Facing Hymenoptera Venom Allergy: From Natural to Recombinant Allergens
Abstract
:1. Hymenoptera Venom Allergy: General Epidemiological Considerations
2. Hymenoptera Venom Composition: “Omics” Approaches
2.1. Exploring Hymenoptera Venom Proteome
2.2. Genomic and Transcriptomic Approaches
3. Hymenoptera Recombinant Allergens and Diagnostic Tests
4. Venom Immunotherapy: Trends and Prospects for the Use of Recombinant Allergens
5. Production of Recombinant Allergens: From Gene to Proper Expression Systems
6. Concluding Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fitzgerald, K.T.; Flood, A.A. Hymenoptera stings. Clin. Tech. Small Anim. Pract. 2006, 21, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Bilò, M.B. Anaphylaxis caused by Hymenoptera stings: From epidemiology to treatment. Allergy 2011, 66, 35–37. [Google Scholar] [CrossRef] [PubMed]
- Mingomataj, E.C.; Bakiri, A.H.; Ibranji, A.; Sturm, G.J. Unusual reactions to hymenoptera stings: What should we keep in mind? Clin. Rev. Allergy Immunol. 2014, 47, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Bilò, M.B.; Bonifazi, F. The natural history and epidemiology of insect venom allergy: Clinical implications. Clin. Exp. Allergy 2009, 39, 1467–1476. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, C.; Kucuksezer, U.C.; Akdis, M.; Akdis, C.A. Mechanisms of immunotherapy to wasp and bee venom. Clin. Exp. Allergy 2011, 41, 1226–1234. [Google Scholar] [CrossRef] [PubMed]
- Antonicelli, L.; Bilò, M.B.; Bonifazi, F. Epidemiology of Hymenoptera allergy. Curr. Opin. Allergy Clin. Immunol. 2002, 2, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Jennings, A.; Duggan, E.; Perry, I.J.; Hourihane, J.O. Epidemiology of allergic reactions to hymenoptera stings in Irish school children. Pediatr. Allergy Immunol. 2010, 21, 1166–1170. [Google Scholar] [CrossRef] [PubMed]
- Graif, Y.; Romano-Zelekha, O.; Livne, I.; Greene, M.S.; Shohat, T. Allergic reactions to insect stings: Results from a national survey of 10,000 junior high school children in Israel. J. Allergy Clin. Immunol. 2006, 117, 1435–1439. [Google Scholar] [CrossRef] [PubMed]
- Karagol, H.I.; Bakirtas, A.; Yilmaz, O.; Topal, E.; Arga, M.; Demirsoy, M.S.; Turktas, I. Comparison of moderate to severe systemic reactions with honeybee and wasp in children. Int. Forum Allergy Rhinol. 2014, 4, 548–554. [Google Scholar] [CrossRef] [PubMed]
- Golden, D.B.; Moffit, J.; Nicklas, R.; Freeman, T.; Graft, D.F.; Reisman, R.E.; Tracy, J.M.; Bernstein, D.; Blessing-Moore, J.; Cox, L.; et al. Stinging insect hypersensitivity: A practice parameter update 2011. J. Allergy Clin. Immunol. 2011, 127, 852–854. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Cañavate, A.; Tabar, A.I.; Eseverric, J.L.; Martín, F.; Pedemonte-Marcoe, C. An epidemiological survey of hymenoptera venom allergy in the Spanish paediatric population. Allergol. Immunopathol. 2010, 38, 259–262. [Google Scholar] [CrossRef] [PubMed]
- Palma, M.S. Hymenoptera Insect Peptides. In Handbook of Biologically Active Peptides, 2nd ed.; Kastin, A.J., Ed.; Academic Press: San Diego, CA, USA, 2006; pp. 416–422. [Google Scholar]
- Müller, U.R. Hymenoptera Venom Proteins and Peptides for Diagnosis and Treatment of Venom Allergic Patients. Inflamm. Allergy Drug Targets 2011, 10, 1–9. [Google Scholar] [CrossRef]
