Highlighting the Role of Dielectric Thickness and Surface Topography on Electrospreading Dynamics
Abstract
1. Introduction
2. Materials and Methods
2.1. Electrospreading Modeling
2.2. Electrospreading Experiments
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Calvert, P. Inkjet printing for materials and devices. Chem. Mater. 2001, 13, 3299–3305. [Google Scholar] [CrossRef]
- Yarin, A.L. Drop impact dynamics: Splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 2006, 38, 159–192. [Google Scholar]
- Webb, E.B., III; Shi, B. Early stage spreading: Mechanisms of rapid contact line advance. Curr. Opin. Colloid Interface Sci. 2014, 19, 255–265. [Google Scholar] [CrossRef]
- Bird, J.C.; Mandre, S.; Stone, H.A. Short-time dynamics of partial wetting. Phys. Rev. Lett. 2008, 100, 234501. [Google Scholar] [CrossRef] [PubMed]
- Fair, R.B. Digital microfluidics: Is a true lab-on-a-chip possible? Microfluid. Nanofluid. 2007, 3, 245–281. [Google Scholar] [CrossRef]
- Temiz, Y.; Lovchik, R.D.; Kaigala, G.V.; Delamarche, E. Lab-on-a-chip devices: How to close and plug the lab? Microfluid. Nanofluid. 2015, 132, 156–175. [Google Scholar] [CrossRef]
- Courbin, L.; Bird, J.C.; Reyssat, M.; Stone, H. Dynamics of wetting: From inertial spreading to viscous imbibition. J. Phys. Condens. Matter 2009, 21, 464127. [Google Scholar] [CrossRef]
- Chen, L.; Li, C.; van der Vegt, N.F.; Auernhammer, G.K.; Bonaccurso, E. Initial electrospreading of aqueous electrolyte drops. Phys. Rev. Lett. 2013, 110, 026103. [Google Scholar] [CrossRef] [PubMed]
- Mugele, F.; Baret, J.C. Electrowetting: From basics to applications. J. Phys. Condens. Matter 2005, 17, R705. [Google Scholar] [CrossRef]
- Shamai, R.; Andelman, D.; Berge, B.; Hayes, R. Water, electricity, and between… On electrowetting and its applications. Soft Matter 2008, 4, 38–45. [Google Scholar]
- Kavousanakis, M.E.; Chamakos, N.T.; Ellinas, K.; Tserepi, A.; Gogolides, E.; Papathanasiou, A.G. How to achieve reversible electrowetting on superhydrophobic surfaces. Langmuir 2018, 34, 4173–4179. [Google Scholar] [CrossRef] [PubMed]
- Chamakos, N.T.; Kavousanakis, M.E.; Papathanasiou, A.G. Neither lippmann nor young: Enabling electrowetting modeling on structured dielectric surfaces. Langmuir 2014, 30, 4662–4670. [Google Scholar] [CrossRef] [PubMed]
- Papathanasiou, A.G. Progress toward reversible electrowetting on geometrically patterned superhydrophobic surfaces. Curr. Opin. Colloid Interface Sci. 2018, 36, 70–77. [Google Scholar] [CrossRef]
- Chamakos, N.T.; Kavousanakis, M.E.; Boudouvis, A.G.; Papathanasiou, A.G. Droplet spreading on rough surfaces: Tackling the contact line boundary condition. Phys. Fluids 2016, 28, 022105. [Google Scholar] [CrossRef]
- Karapetsas, G.; Chamakos, N.T.; Papathanasiou, A.G. Efficient modelling of droplet dynamics on complex surfaces. J. Phys. Condens. Matter 2016, 28, 085101. [Google Scholar] [CrossRef]
- Chamakos, N.T.; Karapetsas, G.; Papathanasiou, A.G. Effect of substrate topography, material wettability and dielectric thickness on reversible electrowetting. Colloids Surf. A Physicochem. Eng. Asp. 2018, 555, 595–604. [Google Scholar] [CrossRef]
- Kavousanakis, M.E.; Chamakos, N.T.; Papathanasiou, A.G. Connection of Intrinsic Wettability and Surface Topography with the Apparent Wetting Behavior and Adhesion Properties. J. Phys. Chem. C 2015, 119, 15056–15066. [Google Scholar] [CrossRef]
- Starov, V.M. Surface forces action in a vicinity of three phase contact line and other current problems in kinetics of wetting and spreading. Adv. Colloid Interface Sci. 2010, 161, 139–152. [Google Scholar] [CrossRef]
- Fares, E.; Schröder, W. A differential equation for approximate wall distance. Int. J. Numer. Methods Fluids 2002, 39, 743–762. [Google Scholar] [CrossRef]
- Segur, J.B. Physical Properties of Glycerine and Its Solutions; Reinhold Publishing Corp.: New York, NY, USA, 1953. [Google Scholar]
- Chamakos, N.T.; Karapetsas, G.; Papathanasiou, A.G. How asymmetric surfaces induce directional droplet motion. Colloids Surf. A Physicochem. Eng. Asp. 2016, 511, 180–189. [Google Scholar] [CrossRef]
- Sen, P.; Kim, C.J.C. A fast liquid-metal droplet switch using EWOD. In Proceedings of the 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS), Hyogo, Japan, 21–25 January 2007; pp. 767–770. [Google Scholar]
- Hayes, R.A.; Feenstra, B.J. Video-speed electronic paper based on electrowetting. Nature 2003, 425, 383–385. [Google Scholar] [CrossRef] [PubMed]
- Kuiper, S.; Hendriks, B. Variable-focus liquid lens for miniature cameras. Appl. Phys. Lett. 2004, 85, 1128–1130. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chamakos, N.T.; Sema, D.G.; Papathanasiou, A.G. Highlighting the Role of Dielectric Thickness and Surface Topography on Electrospreading Dynamics. Micromachines 2019, 10, 93. https://doi.org/10.3390/mi10020093
Chamakos NT, Sema DG, Papathanasiou AG. Highlighting the Role of Dielectric Thickness and Surface Topography on Electrospreading Dynamics. Micromachines. 2019; 10(2):93. https://doi.org/10.3390/mi10020093
Chicago/Turabian StyleChamakos, Nikolaos T., Dionysios G. Sema, and Athanasios G. Papathanasiou. 2019. "Highlighting the Role of Dielectric Thickness and Surface Topography on Electrospreading Dynamics" Micromachines 10, no. 2: 93. https://doi.org/10.3390/mi10020093
APA StyleChamakos, N. T., Sema, D. G., & Papathanasiou, A. G. (2019). Highlighting the Role of Dielectric Thickness and Surface Topography on Electrospreading Dynamics. Micromachines, 10(2), 93. https://doi.org/10.3390/mi10020093