A Greener, Quick and Comprehensive Extraction Approach for LC-MS of Multiple Mycotoxins
Abstract
:1. Introduction
2. Results & Discussion
2.1. LC-MS Multi-Mycotoxin Method
2.1.1. Isotopologues as Internal Standard (ISTD)/Matrix Effects
2.1.2. Recovery/Trueness
2.1.3. Precision
2.1.4. Other Method Validation Parameters
2.2. Quick Screening Method
2.2.1. Extraction Efficiency
2.2.2. Flow Injection-MS
2.2.3. AFB1 Distribution and Standard Addition
3. Conclusions
- greener than many existing approaches because it replaces ACN through EtOAc, minimizes the consumption of organic solvent, and produces less chemical waste;
- simple and quick because a time-consuming clean-up step is avoided and sample processing is easily scaled up or down;
- adaptable to other applications without too much effort;
- showing favorable performance characteristics and is fit-for-purpose as a tool to enforce EU mycotoxin legislation.
4. Materials and Methods
4.1. Chemicals and Materials
4.2. Sample Preparation for LC-MS
4.3. Sample Preparation for Quick Screening
4.4. LC-MS Measurements
4.5. Flow Injection Measurements
4.6. Computations
4.7. Method Validation
Acknowledgments
Conflicts of Interest
References
- Food Quality and Standards Service (ESNS). Worldwide Regulations for Mycotoxins in Food and Feed in 2003; FAO: Rome, Italy, 2004. [Google Scholar]
- European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs (Text with EEA relevance). Off. J. Eur. Union 2006, 364, 5–24. [Google Scholar]
- Berthiller, F.; Brera, C.; Crews, C.; Iha, M.H.; Krsha, R.; Lattanzio, V.M.T.; MacDonald, S.; Malone, R.J.; Maragos, C.; Solfrizzo, M.; et al. Developments in mycotoxin analysis: An update for 2013–2014. World Mycotoxin J. 2015, 8, 5–35. [Google Scholar] [CrossRef]
- CEN/TC 275. Foodstuffs—Determination of Aflatoxin B1 and the Sum of Aflatoxin B1, B2, G1 and G2 in Hazelnuts, Peanuts, Pistachios, Figs, and Paprika Powder—High Performance Liquid Chromatographic Method with Post-Column Derivatisation and Immunoaffinity Column Cleanup; European Committee for Standardization: Brussels, Belgium, 2007. [Google Scholar]
- Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC Trends Anal. Chem. 2013, 50, 78–84. [Google Scholar] [CrossRef]
- Spanjer, M.C.; Scholten, J.M.; Kastrup, S.; Jörissen, U.; Schatzki, T.F.; Toyofuku, N. Sample comminution for mycotoxin analysis: Dry milling or slurry mixing? Food Addit. Contam. 2006, 23, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Tamura, M.; Mochizuki, N.; Nagatomi, Y.; Harayama, K.; Toriba, A.; Hayakawa, K. A method for simultaneous determination of 20 fusarium toxins in cereals by high-resolution liquid chromatography-orbitrap mass spectrometry with a Pentafluorophenyl column. Toxins 2015, 7, 1664–1682. [Google Scholar] [CrossRef] [PubMed]
- Sulyok, M.; Franz, B.; Rudolf, K.; Rainer, S. Development and validation of a liquid chromatography/tandem mass spectrometric method for the determination of 39 mycotoxins in wheat and maize. Rapid Commun. Mass Spectrom. 2006, 20, 2649–2659. [Google Scholar] [CrossRef] [PubMed]
- Varga, E.; Glauner, T.; Köppen, R.; Mayer, K.; Sulyok, M.; Schuhmacher, R.; Krska, R.; Berthiller, F. Stable isotope dilution assay for the accurate determination of mycotoxins in maize by UHPLC-MS/MS. Anal. Bioanal. Chem. 2011, 402, 2675–2686. [Google Scholar] [CrossRef] [PubMed]
- Kujawski, M.; Mischke, C.; Bratinova, S.; Stroka, J. Report on the 2013 Proficiency Test of the European Union Reference Laboratory for Mycotoxins, for the Network of National Reference Laboratories—Determination of Fumonisin B1, Deoxynivalenol and Aflatoxin B1 in Cereals; Publications Office of the European Union: Luxembourg, Luxembourg, 2014. [Google Scholar]
- European Commission. 2013/165/EU: Commission Recommendation of 27 March 2013 on the presence of T-2 and HT-2 toxin in cereals and cereal products Text with EEA relevance. Off. J. Eur. Union 2013, 91, 12–15. [Google Scholar]
- Breidbach, A. Validation of an Analytical Method for the Simultaneous Determination of Deoxynivalenol, Zearalenone, T-2 and HT-2 Toxins in Unprocessed Cereals—Validation Report; EC, JRC, IRMM: Geel, Belgium, 2011; Available online: http://skp.jrc.cec.eu.int/skp/showPub?id=JRC66507 (accessed on 18 February 2017).