- Spillner, E.; Blank, S.; Jakob, T. Hymenoptera allergens: From venom to “venome”. Front. Immunol. 2014. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, G.W.; Elliott, W.B.; Arbesman, C.E. Fractionation of bee venom I Preparation and characterization of four antigenic components. Prep. Biochem. 1974, 4, 71–88. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, D.R.; Shipman, W.H. Allergens in bee venom I Separation and identification of the major allergens. J. Allergy Clin. Immunol. 1976, 58, 551–562. [Google Scholar] [CrossRef]
- King, T.P.; Sobotka, A.K.; Kochoumian, L.; Lichtenstein, L.M. Allergens of honey bee venom. Arch. Biochem. Biophys. 1976, 172, 661–671. [Google Scholar] [CrossRef]
- King, T.P.; Alagon, A.C.; Kuan, J.; Sobotka, A.K.; Lichtenstein, L.M. Immunochemical studies of yellow jacket venom proteins. Mol. Immunol. 1983, 20, 297–308. [Google Scholar] [CrossRef]
- Eberlein, B.; Krischan, L.; Darsow, U.; Ollert, M.; Ring, J. Double positivity to bee and wasp venom: Improved diagnostic procedure by recombinant allergen-based IgE testing and basophil activation test including data about cross-reactive carbohydrate determinants. J. Allergy Clin. Immunol. 2012, 130, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Korošec, P.; Valenta, R.; Mittermann, I.; Celesnik, N.; Silar, M.; Zidarn, M.; Košnik, M. High sensitivity of CAP-FEIA rVes v 5 and rVes v 1 for diagnosis of Vespula venom allergy. J. Allergy Clin. Immunol. 2012, 129, 1406–1408. [Google Scholar] [CrossRef] [PubMed]
- Korošec, P.; Valenta, R.; Mittermann, I.; Celesnik, N.; Eržen, R.; Zidarn, M.; Košnik, M. Low sensitivity of commercially available rApi m 1 for diagnosis of honeybee venom allergy. J. Allergy Clin. Immunol. 2011, 128, 671–673. [Google Scholar] [CrossRef] [PubMed]
- Peiren, N.; Vanrobaeys, F.; de Graaf, D.C.; Devreese, B.; van-Beeumen, J.; Jacobs, F.J. The protein composition of honeybee venom reconsidered by a proteomic approach. Biochim. Biophys. Acta 2005, 1752, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Peiren, N.; de Graaf, D.C.; Brunain, M.; Bridts, C.H.; Ebo, D.G.; Stevens, W.J.; Jacobs, F.J. Molecular cloning and expression of icarapin, a novel IgE-binding bee venom protein. FEBS Lett. 2006, 580, 4895–4899. [Google Scholar] [CrossRef] [PubMed]
- Blank, S.; Seismann, H.; Michel, Y.; McIntyre, M.; Cifuentes, L.; Braren, I.; Grunwald, T.; Darsow, U.; Ring, J.; Bredehorst, R.; et al. Api m 10, a genuine A. mellifera venom allergen, is clinically relevant but under- represented in therapeutic extracts. Allergy 2011, 66, 1322–1329. [Google Scholar] [CrossRef] [PubMed]
- Köhler, J.; Blank, S.; Müller, S.; Bantleon, F.; Frick, M.; Huss-Marp, J.; Lidholm, J.; Spillner, E.; Jakob, T. Component resolution reveals additional major allergens in patients with honey bee venom allergy. J. Allergy Clin. Immunol. 2014, 133, 1383–1389. [Google Scholar] [CrossRef] [PubMed]
- Blank, S.; Bantleon, F.I.; McIntyre, M.; Ollert, M.; Spillner, E. The major royal jelly proteins 8 and 9 (Api m 11) are glycosylated components of Apis mellifera venom with allergenic potential beyond carbohydrate-based reactivity. Clin. Exp. Allergy 2012, 42, 976–985. [Google Scholar] [CrossRef] [PubMed]
- Rosmilah, M.; Shahnaz, M.; Patel, G.; Lock, J.; Rahman, D.; Masita, A.; Noormalin, A. Characterization of major allergens of royal jelly Apis mellifera. Trop Biomed. 2008, 25, 243–251. [Google Scholar] [PubMed]
