A New Stress-Released Structure to Improve the Temperature Stability of the Butterfly Vibratory Gyroscope
Abstract
1. Introduction
2. Thermal Stress Analysis
2.1. The Theoretical Principle of the Butterfly Vibratory Gyroscope (BFVG)
2.2. Thermal Stress of the BFVG
3. The Optimization of the Stress-Released Structure of the BFVG
3.1. Optimization of Stress-Released Structural Parameters of the BFVG
3.2. Thermal Stress Analysis of the BFVG
4. The Performance Test of the BFVG
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, R.; Cheng, P.; Xie, F.; Young, D.; Hao, Z. A multiple-beam tuning-fork gyroscope with high quality factors. Sens. Actuators A 2011, 166, 22–33. [Google Scholar]
- Trusov, A.A.; Schofield, A.R.; Shkel, A.M. Micromachined rate gyroscope architecture with ultra-high quality factor and improved mode ordering. Sens. Actuators A 2011, 165, 26–34. [Google Scholar]
- Maenaka, K.; Fujita, T.; Konishi, Y.; Maeda, M. Analysis of a highly sensitive silicon gyroscope with cantilever beam as vibrating mass. Sens. Actuators 1996, 54, 568–573. [Google Scholar] [CrossRef]
- Andersson, G.I.; Hedenstierna, N.; Svensson, P.; Pettersson, H. A novel silicon bulk gyroscope. J. Ext. Abstr. Transducers 1999, 1, 902–905. [Google Scholar]
- Acar, C.; Shkel, A. MEMS Vibratory Gyroscopes; Springer: Berlin, Germany, 2008. [Google Scholar]
- Cho, J.Y. High-Performance Micromachines Vibratory Rate-and Rate-Integrating Gyroscopes. Ph.D. Thesis, The University of Michigan, Ann Arbor, MI, USA, 2012. [Google Scholar]
- Chen, T.; Lee, H.; Vahala, K.J. Thermal stress in silica-on-silicon disk resonators. Appl. Phys. Lett. 2013, 102, 756–774. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, X. Gradient residual stress induced elastic deformation of multilayer MEMS structures. Sens. Actuators. A 2007, 134, 177–185. [Google Scholar] [CrossRef]
- Dunn, M.L.; Zhang, Y.H.; Bright, V.M. Deformation and structural stability of layered plate microstructures subjected to thermal loading. J. Micro-Electro-Mech. Syst. 2002, 11, 372–384. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Xiao, D.; Wu, X. Effect of Axial Force on the Performance of Micromachined Vibratory Rate Gyroscopes. Sensors 2011, 134, 296–309. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Xiao, D.; Wu, X. Effect of die attachment on key dynamical parameters of micromachined gyroscopes. Microsyst. Technol. 2012, 18, 507–513. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Chen, Z.; Wu, X.; Su, J.; Xiao, D. Transition interface for improving the temperature characteristics of micromachined gyroscopes. Microsyst. Technol. Micro Nanosyst. Inf. Storage Process Syst. 2014, 20, 227–234. [Google Scholar] [CrossRef]
- Xia, D.; Chen, S.; Wang, S.; Li, H. Microgyroscope Temperature Effects and Compensation-Control Methods. Sensors 2009, 9, 8349–8376. [Google Scholar] [CrossRef] [PubMed]
- Ko, H.; Cho, O.I. Highly programmable temperature compensated readout circuit for capacitive microaccelerometer. Sens. Actuators A 2010, 158, 72–83. [Google Scholar] [CrossRef]
- Dai, G.; Li, W.; He, X.; Du, L.; Shao, B.; Su, W. Thermal drift analysis using a multiphysics model of bulk silicon MEMS capacitive accelerometer. Sens. Actuators A 2011, 172, 369–378. [Google Scholar]
- Joo, J.; Choa, S. Deformation Behavior of MEMS Gyroscope Sensor Package Subjected to Temperature Change. IEEE Trans. Compon. Packag. Technol. 2007, 30, 346–354. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, S.W.; Najafi, K. A Generic Environment-Resistant Packaging Technology for MEMS. In Proceedings of the Conference on International Solid-State Sensors, Actuators and Microsystems Conference, Lyon, France, 10–14 June 2007. [Google Scholar]
- Qin, Q.; Zhu, Y. Temperature Control in Thermal Microactuators with Applications to in-situ Nanomechanical Testing. Appl. Phys. Lett. 2013, 102, 013101–013105. [Google Scholar] [CrossRef]
