Research on the Hydrophobicity of Square Column Structures on Monocrystalline Silicon Fabricated Using Micro-Machining
Abstract
:1. Introduction
2. Establishment of the Theoretical Model
2.1. Basic Parameters of the Model
2.2. Establishment of the Square Column Model
3. Experimental and Simulation Verification
3.1. Experimental Verification
3.2. Simulation Verification
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yan, Y.Y.; Gao, N.; Barthlott, W. Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces. Adv. Colloid Interface Sci. 2011, 169, 80–105. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Duan, X.L.; Collier, B.; Poduska, K.M. Fabrication and wettability analysis of hydrophobic stainless steel surfaces with microscale structures from nanosecond laser machining. J. Micro Nano-Manuf. 2018, 6, 031006. [Google Scholar] [CrossRef]
- Latthe, S.S.; Sutar, R.S.; Kodag, V.S.; Bhosale, A.K.; Kumar, A.M.; Sadasivuni, K.K.; Xing, R.; Liu, S. Self-cleaning superhydrophobic coatings: Potential industrial applications. Prog. Org. Coat. 2019, 128, 52–58. [Google Scholar] [CrossRef]
- Kumar, K.D.; Avramova, I.A.; Castano, C.E.; Ivanova, I.A.; Mohammadi, R.; Radeva, E.I.; Stoyanovad, D.S.; Vladkovae, T.G. Early stage anti-bioadhesion behavior of superhydrophobic soot based coatings towards Pseudomonas putida. Mater. Des. 2018, 160, 395–404. [Google Scholar]
- Zorba, V.; Stratakis, E.; Barberoglou, M.; Spanakis, E.; Tzanetakis, P.; Fotakis, C. Tailoring the wetting response of silicon surfaces via fs laser structuring. Appl. Phys. A Mater. Sci. Process. 2008, 93, 819–825. [Google Scholar] [CrossRef]
- Yang, H.; Pi, P.H.; Cai, Z.Q.; Wen, X.; Wang, X.; Cheng, J.; Yang, Z.R. Facile preparation of super-hydrophobic and superoleophilic silica film on stainless steel mesh via sol–gel process. Appl. Surf. Sci. 2010, 256, 4095–4102. [Google Scholar] [CrossRef]
- Gurav, A.B.; Latthe, S.S.; Kappenstein, C.; Mukherjee, S.K.; Rao, A.V.; Vhatkar, R.S. Porous water repellent Silica coatings on glass by sol–gel method. J. Porous Mater. 2011, 18, 361–367. [Google Scholar] [CrossRef]
- Chen, Z.; Hao, L.M.; Chen, A.Q.; Song, Q.; Chen, C. A rapid one-step process for fabrication of superhydrophobic surface by electrodeposition method. Electrochim. Acta 2012, 59, 168–171. [Google Scholar] [CrossRef]
- Wang, J.D.; Liu, F.B.; Chen, H.S.; Chen, D. Superhydrophobic behavior achieved from hydrophilic surfaces. Appl. Phys. Lett. 2009, 95, 84–104. [Google Scholar] [CrossRef]
- Razavi, S.M.; Oh, J.; Sett, S.; Feng, L.; Yan, X.; Hoque, M.J.; Liu, A.; Haasch, R.T.; Masoomi, O.M.; Bagheri, R.; et al. Superhydrophobic surfaces made from naturally derived hydrophobic materials. ACS Sustain. Chem. Eng. 2017, 5, 11362–11370. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, L.; Wang, D.; Lin, X.; Chen, Y. Fabrication of biomimetic superhydrophobic surface based on nanosecond laser-treated titanium alloy surface and organic polysilazane composite coating. Colloids Surf. A 2018, 555, 515–524. [Google Scholar] [CrossRef]
- Varlamova, O.; Hoefner, K.; Ratzke, M.; Reif, J.; Sarker, D. Modification of surface properties of solids by femtosecond LIPSS writing: Comparative studies on silicon and stainless steel. Appl. Phys. A 2017, 123, 725. [Google Scholar] [CrossRef]
- Cao, Z.Y.; Ding, W.Y.; Yin, Z. Research on surface integrity analysis and control technology of high precision milling. J. Adv. Oxid. Technol. 2018, 21, 201801239. [Google Scholar]