- Paola, F.; Pantalea, D.D.; Gianfranco, C.; Antonio, F.; Angelo, V.; Eustachio, N.; Elisabetta, D.L. Oral Allergy Syndrome in a Child Provoked by Royal Jelly. Case Rep. Med. 2014, 2014, 941248. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, D.R.; Shipman, W.H.; Babin, D. Allergens in bee venom II: Two new high molecular weight allergenic specificities. J. Allergy Clin. Immunol. 1977, 59, 147–153. [Google Scholar] [CrossRef]
- Soldatova, L.N.; Bakst, J.B.; Hoffman, D.R.; Slater, J.E. Molecular cloning of a new honeybee allergen, acid phosphatase. J. Allergy Clin. Immunol. 2000, 105, S378. [Google Scholar] [CrossRef]
- Grunwald, T.; Bockisch, B.; Spillner, E.; Ring, J.; Bredehorst, R.; Ollert, M.W. Molecular cloning and expression in insect cells of honey bee venom allergen acid phosphatase (Api m 3). J. Allergy Clin. Immunol. 2006, 117, 848–854. [Google Scholar] [CrossRef] [PubMed]
- Blank, S.; Seismann, H.; Bockisch, B.; Braren, I.; Cifuentes, L.; McIntyre, M.; Rühl, D.; Ring, J.; Bredehorst, R.; Ollert, M.W.; et al. Identification, recombinant expression, and characterization of the 100 kDa high molecular weight hymenoptera venom allergens Api m 5 and Ves v 3. J. Immunol. 2010, 184, 5403–5413. [Google Scholar] [CrossRef] [PubMed]
- Blank, S.; Seismann, H.; McIntyre, M.; Ollert, M.; Wolf, S.; Bantleon, F.I.; Spillner, E. Vitellogenins are new high molecular weight components and allergens (Api m 12 and Ves v 6) of Apis mellifera and Vespula vulgaris venom. PLoS ONE 2013, 8, e62009. [Google Scholar] [CrossRef] [PubMed]
- Van Vaerenbergh, G.; Devreese, B.; de Graaf, D.C. Exploring the hidden honeybee (Apis mellifera) venom proteome by integrating a combinatorial peptide ligand library approach with FTMS. J. Proteomics 2014, 99, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Matysiak, J.; Hajduk, J.; Pietrzak, L.; Schmelzer, C.; Kokot, Z. Shotgun proteome analysis of honeybee venom using targeted enrichment strategies. Toxicon 2014, 90, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, L.D.; Santos, K.S.; Pinto, J.R.; Dias, N.B.; de Souza, B.M.; dos Santos, M.F.; Perales, J.; Domont, G.B.; Castro, F.M.; Kalil, J.E.; et al. Profiling the proteome of the venom from the social wasp Polybia paulista: A clue to understand the envenoming mechanism. J. Proteome Res. 2010, 9, 3867–3877. [Google Scholar] [CrossRef] [PubMed]
- Pinto, J.R.; Santos, L.D.; Arcuri, H.A.; Dias, N.B.; Palma, M.S. Proteomic characterization of the hyaluronidase (E.C. 3.2.1.35) from the venom of the social wasp Polybia paulista. Protein Pept. Lett. 2012, 19, 624–634. [Google Scholar]
- Justo-Jacomini, D.L.; Campos-Pereira, F.D.; dos Santos-Pinto, J.R.; dos Santos, L.D.; da Silva-Neto, A.J.; Giratto, D.T.; Palma, M.S.; Zollner, R.L.; Brochetto-Braga, M.R. Hyaluronidase from the Venom of the Social Wasp Polybia paulista (Hymenoptera, Vespidae): Cloning, Structural Modeling, Purification, and Immunological Analysis. Toxicon 2013, 64, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Justo-Jacomini, D.L.; Gomes-Moreira, S.M.; Campos-Pereira, F.D.; Zollner, R.L.; Brochetto-Braga, M.R. Reactivity of IgE to the allergen hyaluronidase from Polybia paulista (Hymenoptera, Vespidae) venom. Toxicon 2014, 82, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.D.; Santos, K.S.; de Souza, B.M.; Arcuri, H.A.; Cunha-Neto, E.; Castro, F.M.; Kalil, J.E.; Palma, M.S. Purification, sequencing and structural characterization of the phospholipase A1 from the venom of the social wasp Polybia paulista (Hymenoptera, Vespidae). Toxicon 2007, 50, 923–937. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.D.; Menegasso, A.R.S.; Santos-Pinto, J.R.; Santos, K.S.; Castro, F.M.; Kalil, J.E.; Palma, M.S. Proteomic characterization of the multiple forms of the PLAs from the venom of the social wasp Polybia paulista. Proteomics 2011, 11, 1403–1412. [Google Scholar] [CrossRef] [PubMed]
