Central and Peripheral Sensitization in Temporomandibular Disorders: Proposed Mechanisms of Botulinum Toxin Therapy
Abstract
1. Introduction
2. Search Strategy and Review Approach
3. Anatomy and Pathophysiology of TMD Pain
Anatomical Consideration
4. Peripheral and Central Mechanisms
5. Clinical Manifestations
6. Preclinical Mechanistic Evidence
6.1. BoNT-A Actions at the Molecular Level

6.2. Peripheral Effects on Nociception and Inflammation
6.3. Central Effects of Peripheral BoNT-A Administration
6.4. Effect on Allodynia
6.5. Methodological Considerations and Translational Limitations
7. Human Clinical Studies
7.1. Clinical Efficacy
7.2. Methodological Heterogeneity in Trials
7.3. Predictor Response
7.4. Safety Considerations
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| BoNT-A | Botulinum toxin type A |
| CGRP | Calcitonin gene-related peptide |
| EMG | Electromyography |
| ERK | Extracellular-signal-regulated kinase |
| IHS | International Headache Society |
| NMDA | N-methyl-D-aspartate |
| OA | Oral appliance |
| PPT | Pressure pain threshold |
| QST | Quantitative sensory testing |
| RCT | Randomized clinical trial |
| TMDs | Temporomandibular disorders |
| TMJ | Temporomandibular joint |
| TG | Trigeminal ganglion |
| TNC | Trigeminal nucleus caudalis |
| TRPV1 | Transient receptor potential vanilloid-1 |
| VPM | ventroposteromedial nucleus |
References
- Scrivani, S.J.; Keith, D.A.; Kaban, L.B. Temporomandibular Disorders. N. Engl. J. Med. 2008, 359, 2693–2705. [Google Scholar] [CrossRef]
- List, T.; Jensen, R.H. Temporomandibular Disorders: Old Ideas and New Concepts. Cephalalgia 2017, 37, 692–704. [Google Scholar] [CrossRef]
- Klasser, G.D.; Reyes, M.R. Orofacial Pain for Assessment, Diagnosis, and Management, 7th ed.; Kocanda, Z., Ed.; Quintessence Publishing: Batavia, IL, USA, 2023. [Google Scholar]
- Kapos, F.; Look, J.; Zhang, L.; Hodges, J.; Schiffman, E. Predictors of Long-Term Temporomandibular Disorder Pain Intensity: An 8-Year Cohort Study. J. Oral Facial Pain Headache 2018, 32, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Ohrbach, R.; Dworkin, S.F. Five-Year Outcomes in TMD: Relationship of Changes in Pain to Changes in Physical and Psychological Variables. Pain 1998, 74, 315–326. [Google Scholar] [CrossRef]
- Ashina, S.; Robertson, C.E.; Srikiatkhachorn, A.; Di Stefano, G.; Donnet, A.; Hodaie, M.; Obermann, M.; Romero-Reyes, M.; Park, Y.S.; Cruccu, G.; et al. Trigeminal Neuralgia. Nat. Rev. Dis. Primers 2024, 10, 39. [Google Scholar] [CrossRef]
- Pigozzi, L.B.; Pereira, D.D.; Pattussi, M.P.; Moret-Tatay, C.; Irigaray, T.Q.; Weber, J.B.B.; Grossi, P.K.; Grossi, M.L. Quality of Life in Young and Middle Age Adult Temporomandibular Disorders Patients and Asymptomatic Subjects: A Systematic Review and Meta-Analysis. Health Qual. Life Outcomes 2021, 19, 83. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.C.; Khan, J.; Manfredini, D.; Ailani, J. Temporomandibular Joint Disorder Comorbidities. Dent. Clin. N. Am. 2023, 67, 379–392. [Google Scholar] [CrossRef]