- Breidbach, A.; Bouten, K.; Kröger, K.; Stroka, J.; Ulberth, F. LC-MS Based Method of Analysis for the Simultaneous Determination of four Mycotoxins in Cereals and Feed: Results of a Collaborative Study; Publications Office of the European Union: Luxembourg (Luxembourg), 2013; Available online: http://publications.jrc.ec.europa.eu/repository/handle/JRC80176 (accessed on 18 February 2017).
- Heumann, K.G. Isotope dilution mass spectrometry of inorganic and organic substances. Fresenius J. Anal. Chem. 1986, 325, 661–666. [Google Scholar] [CrossRef]
- Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Strategies for the Assessment of Matrix Effect in Quantitative Bioanalytical Methods Based on HPLC-MS/MS. Anal. Chem. 2003, 75, 3019–3030. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Regulation (EC) No 401/2006 of 23 February 2006 laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs (Text with EEA relevance). Off. J. Eur. Union 2006, 70, 12–34. [Google Scholar]
- International Organization for Standardization. ISO 5725–1 Accuracy (Trueness and Precision) of Measurement Methods and Results; ISO Copyright Office: Geneva, Switzerland, 1994. [Google Scholar]
- Breidbach, A.; Ulberth, F. Two-dimensional heart-cut LC-LC improves accuracy of exact-matching double isotope dilution mass spectrometry measurements of aflatoxin B1 in cereal-based baby food, maize, and maize-based feed. Anal. Bioanal. Chem. 2015, 407, 3159–3167. [Google Scholar] [CrossRef] [PubMed]
- International Organization for Standardization. ISO 11843–2 Capability of Detection; ISO Copyright office: Geneva, Switzerland, 2000. [Google Scholar]
- Mol, H.G.J.; Plaza-Bolanifos, P.; Zomer, P.; de Rijk, T.C.; Stolker, A.A.M.; Mulder, P.P.J. Toward a generic extraction method for simultaneous determination of pesticides, mycotoxins, plant toxins, and veterinary drugs in feed and food matrixes. Anal. Chem. 2008, 80, 9450–9459. [Google Scholar] [CrossRef] [PubMed]
- Breidbach, A. Improved precision of measured isotope ratio through peak parking and scan-based statistics in IDMS of small organic molecules. In Proceedings of the 20th International Mass Spectrometry Conference, Geneva, Switzerland, 24–29 August 2014.
- CEN/TC 327 WG5. EN 16877:2016 Animal Feeding Stuffs: Methods of Sampling and Analysis—Determination of T-2 and HT-2 toxins, Deoxynivalenol and Zearalenone, in Feed Materials and Compound Feed by LC-MS; European Committee for Standardization: Brussels, Belgium, 2016. [Google Scholar]
- Hendriks, G.; Franke, J.P.; Uges, D.R.A. New practical algorithm for modelling retention times in gradient reversed-phase high-performance liquid chromatography. J. Chromatogr. A 2005, 1089, 193–202. [Google Scholar] [CrossRef] [PubMed]
- RCoreTeam R—A Language and Environment for Statistical Computing and Graphics, 2.4.0. 2007. Available online: https://www.r-project.org/ (accessed on 18 February 2017).