- Santos-Pinto, J.R.; Santos, L.D.; Arcuri, H.A.; Castro, F.M.; Kalil, J.E.; Palma, M.S. Using proteomic strategies for sequencing and post-translational modifications assignment of antigen-5, a major allergen from the venom of the social wasp Polybia paulista. J. Proteome Res. 2014, 13, 855–865. [Google Scholar] [CrossRef] [PubMed]
- Santos-Pinto, J.R.; Santos, L.D.; Arcuri, H.A.; da Silva-Menegasso, A.R.; Pêgo, P.N.; Santos, K.S.; Castro, F.M.; Kalil, J.E.; de-Simone, S.G.; Palma, M.S. B-cell linear epitopes mapping of antigen-5 allergen from Polybia paulista wasp venom. J. Allergy Clin. Immunol. 2015. [Google Scholar] [CrossRef]
- Honey Bee Genome Sequencing Consortium. Insights into social insects from the genome of the honeybee Apis mellifera. Nature 2006, 443, 931–949. [Google Scholar]
- Xin, Y.; Choo, Y.M.; Hu, Z.; Lee, K.S.; Yoon, H.J.; Cui, Z.; Sohn, H.D.; Jin, B.R. Molecular cloning and characterization of a venom phospholipase A2 from the Bumblebee Bombus ignitus. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2009, 154, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Campbell, B.C.; Gilding, E.K.; Timbrell, V.; Guru, P.; Loo, D.; Zennaro, D.; Mari, A.; Solley, G.; Hill, M.M.; Godwin, I.D.; et al. Total transcriptome, proteome, and allergome of Johnson grass pollen, which is important for allergic rhinitis in subtropical regions. J. Allergy Clin. Immunol. 2015, 135, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Bouzid, W.; Klopp, C.; Verdenaud, M.; Ducancel, F.; Vétillard, A. Profiling the venom gland transcriptome of Tetramorium bicarinatum (Hymenoptera: Formicidae): The first transcriptome analysis of an ant species. Toxicon 2013, 70, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.G.; Eeden, P.; Wiese, M.D.; Mullins, R.J.; Solley, G.O.; Puy, R.; Taylor, R.W.; Heddle, R.J. Causes of ant sting anaphylaxis in Australia: The Australian Ant Venom Allergy Study. Med. J. Aust. 2011, 195, 69–73. [Google Scholar] [PubMed]
- Torres, A.F.; Huang, C.; Chong, C.M.; Leung, S.W.; Prieto da-Silva, A.R.; Havt, A.; Quinet, Y.P.; Martins, A.M.; Lee, S.M.; Rádis-Baptista, G. Transcriptome analysis in venom gland of the predatory giant ant Dinoponera quadriceps: Insights into the polypeptide toxin arsenal of hymenopterans. PLoS ONE 2014, 9, e87556. [Google Scholar] [CrossRef] [PubMed]
- Calvete, J.J. Snake venomics: From the inventory of toxins to biology. Toxicon 2013, 1, 44–62. [Google Scholar] [CrossRef] [PubMed]
- Zelanis, A.; Tashima, A.K. Unraveling snake venom complexity with “omics” approaches: Challenges and perspectives. Toxicon 2014, 87, 131–134. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, R.S.; Boldrini-França, J.; Fonseca, F.P.; de la Torre, P.; Henrique-Silva, F.; Sanz, L.; Calvete, J.J.; Rodrigues, V.M. Combined snake venomics and venom gland transcriptomic analysis of Bothropoides pauloensis. J. Proteomics 2012, 75, 2707–2720. [Google Scholar] [CrossRef] [PubMed]
- Margres, M.J.; McGivern, J.J.; Wray, K.P.; Seavy, M.; Calvin, K.; Rokyta, D.R. Linking the transcriptome and proteome to characterize the venom of the eastern diamondback rattlesnake Crotalus adamanteus. J. Proteomics 2014, 96, 145–158. [Google Scholar] [CrossRef] [PubMed]
