The Surface Integrity of Titanium Alloy When Using Micro-Textured Ball-End Milling Cutters
Abstract
:1. Introduction
2. The Factors Affecting Titanium Alloy Surface Quality When Milled by a Micro-Textured Ball-End Milling Cutter
2.1. The Machined Surface Formation Process
2.2. The Influence of a Micro-Textured Ball-End Milling Cutter on the Surface Quality of the Workpiece
2.2.1. Factors Affecting the Surface Quality
2.2.2. Effect of the Micro-Textured Ball-End Milling Mechanism on the Quality of Machined Surfaces
3. Methods for Testing Work Hardening and Evaluation Criteria
3.1. Evaluation Criteria for the Work Hardening
3.2. Approaches to Testing for Work Hardening
4. High Speed Milling of Titanium Alloy with A Micro-Textured Ball-End Milling Cutter
4.1. Cutting Tools and Workpiece Materials
4.2. Test Equipment and Test Parameters
5. Analysis of the Test Results
5.1. Influence of Micro-Texture Parameters on Surface Roughness
5.1.1. Test Data and Orthogonal Analysis of Surface Roughness
5.1.2. Analysis of the Influence of Micro-Texture Parameters on Surface Roughness
5.2. Influence of Micro-Texture Parameters on Work Hardening
5.2.1. Test Data and an Orthogonal Analysis of Work Hardening
5.2.2. Analysis of the Influence of Micro-Texture Parameters on Work Hardening
6. Prediction Model and the Test of its Significance
6.1. Surface Integrity Prediction Model
6.2. Test of the Significance of the Prediction Model
7. Conclusions
- The order of influence for the texture parameters in relation to the surface roughness is: micro-pit diameter > micro-pit interval > micro-pit depth > micro-pit distance from the cutting edge. The primary and secondary micro-pit texture parameters influencing work hardening are: micro-pit diameter > micro-pit distance from the cutting edge > micro-pit depth > micro-pit interval.
- The smaller the diameter of the micro-pits, the more serious the work hardening phenomenon becomes. As the micro-pit depth is increased, the hardening phenomenon decreases, increases, and then decreases again more gradually. When the micro-pit distance from the cutting edge increases, the degree of work hardening decreases. Outside of this, when the micro-pit spacing is increased, the degree of work hardening can also be reduced.
- Regression analysis carried out on the orthogonal test results established prediction models for work hardening and surface roughness. The reliability of these models was confirmed by comparison between values from the experiments and the values predicted by the models.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Niharika; Agrawal, B.P.; Khan, I.A.; Khan, Z.A. Effects of Cutting Parameters on Quality of Surface Produced by Machining of Titanium Alloy and Their Optimization. Arch. Mech. Eng. 2016, 63, 531–548. [Google Scholar] [CrossRef] [Green Version]
- Enomoto, T.; Sugihara, T.; Yukinaga, S.; Hirose, K.; Satake, U. Highly wear-resistant cutting tools with textured surfaces in steel cutting. CIRP Ann. 2012, 61, 571–574. [Google Scholar] [CrossRef]
- Koshy, P.; Tovey, J. Performance of electrical discharge textured cutting tools. CIRP Ann. 2011, 60, 153–156. [Google Scholar] [CrossRef]
