagomez, V.; Campuzano, S.; Pedrero, M.; Pingarron, J. Electrochemical immunosensor designs for the determination of Staphylococcus aureus using 3,3-dithiodipropionic acid di(N-succinimidyl ester)-modified gold electrodes. Talanta 2008, 77, 876–881. [Google Scholar] [CrossRef]
- Escamilla-Gomez, V.; Campuzano, S.; Pedrero, M.; Pingarron, J.M. Immunosensor for the determination of Staphylococcus aureus using a tyrosinase-mercaptopropionic acid modified electrode as an amperometric transducer. Anal. Bioanal. Chem. 2008, 391, 837–845. [Google Scholar] [CrossRef]
- Jia, F.; Duan, N.; Wu, S.; Ma, X.; Xia, Y.; Wang, Z.; Wei, X. Impedimetric aptasensor for Staphylococcus aureus based on nanocomposite prepared from reduced graphene oxide and gold nanoparticles. Microchim. Acta 2014, 181, 967–974. [Google Scholar] [CrossRef]
- Bekir, K.; Barhoumi, H.; Braiek, M.; Chrouda, A.; Zine, N.; Abid, N.; Maaref, A.; Bakhrouf, A.; Ouada, H.B.; Jaffrezic-Renault, N.; et al. Electrochemical impedance immunosensor for rapid detection of stressed pathogenic Staphylococcus aureus bacteria. Environ. Sci. Pollut. Res. Int. 2015, 22, 15796–15803. [Google Scholar] [CrossRef] [PubMed]
- Ward, A.C.; Hannah, A.J.; Kendrick, S.L.; Tucker, N.P.; MacGregor, G.; Connolly, P. Identification and characterisation of Staphylococcus aureus on low cost screen printed carbon electrodes using impedance spectroscopy. Biosens. Bioelectron. 2018, 110, 65–70. [Google Scholar] [CrossRef]
- Nemr, C.R.; Smith, S.J.; Liu, W.; Mepham, A.H.; Mohamadi, R.M.; Labib, M.; Kelley, S.O. Nanoparticle-Mediated Capture and Electrochemical Detection of Methicillin-Resistant Staphylococcus aureus. Anal. Chem. 2019, 91, 2847–2853. [Google Scholar] [CrossRef] [PubMed]
- Saitoh, Y.; Suzuki, H.; Tani, K.; Nishikawa, K.; Irie, K.; Ogura, Y.; Tamura, A.; Tsukita, S.; Fujiyoshi, Y. Structural insight into tight junction disassembly by Clostridium perfringens enterotoxin. Science 2015, 347, 775–778. [Google Scholar] [CrossRef]
- Jiang, D.; Liu, F.; Liu, C.; Liu, L.; Li, Y.; Pu, X. Induction of an electrochemiluminescence sensor for DNA detection of Clostridium perfringens based on rolling circle amplification. Anal. Methods 2014, 6, 1558–1562. [Google Scholar] [CrossRef]
- Zhao, S.S.; Jiang, Y.X.; Zhao, Y.; Huang, S.J.; Yuan, M.; Zhao, Y.X.; Guo, Y. CASEIN KINASE1-LIKE PROTEIN2 Regulates Actin Filament Stability and Stomatal Closure via Phosphorylation of Actin Depolymerizing Factor. Plant Cell 2016, 28, 1422–1439. [Google Scholar] [CrossRef]
- Qian, X.; Qu, Q.; Li, L.; Ran, X.; Zuo, L.; Huang, R.; Wang, Q. Ultrasensitive Electrochemical Detection of Clostridium perfringens DNA Based Morphology-Dependent DNA Adsorption Properties of CeO(2) Nanorods in Dairy Products. Sensor 2018, 18, 1878. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Lyu, J.; Shi, J.Y.; Tan, F.; Yang, M. A polymeric microfluidic device integrated with nanoporous alumina membranes for simultaneous detection of multiple foodborne pathogens. Sens. Actuator B-Chem. 2016, 225, 312–318. [Google Scholar] [CrossRef]
- Yamada, K.; Choi, W.; Lee, I.; Cho, B.K.; Jun, S. Rapid detection of multiple foodborne pathogens using a nanoparticle-functionalized multi-junction biosensor. Biosens. Bioelectron. 2016, 77, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Shang, K.; Qiao, Z.; Sun, B.; Fan, X.; Ai, S. An efficient electrochemical disinfection of E. coli and S. aureus in drinking water using ferrocene–PAMAM–multiwalled carbon nanotubes–chitosan nanocomposite modified pyrolytic graphite electrode. J. Solid State Electrochem. 2013, 17, 1685–1691. [Google Scholar] [CrossRef]