- Zobel-Thropp, P.A.; Thomas, E.Z.; David, C.L.; Breci, L.A.; Binford, G.J. Plectreurys tristis venome: A proteomic and transcriptomic analysis. J. Venom Res. 2014, 20, 33–47. [Google Scholar]
- Li, R.; Yu, H.; Xue, W.; Yue, Y.; Liu, S.; Xing, R.; Li, P. Jellyfish venomics and venom gland transcriptomics analysis of Stomolophus meleagris to reveal the toxins associated with sting. J. Proteomics 2014, 106, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Zhang, D.; Zhang, Y.; Peng, L.; Chen, J.; Liang, S. Venomics of the spider Ornithoctonus huwena based on transcriptomic versus proteomic analysis. Comp. Biochem. Physiol. D Genomics Proteomics 2010, 5, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Undheim, E.A.; Sunagar, K.; Herzig, V.; Kely, L.; Low, D.H.; Jackson, T.N.; Jones, A.; Kurniawan, N.; King, G.F.; Ali, S.A.; et al. A proteomics and transcriptomics investigation of the venom from the Barychelid spider Trittame loki (brush-foot trapdoor). Toxins 2013, 5, 2488–2503. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, M.A.; Quintero-Hernandez, V.; Possani, L.D. Venom proteomic and venomous glands transcriptomic analysis of the Egyptian scorpion Scorpio maurus palmatus (Arachnida: Scorpionidae). Toxicon 2013, 74, 193–207. [Google Scholar] [CrossRef] [PubMed]
- Müller, U.R.; Johansen, N.; Petersen, A.B.; Fromberg-Nielsen, J.; Haeberli, G. Hymenoptera venom allergy: Analysis of double positivity to honey bee and Vespula venom by estimation of IgE antibodies to species-specific major allergens Api m 1 and Ves v 5. Allergy 2009, 64, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Jappe, U.; Raulf-Heimsoth, M.; Hoffmann, M.; Burow, G.; Hübsch-Müller, C.; Enk, A. In vitro hymenoptera venom allergy diagnosis: Improved by screening for cross-reactive carbohydrate determinants and reciprocal inhibition. Allergy 2006, 61, 1220–1229. [Google Scholar] [CrossRef] [PubMed]
- Mertens, M.; Amler, S.; Moerschbacher, B.M.; Brehler, R. Cross-reactive carbohydrate determinants strongly affect the results of the basophil activation test in hymenoptera-venom allergy. Clin. Exp. Allergy 2010, 40, 1333–1345. [Google Scholar] [CrossRef] [PubMed]
- Bilò, B.M.; Rueff, F.H.; Mosbech, F.; Bonifazi, J.N.G.; Elberink, O. Diagnostic of Hymenoptera venom allergy. Allergy 2005, 60, 1339–1349. [Google Scholar] [CrossRef] [PubMed]
- Korošec, P.; Silar, M.; Erzen, R.; Celesnik, N.; Bajrovic, N.; Zidarn, M.; Košnik, M. Clinical routine utility of basophil activation testing for diagnosis of hymenoptera allergic patients with emphasis on individuals with negative venom-specific IgE antibodies. Int. Arch. Allergy Immunol. 2013, 161, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Balzer, L.; Pennino, D.; Blank, S.; Seismann, H.; Darsow, U.; Schnedler, M.; McIntyre, M.; Ollert, M.W.; Durham, S.R.; Spillner, E.; et al. Basophil activation test using recombinant allergens: Highly specific diagnostic method complementing routine tests in wasp venom allergy. PLoS ONE 2014, 9, e108619. [Google Scholar] [CrossRef] [PubMed]