- Ashina, S.; Terwindt, G.M.; Steiner, T.J.; Lee, M.J.; Porreca, F.; Tassorelli, C.; Schwedt, T.J.; Jensen, R.H.; Diener, H.C.; Lipton, R.B. Medication Overuse Headache. Nat. Rev. Dis. Primers 2023, 9, 5. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, E.; Ohrbach, R.; Truelove, E.; Look, J.; Anderson, G.; Goulet, J.-P.; Svensson, P.; Gonzalez, Y. Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) for Clinical and Research Applications: Recommendations of the International RDC/TMD Consortium Network * and Orofacial Pain Special Interest Group. J. Oral Facial Pain Headache 2014, 28, 6. [Google Scholar] [CrossRef]
- Kuć, J.; Szarejko, K.D.; Gołębiewska, M. The Prevalence and Overlaps of Temporomandibular Disorders in Patients with Myofascial Pain with Referral—A Pilot Study. Int. J. Environ. Res. Public Health 2021, 18, 9842. [Google Scholar] [CrossRef]
- Fernández-De-Las-Peñas, C.; Svensson, P. Myofascial Temporomandibular Disorder. Curr. Rheumatol. Rev. 2016, 12, 40–54. [Google Scholar] [CrossRef] [PubMed]
- Yakkaphan, P.; Smith, J.G.; Chana, P.; Renton, T.; Lambru, G. Temporomandibular Disorder and Headache Prevalence: A Systematic Review and Meta-Analysis. Cephalalgia Rep. 2022, 5, 25158163221097352. [Google Scholar] [CrossRef]
- Ayesh, E.; Jensen, T.; Svensson, P. Hypersensitivity to Mechanical and Intra Articular Electrical Stimuli in Persons with Painful. J. Dent. Res. 2007, 86, 1187–1192. [Google Scholar] [CrossRef]
- Campi, L.B.; Jordani, P.C.; Tenan, H.L.; Camparis, C.M.; Gonçalves, D.A.G. Painful Temporomandibular Disorders and Central Sensitization: Implications for Management—A Pilot Study. Int. J. Oral Maxillofac. Surg. 2017, 46, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Akerman, S.; Romero-Reyes, M. Preclinical Studies Investigating the Neural Mechanisms Involved in the Co-Morbidity of Migraine and Temporomandibular Disorders: The Role of CGRP. Br. J. Pharmacol. 2020, 177, 5555–5568. [Google Scholar] [CrossRef]
- Messina, R.; Rocca, M.A.; Goadsby, P.J.; Filippi, M. Insights into Migraine Attacks from Neuroimaging. Lancet Neurol. 2023, 22, 834–846. [Google Scholar] [CrossRef]
- Yin, Y.; He, S.; Xu, J.; You, W.; Li, Q.; Long, J.; Luo, L.; Kemp, G.J.; Sweeney, J.A.; Li, F.; et al. The Neuro-Pathophysiology of Temporomandibular Disorders-Related Pain: A Systematic Review of Structural and Functional MRI Studies. J. Headache Pain 2020, 21, 78. [Google Scholar] [CrossRef]
- Menéndez-Torre, Á.; Martin-Pintado-Zugasti, A.; Paris-Alemany, A.; Bocos-Corredor, E.; Molina-Álvarez, M.; Arribas-Romano, A.; Fernández-Carnero, J. Pain Sensitization and Pain-Related Psychological Factors in Patients with Temporomandibular Disorders: An Observational Cross-Sectional Study. Clin. Oral Investig. 2024, 28, 594. [Google Scholar] [CrossRef]
- Cayrol, T.; Van Den Broeke, E.N.; Gerard, E.; Meeus, M.; Mouraux, A.; Roussel, N.; Pitance, L. Chronic Temporomandibular Disorders Are Associated with Higher Propensity to Develop Central Sensitization: A Case-Control Study. Pain 2023, 164, E251–E258. [Google Scholar] [CrossRef]
- Campi, L.; Visscher, C.; Ongaro, P.; Braido, G.; Fernandes, G.; Gonçalves, D. Widespread Pain and Central Sensitization in Adolescents with Signs of Painful Temporomandibular Disorders. J. Oral Facial Pain Headache 2020, 34, 83–91. [Google Scholar] [CrossRef] [PubMed]
- La Touche, R.; Paris-Alemany, A.; Hidalgo-Pérez, A.; López-de-Uralde-Villanueva, I.; Angulo-Diaz-Parreño, S.; Muñoz-García, D. Evidence for Central Sensitization in Patients with Temporomandibular Disorders: A Systematic Review and Meta-Analysis of Observational Studies. Pain Pract. 2018, 18, 388–409. [Google Scholar] [CrossRef]
