Rapid Microfluidic Assay for the Detection of Botulinum Neurotoxin in Animal Sera
Abstract
:1. Introduction
2. Results
2.1. Microfluidic Assay Design
Assay Steps | Time (min) | Reagent | Volume (µL) |
---|---|---|---|
Immobilized Capture mAb | 5 | BoNT mAb F1-2 | 5 |
Wash | 5 | OptiWash | 5 |
Block | 5 | OptiBlock | 5 |
Toxin | 5 | BoNT-A | 5 |
Wash | 5 | OptiWash | 5 |
Detector mAb | 5 | Btn BoNT mAb F1-51 | 5 |
Wash | 5 | OptiWash | 5 |
Reporter | 5 | sAv-HRP | 5 |
Wash | 20 | OptiWash | 60 |
Substrate | 15 | QuantaRed | 10 |
75 min | 110 µL |
2.2. BoNT Microfluidic Immunoassay Parameters
2.3. BoNT-A Microfluidic Immunoassay Performance
2.4. Detection of BoNT-A in Animal Sera by Microfluidic Immunoassay
Serum | Limit of Detection (≤pg/mL) |
---|---|
Human | 32 |
Mouse | 32 |
Bovine | 63 |
Ovine | 63 |
Horse | 125 |
Canned Beans | 125 |
3. Discussion
4. Conclusions
5. Experimental Section
5.1. Reagents and Materials
5.2. Microfluidic BoNT-A Immunoassay Methodology
5.3. BoNT-A Sera Spike and Dilution Series
5.4. Statistics
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sobel, J. Botulism. Clin. Infect. Dis. 2005, 41, 1167–1173. [Google Scholar] [CrossRef] [PubMed]
- Tighe, A.P.; Schiavo, G. Botulinum neurotoxins: Mechanism of action. Toxicon 2013, 67, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Dembek, Z.F.; Smith, L.A.; Rusnak, J.M. Botulism: Cause, effects, diagnosis, clinical and laboratory identification, and treatment modalities. Disaster Med. Public Health Prep. 2007, 1, 122–134. [Google Scholar] [CrossRef] [PubMed]
- Rossetto, O.; Pirazzini, M.; Montecucco, C. Botulinum neurotoxins: Genetic, structural and mechanistic insights. Nat. Rev. Microbiol. 2014, 12, 535–549. [Google Scholar] [CrossRef] [PubMed]
- Burnett, J.C.; Henchal, E.A.; Schmaljohn, A.L.; Bavari, S. The evolving field of biodefence: Therapeutic developments and diagnostics. Nat. Rev. Drug Discov. 2005, 4, 281–297. [Google Scholar] [CrossRef] [PubMed]
- Anniballi, F.; Fiore, A.; Lofstrom, C.; Skarin, H.; Auricchio, B.; Woudstra, C.; Bano, L.; Segerman, B.; Koene, M.; Baverud, V.; et al. Management of animal botulism outbreaks: From clinical suspicion to practical countermeasures to prevent or minimize outbreaks. Biosecur. Bioterror. 2013, 11, S191–S199. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.L. Comparison of amplified ELISA and mouse bioassay procedures for determination of botulinal toxins A, B, E, and F. J. AOAC Int. 2001, 84, 85–88. [Google Scholar] [PubMed]
- Cai, S.; Singh, B.R.; Sharma, S. Botulism diagnostics: From clinical symptoms to in vitro assays. Crit. Rev. Microbiol. 2007, 33, 109–125. [Google Scholar] [CrossRef] [PubMed]
- Ching, K.H.; Lin, A.; McGarvey, J.A.; Stanker, L.H.; Hnasko, R. Rapid and selective detection of botulinum neurotoxin serotype-A and -B with a single immunochromatographic test strip. J. Immunol. Methods 2012, 380, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.W.; Stanker, L.H. Detection of botulinum neurotoxin serotypes A and B using a chemiluminescent versus electrochemiluminescent immunoassay in food and serum. J. Agric. Food Chem. 2013, 61, 755–760. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Datta, S.; Sachdeva, A.; Maslanka, S.; Dykes, J.; Skinner, G.; Burr, D.; Whiting, R.C.; Sharma, S.K. Evaluation of an enzyme-linked immunosorbent assay (ELISA) kit for the detection of botulinum neurotoxins A, B, E, and F in selected food matrices. Health Secur. 2015, 13, 37–44. [Google Scholar] [PubMed]