- Seismann, H.; Blank, S.; Braren, I.; Greunke, K.; Cifuentes, L.; Grunwald, T.; Bredehorst, R.; Ollert, M.; Spillner, E. Dissecting cross-reactivity in hymenoptera venom allergy by circumvention of α-1,3-core fucosylation. Mol. Immunol. 2009, 47, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Cifuentes, L.; Vosseler, S.; Blank, S.; Seismann, H.; Pennino, D.; Darsow, U.; Bredehorst, R.; Ring, J.; Mempel, M.; Spillner, E.; et al. Identification of Hymenoptera venom-allergic patients with negative specific IgE to venom extract by using recombinant allergens. J. Allergy Clin. Immunol. 2014, 133, 909–910. [Google Scholar] [CrossRef] [PubMed]
- Marth, K.; Focke-Tejkl, M.; Lupinek, C.; Valenta, R.; Niederberger, V. Allergen Peptides, Recombinant Allergens and Hypoallergens for Allergen-Specific Immunotherapy. Curr. Treat. Options Allergy 2014, 1, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Mittermann, I.; Zidarn, M.; Silar, M.; Markovic-Housley, Z.; Aberer, W.; Korošec, P.; Košnik, M.; Valenta, R. Recombinant allergen-based IgE testing to distinguish honeybee and wasp allergy. J. Allergy Clin. Immunol. 2010, 125, 1300–1307. [Google Scholar] [CrossRef] [PubMed]
- Müller, U.R.; Schmid-Grendelmeier, P.; Hausmann, O.; Helbling, A. IgE to recombinant allergens Api m 1, Ves v 1, and Ves v 5 distinguish double sensitization from cross reaction in venom allergy. Allergy 2012, 67, 1069–1073. [Google Scholar] [CrossRef] [PubMed]
- Monsalve, R.I.; Veja, A.; Marques, L.; Miranda, A.; Fernandez, J.; Soriano, V.; Cruz, S.; Domínguez-Noche, C.; Sánchez-Morillas, L.; Armisen-Gil, M.; et al. Component-resolved diagnosis of vespid venom-allergic individuals: Phospholipases and antigen 5 are necessary to identify Vespula or Polistes sensitization. Allergy 2012, 67, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Müller, U.R. Insect venoms. Chem. Immunol. Allergy 2010, 95, 141–156. [Google Scholar] [PubMed]
- Bonifazi, F.; Jutel, M.; Bilò, B.M.; Birnbaum, J.; Müller, U. Prevention and treatment of hymenoptera venom allergy: Guidelines for clinical practice. Allergy 2005, 60, 1459–1470. [Google Scholar] [CrossRef] [PubMed]
- Incorvaia, C.; Frati, F.; Dell’Albani, I.; Robino, A.; Cattaneo, E.; Mauro, M.; David, M.; Qualizza, R.; Pastorello, E. Safety of hymenoptera venom immunotherapy: A systemic review. Expert Opin. Pharmacother. 2011, 12, 2527–2532. [Google Scholar] [CrossRef] [PubMed]
- Boyle, R.J.; Elremeli, M.; Hockenhull, J.; Cherry, M.G.; Bulsara, M.K.; Daniels, M.; Oude-Elberink, J.N. Venom immunotherapy for preventing allergic reactions to insect stings. Cochrane Database Syst. Rev. 2012, 10. [Google Scholar] [CrossRef]
- Antolín-Amérigo, D.; Aguilar, C.M.; Vega, A.; Alvarez-Mon, M. Venom Immunotherapy: An Updated Review. Curr. Allergy Asthma Rep. 2014, 14, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.G.; Wiese, M.D.; van Eeden, P.; Stone, S.F.; Chuter, C.L.; Gunner, J.; Wanandy, T.; Phillips, M.; Heddle, R.J. Ultrarush versus semirush initiation of insect venom immunotherapy: A randomized controlled trial. J. Allergy Clin. Immunol. 2012, 130, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Birnbaum, J.; Ramadour, M.; Magnan, A.; Vervloet, D. Hymenoptera ultra-rush venom immunotherapy (210 min): A safety study and risk factors. Clin. Exp. Allergy 2003, 33, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Patella, V.; Florio, G.; Giuliano, A.; Oricchio, C.; Spadaro, G.; Marone, G.; Genovese, A. Hymenoptera venom immunotherapy: Tolerance and efficacy of an ultrarush protocol versus a rush and a slow conventional protocol. J. Allergy 2012. [Google Scholar] [CrossRef] [PubMed]