- Romaniello, A.; Cruccu, G.; Frisardi, G.; Arendt-Nielsen, L.; Svensson, P. Assessment of Nociceptive Trigeminal Pathways by Laser-Evoked Potentials and Laser Silent Periods in Patients with Painful Temporomandibular Disorders. Pain 2003, 103, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Lic, Y.; Zhang, J.; Chen, Y.; Wang, K.; Svensson, P. Temporal Summation of Painful Heat Stimulation Is Facilitated in Trigeminal and Extratrigeminal Regions in Painful Myofascial Temporomandibular Disorders: Evidence from a Case-Control Study. J. Oral Facial Pain Headache 2019, 33, 174–182. [Google Scholar] [CrossRef]
- Frisardi, G.; Chessa, G.; Sau, G.; Frisardi, F. Trigeminal Electrophysiology: A 2 × 2 Matrix Model for Differential Diagnosis between Temporomandibular Disorders and Orofacial Pain. BMC Musculoskelet. Disord. 2010, 11, 141. [Google Scholar] [CrossRef]
- Seweryn, P.; Waliszewska-Prosol, M.; Straburzynski, M.; Smardz, J.; Orzeszek, S.; Bombala, W.; Bort, M.; Jenca, A., Jr.; Paradowska-Stolarz, A.; Wieckiewicz, M. Prevalence of Central Sensitization and Somatization in Adults with Temporomandibular Disorders—A Prospective Observational Study. J Oral Facial Pain Headache 2024, 38, 33. [Google Scholar] [CrossRef] [PubMed]
- Asquini, G.; Devecchi, V.; Viscuso, D.; Bucci, R.; Michelotti, A.; Liew, B.X.W.; Falla, D. An Exploratory Data-Driven Approach to Classify Subgroups of Patients with Temporomandibular Disorders Based on Pain Mechanisms. J. Pain 2025, 26, 104721. [Google Scholar] [CrossRef]
- Manfredini, D.; Häggman-Henrikson, B.; Al Jaghsi, A.; Baad-Hansen, L.; Beecroft, E.; Bijelic, T.; Bracci, A.; Brinkmann, L.; Bucci, R.; Colonna, A.; et al. Temporomandibular Disorders: INfORM/IADR Key Points for Good Clinical Practice Based on Standard of Care. Cranio-J. Craniomandib. Sleep Pract. 2025, 43, 1–5. [Google Scholar] [CrossRef]
- De la Torre Canales, G.; Câmara-Souza, M.B.; Poluha, R.L.; de Figueredo, O.M.C.; Nobre, B.B.d.S.; Ernberg, M.; Conti, P.C.R.; Rizzatti-Barbosa, C.M. Long-Term Effects of a Single Application of Botulinum Toxin Type A in Temporomandibular Myofascial Pain Patients: A Controlled Clinical Trial. Toxins 2022, 14, 741. [Google Scholar] [CrossRef]
- Ondo, W.G.; Simmons, J.H.; Shahid, M.H.; Hashem, V.; Hunter, C.; Jankovic, J. Onabotulinum Toxin-A Injections for Sleep Bruxism. Neurology 2018, 90, e559–e564. [Google Scholar] [CrossRef]
- Ernberg, M.; Hedenberg-Magnusson, B.; List, T.; Svensson, P. Efficacy of Botulinum Toxin Type A for Treatment of Persistent Myofascial TMD Pain: A Randomized, Controlled, Double-Blind Multicenter Study. Pain 2011, 152, 1988–1996. [Google Scholar] [CrossRef]
- Song, Q.X.; Zhang, Y.Y.; Li, Y.L.; Liu, F.; Liu, Y.J.; Li, Y.K.; Li, C.J.; Zhou, C.; Shen, J.F. The Crucial Role of NR2A Mediating the Activation of Satellite Glial Cells in the Trigeminal Ganglion Contributes to Orofacial Inflammatory Pain during TMJ Inflammation. Neuropharmacology 2024, 261, 110173. [Google Scholar] [CrossRef]
- Li, Y.L.; Zhang, Y.Y.; Song, Q.X.; Liu, F.; Liu, Y.J.; Li, Y.K.; Zhou, C.; Shen, J.F. N-Methyl-D-Aspartate Receptor Subunits 2A and 2B Mediate Connexins and Pannexins in the Trigeminal Ganglion Involved in Orofacial Inflammatory Allodynia during Temporomandibular Joint Inflammation. Mol. Neurobiol. 2025, 62, 1247–1265. [Google Scholar] [CrossRef] [PubMed]