- Xie, J.; Luo, M.J.; He, J.L.; Liu, X.R.; Tan, T.W. Micro-grinding of micro-groove array on tool rake surface for dry cutting of titanium alloy. Int. J. Precis. Eng. Manuf. 2012, 13, 1845–1852. [Google Scholar] [CrossRef]
- Fu, Y.-H.; Xiao, K.-L.; Hua, X.-J.; Yuan, Z.C.; Yang, Y.G. Cut-ting Trial and Performance Analysis of Surface Micro-grooves Turning Tools. China Surf. Eng. 2013, 6, 106–111. [Google Scholar]
- Cui, Y. Research on the Surface Quality of Titanium Alloy with Micru-textured Ball-end Milling Cutter. Master’s Thesis, Harbin University of Science and Technology, Harbin, China, March 2016. [Google Scholar]
- Fang, Y.F.; Tee, K.F. Effects on Surface Integrity of Ti6Al4V in High Speed Milling. Key Eng. Mater. 2017, 737, 156–161. [Google Scholar] [CrossRef]
- Bordin, A.; Bruschi, S.; Ghiotti, A. The effect of cutting speed and feed rate on the surface integrity in dry turning of cocrmo alloy. Procedia Cirp 2014, 13, 219–224. [Google Scholar] [CrossRef]
- Chen, J.C.; Huang, B. An in-process neural network-based surface roughness prediction (inn-srp) system using a dynamometer in end milling operations. Int. J. Adv. Manuf. Technol. 2003, 21, 339–347. [Google Scholar] [CrossRef]
- Wang, H.X.; Li, D.; Dong, S. The Establishment of a Surface Roughness Model for Ultraprecision Turning. Chin. High Technol. Lett. 2000, 10, 77–82. [Google Scholar]
- Wu, W.; Liu, L.J.; Fan, P. Application of response surface methodology in surface roughness prediction model and parameter optimization for high-speed milling Ti6Al4V. Manuf. Technol. Mach. Tools 2014, 1, 39–43. [Google Scholar]
- Che-Haron, C.H.; Jawaid, A. The Effect of Machining on Surface Integrity of Titanium alloy Ti-6Al-4V. J. Mater. Proc. Technol. 2005, 166, 188–192. [Google Scholar] [CrossRef]
- Canteroa, J.L.; Tardiob, M.M.; Cantelia, J.A.; Marcosc, M.; Miguelez, M.H. Dry Drilling of Alloy Ti-6Al-4V. Int. J. Mach. Tools Manuf. 2005, 45, 1246–1255. [Google Scholar] [CrossRef]
- Chen, M.H.; Hu, J.; Yang, H.C.; Du, X.W. Milling methods and wear knives for titanium alloy processing and hardening experiment. J. Mech. Strength 2015, 37, 418–423. [Google Scholar]
- Zhou, Z.; Chen, Z.T.; Jiang, L.K.; Li, X.Q. Experiment of milling and hardening of titanium alloy TB6. J. Beijing Univ. Aeronaut. Astronaut. 2014, 40, 135–140. [Google Scholar]
- Arizmendi, M.; Fernández, J.; López de Lacalle, L.N.; Lamikiz, A.; Gil, A.; Sánchez, J.A.; Campa, F.J.; Veiga, F. Model development for the prediction of surface topography generated by ball-end mills taking into account the tool parallel axis offset. Experimental validation. CIRP Ann. 2008, 57, 101–104. [Google Scholar] [CrossRef]
- López de Lacalle, L.N.; Rodríguez, A.; Lamikiz, A.; Celaya, A.; Alberdi, R. Five-Axis Machining and Burnishing of Complex Parts for the Improvement of Surface Roughness. Mater. Manuf. Process. 2011, 26, 997–1003. [Google Scholar] [CrossRef]
- Artetxe, E.; Olvera, D.; López de Lacalle, L.N.; Campa, F.J.; Olvera, D.; Lamikiz, A. Solid subtraction model for the surface topography prediction in flank milling of thin-walled integral blade rotors (IBRs). Int. J. Adv. Manuf. Technol. 2016, 90, 741–752. [Google Scholar] [CrossRef]