- Singh, A.K.; Stanker, L.H.; Sharma, S.K. Botulinum neurotoxin: Where are we with detection technologies? Crit. Rev. Microbiol. 2013, 39, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Stanker, L.H.; Merrill, P.; Scotcher, M.C.; Cheng, L.W. Development and partial characterization of high-affinity monoclonal antibodies for botulinum toxin type A and their use in analysis of milk by sandwich ELISA. J. Immunol. Methods 2008, 336, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.E. Solid supports in enzyme-linked immunosorbent assay and other solid-phase immunoassays. Methods 2000, 22, 4–23. [Google Scholar] [CrossRef] [PubMed]
- Bompiani, K.M.; Dickerson, T.J. High-throughput screening technologies for botulinum neurotoxins. Curr. Top. Med. Chem. 2014, 14, 2062–2080. [Google Scholar] [CrossRef] [PubMed]
- Rosow, L.K.; Strober, J.B. Infant botulism: Review and clinical update. Pediatr. Neurol. 2015, 52, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Arnon, S.S.; Schechter, R.; Inglesby, T.V.; Henderson, D.A.; Bartlett, J.G.; Ascher, M.S.; Eitzen, E.; Fine, A.D.; Hauer, J.; Layton, M.; et al. Botulinum toxin as a biological weapon: Medical and public health management. JAMA 2001, 285, 1059–1070. [Google Scholar] [CrossRef] [PubMed]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Baker, C.A.; Duong, C.T.; Grimley, A.; Roper, M.G. Recent advances in microfluidic detection systems. Bioanalysis 2009, 1, 967–975. [Google Scholar] [CrossRef] [PubMed]
- Sanjay, S.T.; Fu, G.; Dou, M.; Xu, F.; Liu, R.; Qi, H.; Li, X. Biomarker detection for disease diagnosis using cost-effective microfluidic platforms. Analyst 2015, 140, 7062–7081. [Google Scholar] [CrossRef] [PubMed]
- Jung, W.; Han, J.; Choi, J.; Ahn, C. Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies. Microelectron. Eng. 2015, 132, 46–57. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, L.; Xu, L.; Hu, X.; Li, P.; Zhang, Q.; Ding, X.; Feng, X. Biotoxin sensing in food and environment via microchip. Electrophoresis 2014, 35, 1547–1559. [Google Scholar] [CrossRef] [PubMed]
- Scotcher, M.C.; Johnson, E.A.; Stanker, L.H. Characterization of the epitope region of F1-2 and F1-5, two monoclonal antibodies to botulinum neurotoxin type A. Hybridoma 2009, 28, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Scotcher, M.C.; McGarvey, J.A.; Johnson, E.A.; Stanker, L.H. Epitope characterization and variable region sequence of F1-40, a high-affinity monoclonal antibody to botulinum neurotoxin type A (Hall strain). PLoS ONE 2009, 4. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babrak, L.; Lin, A.; Stanker, L.H.; McGarvey, J.; Hnasko, R. Rapid Microfluidic Assay for the Detection of Botulinum Neurotoxin in Animal Sera. Toxins 2016, 8, 13. https://doi.org/10.3390/toxins8010013
Babrak L, Lin A, Stanker LH, McGarvey J, Hnasko R. Rapid Microfluidic Assay for the Detection of Botulinum Neurotoxin in Animal Sera. Toxins. 2016; 8(1):13. https://doi.org/10.3390/toxins8010013
Chicago/Turabian StyleBabrak, Lmar, Alice Lin, Larry H. Stanker, Jeffery McGarvey, and Robert Hnasko. 2016. "Rapid Microfluidic Assay for the Detection of Botulinum Neurotoxin in Animal Sera" Toxins 8, no. 1: 13. https://doi.org/10.3390/toxins8010013