Analyst | Detection Type | Materials | Performance | Reference |
---|---|---|---|---|
E. coli | Amperometric | screen-printed electrode | Rapid determination of four E. coli subspecies Assay time: approximately 2 min | [46] |
E. coli | Amperometric | DNA nanopyramids | Linear range: 1–102 CFU/mL LOD: 1.20 CFU/mL | [47] |
E. coli | Amperometric | G-quadruplex/hemin/Gold electrode | Linear range: 9.4–9.4 × 105 CFU/mL LOD: 8 CFU/mL | [86] |
E. coli | Impedimetric | rGO-CysCu/Gold electrode | Linear range: 100–108 CFU/mL LOD: 3.8 CFU/mL Assay time: > 1 h | [48] |
E. coli | Impedimetric | BSA-conjugated 3D Ag nanoflowers | Linear range: 3.0 × 102–3.0 × 108 CFU/mL LOD: 100 CFU/mL | [49] |
E. coli | Amperometric | T7lacZ phages/PAGE | 105 CFU/mL in 3 h and 102 CFU/mL after 7 h | [50] |
E. coli | Amperometric | CdS@ZIF-8 particles | Linear range: 10–108 CFU/mL Assay time: < 3 h LOD: 3 CFU/mL (S/N=3) | [51] |
Vibrio cholerae | Amperometric | ALP/screen-printed electrodes | LOD: 105 cells/mL Assay time: < 55 min | [55] |
Vibrio cholerae | Amperometric | screen-printed electrodes | 8 CFU/mL in sea water, 80 CFU/mL sewer water and tap water Assay time: 55 min | [56] |
Vibrio cholera | Amperometric | Biotinylated-PAb/ SPE | LOD: 4 × 102 cells/mL Assay time: < 1 h | [57] |
Vibrio cholerae | Impedimetric | CeO2 nanowire-modified microelectrode | Linear range: 1.0 × 102–1.0 × 104 CFU/mL | [58] |
B. cereus | Impedimetric | GNPs-sDNA-(nheA)/PGE | Sensitivity: 100 CFU/mL LOD: 9.4 × 10−12 mol/L | [66] |
B. cereus | Amperometric | GNPs-Chit-GCE | Linear range: 5.0 × 101 to 5.0 × 104 CFU/mL LOD: 10.0 CFU/mL (S/N = 3) | [67] |
B. cereus | Potentiometric | CPE/SIP | Linear range: 102–105 CFU/mL | [68] |
S. aureus | Amperometric | HRP-MPA/gold electrode | LOD: 1.6 × 105 cells/mL | [77] |
S. aureus | Amperometric | HRP-DTSP-/Screen-printed electrodes | Linear range: 1.3 × 103–7.6 × 104 cells/mL LOD: 3.7 × 102 cells/mL Assay time: approximately 30 min | [78] |
S. aureus | Amperometric | AP-MPA/gold electrode | Linear range: 4.4 × 105–1.8 × 107 cells/mL LOD: 1.7 × 105 cells/mL Assay time: approximately 25 min | [79] |
S. aureus | Impedimetric | Aptamer/rGO-AuNP/GCE | Linear range:10–106 CFU/mL LOD: 10 CFU/mL (S/N=3) Assay time: < 1 h | [80] |
S. aureus | Impedimetric | MPA/gold electrode | Linear range: 101–107 CFU/mL LOD: 10 CFU/mL | [81] |
S. aureus | Impedimetric | screen printed electrode | Linear range: 3.6 × 107–9.3 × 107 CFU/mL Assay time: approximately 30 min | [82] |
DNA of C. perfringens | Electrochemiluminescence | gold electrode (rolling circle amplification) | LOD: 10−15 M Assay time: approximately 1 h | [85] |
DNA of C. perfringens | Amperometric | SA/ADH/Fe3O4 nanocomposites | Linear range: 10−12–10−6 M Assay time: same as PCR | [64] |
C. perfringens | Impedimetric | CeO2/chitosan/GCE | Linear range: 1.0 × 10−14–1.0 × 10−7 mol/L LOD: 7.06 × 10−15 mol/L | [87] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Zhou, J.; Du, X. Electrochemical Biosensors for Detection of Foodborne Pathogens. Micromachines 2019, 10, 222. https://doi.org/10.3390/mi10040222
Zhang Z, Zhou J, Du X. Electrochemical Biosensors for Detection of Foodborne Pathogens. Micromachines. 2019; 10(4):222. https://doi.org/10.3390/mi10040222
Chicago/Turabian StyleZhang, Zhenguo, Jun Zhou, and Xin Du. 2019. "Electrochemical Biosensors for Detection of Foodborne Pathogens" Micromachines 10, no. 4: 222. https://doi.org/10.3390/mi10040222
APA StyleZhang, Z., Zhou, J., & Du, X. (2019). Electrochemical Biosensors for Detection of Foodborne Pathogens. Micromachines, 10(4), 222. https://doi.org/10.3390/mi10040222