- Huissoon, J.P.; Ismail, F.; Jafari, A.; Bedi, S. Automated Polishing of Die Steel Surfaces. Int. J. Adv. Manuf. Technol. 2002, 19, 285–290. [Google Scholar] [CrossRef]
- Huang, Y.H.; Dong, S. Analysis and Optimization on Prediction Model of Surface Roughness for Mandrels in Meso-scale. J. Mech. Eng. 2011, 47, 174–178. [Google Scholar] [CrossRef]
- Yao, C.F.; Wu, D.X.; Jin, Q.C.; Yang, Z.C. Research on Surface Roughness and Surface Topography of High-Speed Milling TB6 Titanium Alloy. Aeronaut. Manuf. Technol. 2012, 21, 90–94. [Google Scholar]
- Yao, C.F.; Zhang, D.H.; Huang, X.C.; Yang, Z.C.; Ren, J.X. Exploring Surface Roughness and Surface Morphology of High-speed Milling TC11 Titanium Alloy. Mech. Sci. Technol. Aerosp. Eng. 2011, 30, 1573–1578. [Google Scholar]
- Zhang, W.; Zheng, M.L.; Xu, J.H.; Cheng, X.L. Surface work-hardening experiment of titanium alloy Ti-6Al-4V turning. J. Harbin Eng. Univ. 2013, 8, 1052–1056. [Google Scholar]
- El-Wardany, T.I.; Kishawy, H.A.; Elbestawi, M.A. Surface integrity of die material in high speed hard machining, Part 1: Micrographical analysis. J. Manuf. Sci. Eng. 2000, 122, 620–631. [Google Scholar] [CrossRef]
- Li, D.B. Simulation of Surface Work-Hardening Caused by Metal Cutting. Tool Eng. 2004, 38, 14–16. [Google Scholar]
- Jiang, K.Q. Preliminary Research on the Influences of High-Speed Milling Parameters on Machined Surface Quality. Master’s Thesis, Huazhong University of Science & Technology, Wuhan, China, May 2009. [Google Scholar]
- Wang, H.Y. Research on the Cutting Performance of Micro-textured Ball-end Milling Cutter Machining Titanium Alloy. Master’s Thesis, Harbin University of Science and Technology, Harbin, China, March 2017. [Google Scholar]
- Chen, T.; Li, S.; Guo, L. Study on Surface Integrity and Its Prediction in Hard Cutting. J. Harbin Univ. Sci. Technol. 2012, 2, 95–99. [Google Scholar]
Hardness HRC | Density kg/m3 | Melting Point °C | Specific Heat J/(kg∙K) | Heat Transfer Coefficient W/(m·K) | Poisson Ratio v | Yield Strength MPa | Modulus of Elasticity GPa |
---|---|---|---|---|---|---|---|
36 | 4428 | 1605 | 1012 | 7.955 | 0.41 | 825 | 110 |
Element | Al | V | Fe | C | N | H | O | Ti |
---|---|---|---|---|---|---|---|---|
Content | 5.5–6.8 | 3.5–4.5 | ≤0.30 | ≤0.10 | ≤0.05 | ≤0.015 | ≤0.20 | allowance |
Factor | Diameter (D) μm | Depth (H) μm | Interval (L1) μm | Distance from Cutting Edge (L2) μm | |
---|---|---|---|---|---|
Level | |||||
1 | 30 | 40 | 125 | 90 | |
2 | 40 | 50 | 150 | 100 | |
3 | 50 | 60 | 175 | 110 | |
4 | 60 | 70 | 200 | 120 |
Test Number | Diameter μm | Depth μm | Interval μm | Distance from Cutting Edge μm | Average Surface Roughness μm |
---|---|---|---|---|---|
1 | 30 | 40 | 125 | 90 | 0.7339 |
2 | 30 | 50 | 150 | 100 | 0.77 |
3 | 30 | 60 | 175 | 110 | 0.6373 |
4 | 30 | 70 | 200 | 120 | 0.5397 |
5 | 40 | 40 | 150 | 110 | 0.5955 |
6 | 40 | 50 | 125 | 120 | 0.6406 |
7 | 40 | 60 | 200 | 90 | 0.5569 |
8 | 40 | 70 | 175 | 100 | 0.6306 |