- Irani, C.; Saleh, R.A.; Jammal, M.; Haddad, F. High-dose sublingual immunotherapy in patients with uncontrolled allergic rhinitis sensitized to pollen: A real-life clinical study. Int. Forum Allergy Rhinol. 2014, 4, 802–807. [Google Scholar] [CrossRef] [PubMed]
- Bozek, A.; Kolodziejczyk, K.; Warkocka-Szoltysek, B.; Jarzab, J. Grass pollen sublingual immunotherapy: A double-blind, placebo-controlled study in elderly patients with seasonal allergic rhinitis. Am. J. Rhinol. Allergy 2014, 5, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Canonica, G.W. Sub-Lingual Immunotherapy. World Allergy Organization Position Paper 2009. WAO J. 2009, 2, 233–281. [Google Scholar]
- Severino, M.G.; Cortellini, G.; Bonadonna, P.; Francescato, E.; Panzini, I.; Macchia, D.; Campi, P.; Spadolini, I.; Canonica, G.W.; Passalacqua, G. Sublingual immunotherapy for large local reactions caused by honeybee sting: A double-blind, placebo-controlled trial. J. Allergy Clin. Immunol. 2008, 122, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Winkler, B.; Bolwig, C.; Seppälä, U.; Spangfort, M.D.; Ebner, C.; Wiedermann, U. Allergen-specific immunosuppression by mucosal treatment with recombinant Ves v 5, a major allergen of Vespula vulgaris venom, in a murine model of wasp venom allergy. Immunology 2003, 110, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.W.; Blatt, K.; Thomas, W.R.; Swoboda, I.; Valent, P.; Valenta, R.; Vrtala, S. Hypoallergenic Der p 1/Der p 2 combination vaccines for immunotherapy of house dust mite allergy. J. Allergy Clin. Immunol. 2012, 130, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Bouaziz, A.; Walgraffe, D.; Bouillot, C.; Herman, J.; Foguenne, J.; Gothot, A.; Louis, R.; Hentges, F.; Jacquet, A.; Mailleux, A.C.; et al. Development of recombinant stable house dust mite allergen Der p 3 molecules for component-resolved diagnosis and specific immunotherapy. Clin. Exp. Allergy 2015, 45, 823–834. [Google Scholar] [CrossRef] [PubMed]
- Curin, M.; Weber, M.; Thalhamer, T.; Swoboda, I.; Focke-Tejkl, M.; Blatt, K.; Valent, P.; Marth, K.; Garmatiuk, T.; Grönlund, H.; et al. Hypoallergenic derivatives of Fel d 1 obtained by rational reassembly for allergy vaccination and tolerance induction. Clin. Exp. Allergy 2014, 44, 882–894. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.B.; Diao, J.D.; Liu, Z.M.; Li, C.P.; Jiang, Y.X. Generation of a chimeric dust mite hypoallergen using DNA shuffling for application in allergen-specific immunotherapy. Int. J. Clin. Exp. Pathol. 2014, 7, 3608–3619. [Google Scholar] [PubMed]
- Valenta, R.; Niespodziana, K.; Focke-Tejkl, M.; Marth, K.; Huber, H.; Neubauer, A.; Niederberger, V. Recombinant allergens: What does the future hold? J. Allergy Clin. Immunol. 2011, 127, 860–864. [Google Scholar] [CrossRef] [PubMed]
- Dudler, T.; Chen, W.Q.; Wang, S.; Schneider, T.; Annana, R.R.; Dempcy, R.O.; Crameri, R.; Gmachl, M.; Suter, M.; Gelb, M.H. High-level expression in Escherichia coli and rapid purification of enzymatically active honey bee venom phospholipase A2. Biochim. Biophys. Acta 1992, 1165, 201–210. [Google Scholar] [CrossRef]
- Soldatova, L.N.; Crameri, R.; Gmachl, M.; Kemeny, D.M.; Schmidt, M.; Weber, M.; Müller, U.R. Superior biologic activity of the recombinant bee venom allergen hyaluronidase expressed in baculovirus-infected insect cells as compared with Escherichia coli. J. Allergy Clin. Immunol. 1998, 101, 691–698. [Google Scholar] [CrossRef]