- Ding, W.Y.; Cao, Z.Y.; Wang, B.F.; Xu, S.; Wang, Z. Construction of grating structure model based on Gibbs free energy and experimental verification by micro-milling. Appl. Phys. A 2019, 125, 380. [Google Scholar] [CrossRef]
- Bittoun, E.; Marmur, A. Optimizing super-hydrophobic surfaces: Criteria for comparison of surface topographies. J. Adhes. Sci. Technol. 2009, 23, 401–411. [Google Scholar] [CrossRef]
- Wang, Y.L.; Zhang, X.R.; Zhang, L.X.; Yu, Z.J. Hydrophobic aluminum alloy surface fabricated by high speed micro-milling technology. China Surf. Eng. 2013, 26, 37–42. [Google Scholar]
- Shi, Z.Y.; Liu, Z.Q.; Song, H.; Zhang, Z. Prediction of contact angle for hydrophobic surface fabricated with micro-machining based on minimum Gibbs free energy. Appl. Surf. Sci. 2016, 364, 597–603. [Google Scholar]
- Nosonovsky, M.; Bhushan, B. Hierarchical roughness optimization for biomimetic super-hydrophobic surfaces. Ultramicroscopy. 2007, 107, 969–979. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.L.; Feng, X.Q.; Wang, G.F.; Yu, S.W. Mechanisms of superhydrophobicity on hydrophilic substrates. J. Phys. Condens. Matter. 2007, 19, 1–12. [Google Scholar] [CrossRef]
- Cheng, X.; Gao, B.; Yang, X.H.; Liu, J.Y.; Tian, Z.Q. Experimental study on the ductile-mode micro milling of single crystalline silicon. Shandong Univ. Technol. (Nat. Sci. Ed.) 2012, 26, 53–55. [Google Scholar]
- Zhang, S. Design and Development of a Micromilling Machine Tool and Experimental Study on Micromilling of the Typical Hard and Brittle Material. Master’s Thesis, Shangdong University of Technology, Zibo, China, June 2014. [Google Scholar]
- Gao, Q.; Gong, Y.D.; Cai, M.; Zhou, Y.G. Experimental study on surface quality in micro-milling of single crystal Si plastic removal. Technol. Test. 2016, 6, 135–138. [Google Scholar]
- Yuan, C.S. Investigation of Micro and Nano Structure on Titanium Alloy Surface Influences its Superhydrophobicity. Master’s Thesis, Harbin Institute of Technology, Harbin, China, June 2010. [Google Scholar]
- Kwon, T.W.; Jang, J.; Ambrosia, M.S.; Ha, M.Y. Molecular dynamics study on the hydrophobicity of a surface patterned with hierarchical nanotextures. Colloids Surf. A 2018, 559, 209–217. [Google Scholar] [CrossRef]
Sample Number | Side Length of Square Column a (μm) | Complete Infiltration Model θi(°) | Air Column Model θa(°) | Experiment θ(°) |
---|---|---|---|---|
1 | 60 | 90.79 | 166.54 | 165.8 ± 2.2 |
2 | 90 | 90.83 | 161.33 | 160.1 ± 2.1 |
3 | 120 | 90.85 | 156.83 | 158.6 ± 1.8 |
4 | 150 | 90.87 | 152.89 | 156.7 ± 3.0 |
5 | 180 | 90.88 | 149.43 | 149.7 ± 2.5 |
6 | 200 | 90.88 | 147.34 | 146.3 ± 2.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Z.; Ding, W.; Ma, Z.; Wang, B.; Wang, Z. Research on the Hydrophobicity of Square Column Structures on Monocrystalline Silicon Fabricated Using Micro-Machining. Micromachines 2019, 10, 763. https://doi.org/10.3390/mi10110763
Cao Z, Ding W, Ma Z, Wang B, Wang Z. Research on the Hydrophobicity of Square Column Structures on Monocrystalline Silicon Fabricated Using Micro-Machining. Micromachines. 2019; 10(11):763. https://doi.org/10.3390/mi10110763
Chicago/Turabian StyleCao, Ziyang, Wenyu Ding, Zhenwu Ma, Bangfu Wang, and Zhongwang Wang. 2019. "Research on the Hydrophobicity of Square Column Structures on Monocrystalline Silicon Fabricated Using Micro-Machining" Micromachines 10, no. 11: 763. https://doi.org/10.3390/mi10110763
APA StyleCao, Z., Ding, W., Ma, Z., Wang, B., & Wang, Z. (2019). Research on the Hydrophobicity of Square Column Structures on Monocrystalline Silicon Fabricated Using Micro-Machining. Micromachines, 10(11), 763. https://doi.org/10.3390/mi10110763