- Marinelli, S.; Vacca, V.; Ricordy, R.; Uggenti, C.; Tata, A.M.; Luvisetto, S.; Pavone, F. The Analgesic Effect on Neuropathic Pain of Retrogradely Transported Botulinum Neurotoxin A Involves Schwann Cells and Astrocytes. PLoS ONE 2012, 7, e47977. [Google Scholar] [CrossRef] [PubMed]
- Nemanić, D.; Mustapić, M.; Matak, I.; Bach-Rojecky, L. Botulinum Toxin Type a Antinociceptive Activity in Trigeminal Regions Involves Central Transcytosis. Eur. J. Pharmacol. 2024, 963, 176279. [Google Scholar] [CrossRef]
- Bagues, A.; Hu, J.; Alshanqiti, I.; Chung, M.K. Neurobiological Mechanisms of Botulinum Neurotoxin-Induced Analgesia for Neuropathic Pain. Pharmacol. Ther. 2024, 259, 108668. [Google Scholar] [CrossRef]
- Raciti, L.; Ferrillo, M.; Ammendolia, A.; Raciti, G.; Curci, C.; Calafiore, D.; Onesta, M.P.; Calabrò, R.S.; Longo, U.G.; de Sire, A. Neurophysiological Examination for the Diagnosis of Orofacial Pain and Temporomandibular Disorders: A Literature Review. Diagnostics 2025, 15, 1035. [Google Scholar] [CrossRef] [PubMed]
- Alshanqiti, I.; Son, H.; Shannonhouse, J.; Hu, J.; Kumari, S.; Parastooei, G.; Raman, S.; Wang, S.; Ro, J.Y.; Kim, Y.S.; et al. Posttraumatic Hyperalgesia and Associated Peripheral Sensitization after Temporomandibular Joint Injury in Mice. Pain 2025, 166, 1597–1609. [Google Scholar] [CrossRef]
- Sessle, B.J. Peripheral and Central Mechanisms of Orofacial Pain and Their Clinical Correlates. Minerva Anestesiol. 2005, 71, 117–136. [Google Scholar]
- Dubner, R.; Harper, D.E.; Schrepf, A.; Clauw, D.J. Pain Mechanisms and Centralized Pain in Temporomandibular Disorders. J. Dent. Res. 2016, 95, 1102–1108. [Google Scholar] [CrossRef]
- Ferrillo, M.; Giudice, A.; Marotta, N.; Fortunato, F.; Di Venere, D.; Ammendolia, A.; Fiore, P.; de Sire, A. Pain Management and Rehabilitation for Central Sensitization in Temporomandibular Disorders: A Comprehensive Review. Int. J. Mol. Sci. 2022, 23, 12164. [Google Scholar] [CrossRef]
- Romero-Reyes, M.; Klasser, G.; Akerman, S. An Update on Temporomandibular Disorders (TMDs) and Headache. Curr. Neurol. Neurosci. Rep. 2023, 23, 561–570. [Google Scholar] [CrossRef]
- Teixeira, J.M.; Pimentel, R.M.; Abdalla, H.B.; de Sousa, H.M.X.; Macedo, C.G.; Napimoga, M.H.; Tambeli, C.H.; Oliveira-Fusaro, M.C.G.; Clemente-Napimoga, J.T. P2X7-Induced Nociception in the Temporomandibular Joint of Rats Depends on Inflammatory Mechanisms and C-Fibres Sensitization. Eur. J. Pain 2021, 25, 1107–1118. [Google Scholar] [CrossRef]
- Akita, K.; Sakaguchi-Kuma, T.; Fukino, K.; Ono, T. Masticatory Muscles and Branches of Mandibular Nerve: Positional Relationships Between Various Muscle Bundles and Their Innervating Branches. Anat. Rec. 2019, 302, 609–619. [Google Scholar] [CrossRef]
- Suttle, A.; Wang, P.; Dias, F.C.; Zhang, Q.; Luo, Y.; Simmons, L.; Bortsov, A.; Tchivileva, I.E.; Nackley, A.G.; Chen, Y. Sensory Neuron-TRPV4 Modulates Temporomandibular Disorder Pain Via CGRP in Mice. J. Pain 2023, 24, 782–795. [Google Scholar] [CrossRef]
- Lam, D.K.; Sessle, B.J.; Cairns, B.E.; Hu, J.W. Neural Mechanisms of Temporomandibular Joint and Masticatory Muscle Pain: A Possible Role for Peripheral Glutamate Receptor Mechanisms. Pain Res. Manag. 2005, 10, 145–152. [Google Scholar] [CrossRef]