- Skov, L.K.; Seppala, U.; Coen, J.J.F.; Crickmore, N.; King, T.P.; Monsalve, R.; Kastrup, J.S.; Spangfort, M.D.; Gajhede, M. Structure of recombinant Ves v 2 at 2.0 angstrom resolution: Structural analysis of an allergenic hyaluronidase from wasp venom. Acta Crystallogr. D Biol. Crystallogr. 2006, 62, 595–604. [Google Scholar] [CrossRef] [PubMed]
- Lockwood, S.A.; Haghi Pour-Peasley, J.; Hoffman, D.R.; Deslippe, R.J. Identification, expression, and immuno-reactivity of Sol i 2 & Sol i 4 venom proteins of queen red imported fire ants, Solenopsis invicta Buren (Hymenoptera: Formicidae). Toxicon 2012, 60, 752–759. [Google Scholar] [PubMed]
- Seismann, H.; Blank, S.; Cifuentes, L.; Braren, I.; Bredehorst, R.; Grunwald, T.; Ollert, M.; Spillner, E. Recombinant phospholipase A1 (Ves v 1) from yellow jacket venom for improved diagnosis of hymenoptera venom hypersensitivity. Clin. Mol. Allergy 2010, 8. [Google Scholar] [CrossRef] [PubMed]
- Sturm, G.J.; Hemmer, W.; Hawranek, T.; Lang, R.; Ollert, M.; Spillner, E.; Blank, S.; Bokanovic, D.; Aberer, W. Detection of IgE to recombinant Api m 1 and rVes v 5 is valuable but not sufficient to distinguish bee from wasp venom allergy. J. Allergy Clin. Immunol. 2011, 128, 247–248. [Google Scholar] [CrossRef] [PubMed]
- Jakob, T.; Kohler, J.; Blank, S.; Magnusson, U.; Huss-Marp, J.; Spillner, E.; Lidholm, J. Comparable IgE reactivity to natural and recombinant Api m 1 in cross-reactive carbohydrate determinant-negative patients with bee venom allergy. J. Allergy Clin. Immunol. 2012, 130, 276–278. [Google Scholar] [CrossRef] [PubMed]
- Borodina, I.; Jensen, B.M.; Wagner, T.; Hachem, M.A.; Søndergaard, I.; Poulsen, L.K. Expression of Enzymatically Inactive Wasp Venom Phospholipase A1 in Pichia pastoris. PLoS ONE 2011, 6, e21267. [Google Scholar] [CrossRef] [PubMed]
- Vinzón, S.E.; Pirpignani, M.L.; Nowicki, C.; Biscoglio de Jimenez-Bonino, M. Molecular cloning and expression in Pichia pastoris of a hypoallergenic antigen 5. Protein Expr. Purif. 2010, 73, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Siegert, M.; Pertl-Obermeyer, H.; Gadermaier, G.; Ferreira, F.; Obermeyer, G. Expression of the major mugwort pollen allergen Art v 1 in tobacco plants and cell cultures: Problems and perspectives for allergen production in plants. Plant Cell Rep. 2012, 31, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Sil, B.; Jha, S. Plants: The future pharmaceutical factory. Am. J. Plant Sci. 2014, 5, 319–327. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perez-Riverol, A.; Justo-Jacomini, D.L.; Zollner, R.D.L.; Brochetto-Braga, M.R. Facing Hymenoptera Venom Allergy: From Natural to Recombinant Allergens. Toxins 2015, 7, 2551-2570. https://doi.org/10.3390/toxins7072551
Perez-Riverol A, Justo-Jacomini DL, Zollner RDL, Brochetto-Braga MR. Facing Hymenoptera Venom Allergy: From Natural to Recombinant Allergens. Toxins. 2015; 7(7):2551-2570. https://doi.org/10.3390/toxins7072551
Chicago/Turabian StylePerez-Riverol, Amilcar, Débora Lais Justo-Jacomini, Ricardo De Lima Zollner, and Márcia Regina Brochetto-Braga. 2015. "Facing Hymenoptera Venom Allergy: From Natural to Recombinant Allergens" Toxins 7, no. 7: 2551-2570. https://doi.org/10.3390/toxins7072551
APA StylePerez-Riverol, A., Justo-Jacomini, D. L., Zollner, R. D. L., & Brochetto-Braga, M. R. (2015). Facing Hymenoptera Venom Allergy: From Natural to Recombinant Allergens. Toxins, 7(7), 2551-2570. https://doi.org/10.3390/toxins7072551