- Maeda, D.; Ono, K.; Giner, J. MEMS Gyroscope with Less than 1-deg/h Bias Instability Variation in Temperature Range from −40 °C to 125 °C. Sensors 2018, 18, 1006–1015. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.; Xu, X. Research on the Method to Improve the Vibration Stability of Vibratory Cylinder Gyroscopes under Temperature Variation. Int. J. Precis. Eng. Manuf. 2017, 18, 1813–1819. [Google Scholar] [CrossRef]
- Gripton, A. The application and future development of a MEMS SiVS® for commercial and military inertial products. In Proceedings of the Conference on Position Location and Navigation Symposium, Palms Springs, CA, USA, 15–18 April 2002. [Google Scholar]
- Sturland, I. Development and commercialisation of silicon MEMS gyroscopes. In Proceedings of the Conference on The IEE Seminar and Exhibition on MEMS Sensor Technologies, London, UK, 25 April 2005. [Google Scholar]
- Fell, C.P. Development of a Second Generation Low Cost MEMS Gyroscope: Design for Manufacture. In Proceedings of the Conference on Seminar on Mems Sensors & Actuators, London, UK, 28 April 2006. [Google Scholar]
- Zaman, M.F.; Sharma, A.; Ayazi, F. The Resonating Star Gyroscope: A Novel Multiple-Shell Silicon Gyroscope with Sub-5 deg/hr Allan Deviation Bias Instability. IEEE Sens. J. 2009, 9, 616–624. [Google Scholar] [CrossRef]
- Zhou, B.; Zhang, R.; Zhang, T. A Center-Supported Four-Mass Block Six-Axis Inertial Vibratory MEMS Gyroscope, China. International Patent Application CN106932609A, 7 July 2017. [Google Scholar]
- Hedenstierna, N.; Habibi, S.; Nilsen, S.M.; Kvisterøy, T.; Jensen, G.U. Bulk micromachined angular rate sensor based on the ‘butterfly’-gyro structure. In Proceedings of the Technical Digest. MEMS 2001. the 14th IEEE International Conference on InMicro Electro Mechanical Systems, Interlaken, Switzerland, 25 January 2001; pp. 178–181. [Google Scholar]
- Xin, Y.; Wu, X.; Xiao, D.; Hou, Z.; He, K.; Chen, Z. A Micromachined Gyroscope with an Effective Stree-released Fram. In Proceedings of the 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Suzhou, China, 7–10 April 2013. [Google Scholar]
- Xiao, D.; Cao, S.; Hou, Z.; Chen, Z.; Wang, X.; Wu, X. Enhanced sensitivity in a butterfly gyroscope with a hexagonal oblique beam. AIP Adv. 2015, 5, 041331. [Google Scholar] [CrossRef]
- Chu, H.M.; Vu, H.N.; Hane, K. Electric feed-through for vacuum package using double-side anodic bonding of silicon-on-insulator wafer. J. Electrost. 2013, 71, 130–133. [Google Scholar] [CrossRef]
- Wang, X. Study on Temperature Stability Analysis and Optimization Method of a Butterfly Microgyroscope Sensitive Structure. Ph.D. Thesis, The National University of Defense Technology, Changsha, China, 2016. [Google Scholar]
Definition | Symbol | Value |
---|---|---|
the height of the stress-released structure | S1 | 1000 |
the width of the stress-released structure | S2 | 130 |
the height of the internal fixed frame of the stress-released structure | S3 | 120 |
the outer fixed frame of the stress-released structure | S4 | 25 |
the width of the stress-release groove | S5 | 10 |
Definition | Value | Unit |
---|---|---|
Thermal Expansion Coefficient | 2.6 × 10−6 | 1/K |
Density | 2329 | Kg/m3 |
Young Modulus | 170 × 109 | Pa |
Poisson Ratio | 0.28 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ou, F.; Hou, Z.; Miao, T.; Xiao, D.; Wu, X. A New Stress-Released Structure to Improve the Temperature Stability of the Butterfly Vibratory Gyroscope. Micromachines 2019, 10, 82. https://doi.org/10.3390/mi10020082
Ou F, Hou Z, Miao T, Xiao D, Wu X. A New Stress-Released Structure to Improve the Temperature Stability of the Butterfly Vibratory Gyroscope. Micromachines. 2019; 10(2):82. https://doi.org/10.3390/mi10020082
Chicago/Turabian StyleOu, Fenlan, Zhanqiang Hou, Tongqiao Miao, Dingbang Xiao, and Xuezhong Wu. 2019. "A New Stress-Released Structure to Improve the Temperature Stability of the Butterfly Vibratory Gyroscope" Micromachines 10, no. 2: 82. https://doi.org/10.3390/mi10020082
APA StyleOu, F., Hou, Z., Miao, T., Xiao, D., & Wu, X. (2019). A New Stress-Released Structure to Improve the Temperature Stability of the Butterfly Vibratory Gyroscope. Micromachines, 10(2), 82. https://doi.org/10.3390/mi10020082