- Masuoka, T.; Yamashita, Y.; Yoshida, J.; Nakano, K.; Tawa, M.; Nishio, M.; Ishibashi, T. Sensitization of Glutamate Receptor-Mediated Pain Behaviour via Nerve Growth Factor-Dependent Phosphorylation of Transient Receptor Potential V1 under Inflammatory Conditions. Br. J. Pharmacol. 2020, 177, 4223–4241. [Google Scholar] [CrossRef] [PubMed]
- Romero-Reyes, M.; Pardi, V.; Akerman, S. A Potent and Selective Calcitonin Gene-Related Peptide (CGRP) Receptor Antagonist, MK-8825, Inhibits Responses to Nociceptive Trigeminal Activation: Role of CGRP in Orofacial Pain. Exp. Neurol. 2015, 271, 95–103. [Google Scholar] [CrossRef]
- Lukacs, V.; Yudin, Y.; Hammond, G.R.; Sharma, E.; Fukami, K.; Rohacs, T. Distinctive Changes in Plasma Membrane Phosphoinositides Underlie Differential Regulation of TRPV1 in Nociceptive Neurons. J. Neurosci. 2013, 33, 11451–11463. [Google Scholar] [CrossRef] [PubMed]
- Duzhyy, D.E.; Voitenko, N.V.; Belan, P.V. Peripheral Inflammation Results in Increased Excitability of Capsaicin-Insensitive Nociceptive DRG Neurons Mediated by Upregulation of ASICs and Voltage-Gated Ion Channels. Front. Cell. Neurosci. 2021, 15, 723295. [Google Scholar] [CrossRef] [PubMed]
- Farré-Guasch, E.; Aliberas, J.T.; Spada, N.F.; de Vries, R.; Schulten, E.A.J.M.; Lobbezoo, F. The Role of Inflammatory Markers in Temporomandibular Myalgia: A Systematic Review. Jpn. Dent. Sci. Rev. 2023, 59, 281–288. [Google Scholar] [CrossRef]
- Takeda, M.; Tanimoto, T.; Kadoi, J.; Nasu, M.; Takahashi, M.; Kitagawa, J.; Matsumoto, S. Enhanced Excitability of Nociceptive Trigeminal Ganglion Neurons by Satellite Glial Cytokine Following Peripheral Inflammation. Pain 2007, 129, 155–166. [Google Scholar] [CrossRef]
- Hanani, M.; Spray, D.C. Emerging Importance of Satellite Glia in Nervous System Function and Dysfunction. Nat. Rev. Neurosci. 2020, 21, 485–498. [Google Scholar] [CrossRef] [PubMed]
- Luz, L.L.; Fernandes, E.C.; Dora, F.; Lukoyanov, N.V.; Szucs, P.; Safronov, B.V. Trigeminal Ad-and C-Afferent Supply of Lamina i Neurons in the Trigeminocervical Complex. Pain 2019, 160, 2612–2623. [Google Scholar] [CrossRef]
- Quartana, P.J.; Finan, P.H.; Smith, M.T. Evidence for Sustained Mechanical Pain Sensitization in Women with Chronic Temporomandibular Disorder Versus Healthy Female Participants. J. Pain 2015, 16, 1127–1135. [Google Scholar] [CrossRef] [PubMed]
- Dieb, W.; Hafidi, A. Mechanism of GABA Involvement in Post-Traumatic Trigeminal Neuropathic Pain: Activation of Neuronal Circuitry Composed of PKCγ Interneurons and PERK1/2 Expressing Neurons. Eur. J. Pain 2015, 19, 85–96. [Google Scholar] [CrossRef]
- Wei, B.; Kumada, T.; Furukawa, T.; Inoue, K.; Watanabe, M.; Sato, K.; Fukuda, A. Pre- and Post-Synaptic Switches of GABA Actions Associated with Cl- Homeostatic Changes Are Induced in the Spinal Nucleus of the Trigeminal Nerve in a Rat Model of Trigeminal Neuropathic Pain. Neuroscience 2013, 228, 334–348. [Google Scholar] [CrossRef] [PubMed]
- Gajtkó, A.; Bakk, E.; Hegedűs, K.; Ducza, L.; Holló, K. IL-1β Induced Cytokine Expression by Spinal Astrocytes Can Play a Role in the Maintenance of Chronic Inflammatory Pain. Front. Physiol. 2020, 11, 543331. [Google Scholar] [CrossRef]
- Ji, R.R.; Berta, T.; Nedergaard, M. Glia and Pain: Is Chronic Pain a Gliopathy. Pain 2013, 154, S10–S28. [Google Scholar] [CrossRef]