- Davidian, M.; Haaland, P.D. Regression and calibration with nonconstant error variance. Chemom. Intell. Lab. 1990, 9, 231–248. [Google Scholar] [CrossRef]
- O’Connell, M.A.; Belanger, B.A.; Haaland, P.D. Calibration and assay development using the four-parameter logistic model. Chemom. Intell. Lab. 1993, 20, 97–114. [Google Scholar] [CrossRef]
- Chambers, M.C.; Maclean, B.; Burke, R.; Amodei, D.; Ruderman, D.L.; Neumann, S.; Gatto, L.; Fischer, B.; Pratt, B.; Egertson, J.; et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 2012, 30, 918–920. [Google Scholar] [CrossRef] [PubMed]
- European Parliament; Council. Regulation (EC) No 882/2004 of the European Parliament and of the Council of 29 April 2004 on official controls performed to ensure the verification of compliance with feed and food law, animal health and animal welfare rules. Off. J. Eur. Union 2004, 165, 1–141. [Google Scholar]
Analyte | Assigned Value | Study Result | ||||||
---|---|---|---|---|---|---|---|---|
xa (µg/kg) | u(xa) 1 (µg/kg) | Overall Mean (µg/kg) | sR 2 (µg/kg) | (µg/kg) 3 | A 4 | -A sR 5 (µg/kg) | +A sR 6 (µg/kg) | |
Reference Material I (EFL2) | ||||||||
DON | 282 | 13 | 250 | 33 | −32 | 0.47 | −47 | −16 |
HT-2 | 51 | 3 | 49 | 12 | −2 | 0.48 | −8 | 4 |
T-2 | 18 | 1 | 18 | 4 | 0 | 0.47 | −2 | 2 |
ZON | 28 | 2 | 30 | 6 | 2 | 0.46 | −1 | 5 |
Reference Material II (EFL3) | ||||||||
DON | 605 | 24 | 559 | 67 | −46 | 0.46 | −77 | −15 |
HT-2 | 201 | 7 | 178 | 23 | −23 | 0.45 | −34 | −13 |
T-2 | 52 | 2 | 50 | 6 | −2 | 0.46 | −5 | 1 |
ZON | 445 | 8 | 430 | 49 | −15 | 0.46 | −38 | 7 |
Material 1 | Overall Mean 2 (µg/kg) | sr 3 (µg/kg) | RSDr (%) | sR 4 (µg/kg) | RSDR (%) |
---|---|---|---|---|---|
DON | |||||
EFL1 | 88.5 | 9.5 | 11 | 17.0 | 19 |
EFL2 | 250.0 | 13.6 | 6 | 33.3 | 13 |
EFL3 | 558.6 | 30.1 | 5 | 66.9 | 12 |
IRMMCER | 135.8 | 8.2 | 6 | 23.0 | 17 |
IRMMFEED | 281.8 | 19.9 | 7 | 33.1 | 12 |
HT-2 | |||||
EFL1 | 38.0 | 3.4 | 9 | 6.2 | 16 |
EFL2 | 49.1 | 3.4 | 7 | 12.0 | 25 |
EFL3 | 177.6 | 13.5 | 8 | 23.2 | 13 |
IRMMCER | 53.1 | 8.1 | 15 | 12.4 | 24 |
IRMMFEED | 22.0 | 3.3 | 15 | 6.3 | 29 |
T-2 | |||||
EFL1 | 12.1 | 1.7 | 14 | 3.9 | 32 |
EFL2 | 17.7 | 1.6 | 9 | 4.4 | 25 |
EFL3 | 50.3 | 3.1 | 6 | 6.5 | 13 |
IRMMCER | 7.0 | 1.8 | 27 | 3.1 | 44 |
IRMMFEED | 3.5 | 1.2 | 35 | 3.1 | 88 |
ZON | |||||
EFL1 | 13.9 | 2.0 | 15 | 4.3 | 31 |
EFL2 | 30.5 | 2.9 | 10 | 6.0 | 20 |
EFL3 | 430.0 | 25.0 | 6 | 49.3 | 12 |
IRMMCER | 3.4 | 1.1 | 32 | 3.3 | 98 |
IRMMFEED | 15.9 | 1.7 | 11 | 10.4 | 65 |
Item | Segment 1 | Segment 2 | Segment 3 | Segment 4 |
---|---|---|---|---|
Run time (min) | 0–2.6 | 2.6–4.1 | 4.1–4.9 | 4.9–8.7 |
Analyte | DON + 13C15-DON | HT-2 + 13C22-HT-2 | T-2 + 13C24-T-2 | ZON + 13C18-ZON |
Adduct | Protonated | Sodium | Sodium | Deprotonated |
Transitions (m/z)(Collision Energy [eV]) | 297->231 (16),297->249 (13),312->263 (9),312->276 (9) | 447->285 (22),447->345 (20),469->300 (19),469->362 (18) | 489->245 (30),489->327 (25),513->260 (26),513->344 (23) | 317->131 (25),317->175 (22),335->185 (26),335->290 (21) |
Dwell time [ms] | 130 | 130 | 180 | 180 |
Tube Lens [V] | 80 | 110 | 140 | 80 |
Polarity | Pos | Pos | Pos | Neg |
Spray Voltage [V] | 2800 | 2800 | 2800 | 2200 |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Breidbach, A. A Greener, Quick and Comprehensive Extraction Approach for LC-MS of Multiple Mycotoxins. Toxins 2017, 9, 91. https://doi.org/10.3390/toxins9030091
Breidbach A. A Greener, Quick and Comprehensive Extraction Approach for LC-MS of Multiple Mycotoxins. Toxins. 2017; 9(3):91. https://doi.org/10.3390/toxins9030091
Chicago/Turabian StyleBreidbach, Andreas. 2017. "A Greener, Quick and Comprehensive Extraction Approach for LC-MS of Multiple Mycotoxins" Toxins 9, no. 3: 91. https://doi.org/10.3390/toxins9030091
APA StyleBreidbach, A. (2017). A Greener, Quick and Comprehensive Extraction Approach for LC-MS of Multiple Mycotoxins. Toxins, 9(3), 91. https://doi.org/10.3390/toxins9030091