9 | 50 | 40 | 175 | 120 | 0.7305 |
10 | 50 | 50 | 200 | 110 | 0.5695 |
11 | 50 | 60 | 125 | 100 | 0.579 |
12 | 50 | 70 | 150 | 90 | 0.56 |
13 | 60 | 40 | 200 | 100 | 0.4461 |
14 | 60 | 50 | 175 | 90 | 0.5186 |
15 | 60 | 60 | 150 | 120 | 0.5606 |
16 | 60 | 70 | 125 | 110 | 0.4906 |
Test Parameters | f1 | f2 | f3 | f4 |
---|---|---|---|---|
K1 | 2.6809 | 2.506 | 2.4441 | 2.3694 |
K2 | 2.4263 | 2.4987 | 2.4861 | 2.4257 |
K3 | 2.439 | 2.3338 | 2.517 | 2.2929 |
K4 | 2.0159 | 2.2209 | 2.1122 | 2.4714 |
k1 | 0.670225 | 0.6265 | 0.611025 | 0.59235 |
k2 | 0.6059 | 0.624675 | 0.621525 | 0.606425 |
k3 | 0.60975 | 0.58345 | 0.62925 | 0.573225 |
k4 | 0.503975 | 0.555225 | 0.52805 | 0.61785 |
R | 0.16625 | 0.071275 | 0.1012 | 0.044625 |
Test Number | Diameter μm | Depth μm | Interval μm | Distance from Cutting Edge μm | Surface Micro-Hardness HV |
---|---|---|---|---|---|
1 | 30 | 40 | 125 | 90 | 484.8 |
2 | 30 | 50 | 150 | 100 | 392.11 |
3 | 30 | 60 | 175 | 110 | 406.92 |
4 | 30 | 70 | 200 | 120 | 316.13 |
5 | 40 | 40 | 150 | 110 | 397.73 |
6 | 40 | 50 | 125 | 120 | 375.32 |
7 | 40 | 60 | 200 | 90 | 411.91 |
8 | 40 | 70 | 175 | 100 | 386.66 |
9 | 50 | 40 | 175 | 120 | 349.88 |
10 | 50 | 50 | 200 | 110 | 363.41 |
11 | 50 | 60 | 125 | 100 | 367.26 |
12 | 50 | 70 | 150 | 90 | 367.17 |
13 | 60 | 40 | 200 | 100 | 380.13 |
14 | 60 | 50 | 175 | 90 | 316.13 |
15 | 60 | 60 | 150 | 120 | 315.35 |
16 | 60 | 70 | 125 | 110 | 330.93 |
Test Parameters | f1 | f2 | f3 | f4 |
---|---|---|---|---|
K1 | 1599.96 | 1612.54 | 1558.31 | 1580.06 |
K2 | 1571.62 | 1446.97 | 1472.36 | 1526.16 |
K3 | 1447.72 | 1501.44 | 1459.59 | 1498.99 |
K4 | 1342.54 | 1400.89 | 1471.58 | 1356.68 |
k1 | 399.99 | 403.135 | 389.5775 | 395.015 |
k2 | 392.905 | 361.7425 | 368.09 | 381.54 |
k3 | 361.93 | 375.36 | 364.8975 | 374.7475 |
k4 | 335.635 | 350.2225 | 367.895 | 339.17 |
R | 64.355 | 52.9125 | 24.68 | 55.845 |
Source of Variance | SS | DF | MS | F | Significance F |
---|---|---|---|---|---|
Ra | 0.0354 | 4 | 0.0089 | 3.68 | 0.0388 |
Residual | 0.0265 | 11 | 0.0024 | — | — |
Total | 0.0619 | 15 | — | — | — |
Source of Variance | SS | DF | MS | F | Significance F |
---|---|---|---|---|---|
HV | 0.025944 | 4 | 0.006486 | 60458596 | 0.006304926 |
Residual | 0.011046 | 11 | 0.001004 | ||
Total | 0.03699 | 15 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Yu, S.; He, C. The Surface Integrity of Titanium Alloy When Using Micro-Textured Ball-End Milling Cutters. Micromachines 2019, 10, 21. https://doi.org/10.3390/mi10010021
Yang S, Yu S, He C. The Surface Integrity of Titanium Alloy When Using Micro-Textured Ball-End Milling Cutters. Micromachines. 2019; 10(1):21. https://doi.org/10.3390/mi10010021
Chicago/Turabian StyleYang, Shucai, Song Yu, and Chunsheng He. 2019. "The Surface Integrity of Titanium Alloy When Using Micro-Textured Ball-End Milling Cutters" Micromachines 10, no. 1: 21. https://doi.org/10.3390/mi10010021
APA StyleYang, S., Yu, S., & He, C. (2019). The Surface Integrity of Titanium Alloy When Using Micro-Textured Ball-End Milling Cutters. Micromachines, 10(1), 21. https://doi.org/10.3390/mi10010021