- Chung, M.K.; Wang, S.; Yang, J.; Alshanqiti, I.; Wei, F.; Ro, J.Y. Neural Pathways of Craniofacial Muscle Pain: Implications for Novel Treatments. J. Dent. Res. 2020, 99, 1004–1012. [Google Scholar] [CrossRef]
- Svensson, P.; Graven-Nielsen, T. Craniofacial Muscle Pain: Review of Mechanisms and Clinical Manifestations. J. Oral Facial Pain Headache 2001, 15, 117–145. [Google Scholar]
- Barad, M.; Romero-Reyes, M. Orofacial Pain. Continuum 2024, 30, 1397–1426. [Google Scholar] [CrossRef]
- Romero-Reyes, M.; Akerman, S.; Rapoport, A.M. Optimising Combined Treatment for Migraine and Temporomandibular Disorders (TMDs). Cephalalgia 2025, 45, 03331024251368882. [Google Scholar] [CrossRef] [PubMed]
- Ohrbach, R.; Fillingim, R.B.; Mulkey, F.; Gonzalez, Y.; Gordon, S.; Gremillion, H.; Lim, P.F.; Ribeiro-Dasilva, M.; Greenspan, J.D.; Knott, C.; et al. Clinical Findings and Pain Symptoms as Potential Risk Factors for Chronic TMD: Descriptive Data and Empirically Identified Domains from the OPPERA Case-Control Study. J. Pain 2011, 12, T27–T45. [Google Scholar] [CrossRef]
- Muñoz-Lora, V.R.M.; Dugonjić Okroša, A.; Matak, I.; Del Bel Cury, A.A.; Kalinichev, M.; Lacković, Z. Antinociceptive Actions of Botulinum Toxin A1 on Immunogenic Hypersensitivity in Temporomandibular Joint of Rats. Toxins 2022, 14, 161. [Google Scholar] [CrossRef]
- Binz, T.; Rummel, A. Cell Entry Strategy of Clostridial Neurotoxins. J. Neurochem. 2009, 109, 1584–1595. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, A.; Smith, H.S. Botulinum Toxins: Mechanisms of Action, Antinociception and Clinical Applications. Toxicology 2013, 306, 124–146. [Google Scholar] [CrossRef] [PubMed]
- Matak, I.; Bölcskei, K.; Bach-Rojecky, L.; Helyes, Z. Mechanisms of Botulinum Toxin Type A Action on Pain. Toxins 2019, 11, 459. [Google Scholar] [CrossRef]
- Brin, M.F.; Burstein, R. Botox (OnabotulinumtoxinA) Mechanism of Action. Medicine 2023, 102, E32372. [Google Scholar] [CrossRef]
- Belinskaia, M.; Wang, J.; Kaza, S.K.; Antoniazzi, C.; Zurawski, T.; Dolly, J.O.; Lawrence, G.W. Bipartite Activation of Sensory Neurons by a TRPA1 Agonist Allyl Isothiocyanate Is Reflected by Complex Ca2+ Influx and CGRP Release Patterns: Enhancement by NGF and Inhibition with VAMP and SNAP-25 Cleaving Botulinum Neurotoxins. Int. J. Mol. Sci. 2023, 24, 1338. [Google Scholar] [CrossRef]
- Finocchiaro, A.; Marinelli, S.; De Angelis, F.; Vacca, V.; Luvisetto, S.; Pavone, F. Botulinum Toxin b Affects Neuropathic Pain but Not Functional Recovery after Peripheral Nerve Injury in a Mouse Model. Toxins 2018, 10, 128. [Google Scholar] [CrossRef]
- Aoki, K.R.; Francis, J. Updates on the Antinociceptive Mechanism Hypothesis of Botulinum Toxin A. Park. Relat. Disord. 2011, 17, S28–S33. [Google Scholar] [CrossRef] [PubMed]
- Matak, I.; Lacković, Z. Botulinum Toxin A, Brain and Pain. Prog. Neurobiol. 2014, 119–120, 39–59. [Google Scholar] [CrossRef]
- Antonucci, F.; Rossi, C.; Gianfranceschi, L.; Rossetto, O.; Caleo, M. Long-Distance Retrograde Effects of Botulinum Neurotoxin A. J. Neurosci. 2008, 28, 3689–3696. [Google Scholar] [CrossRef] [PubMed]
- Aoki, K.R. Review of a Proposed Mechanism for the Antinociceptive Action of Botulinum Toxin Type A. NeuroToxicology 2005, 26, 785–793. [Google Scholar] [CrossRef]
- Moore, A.A.; Nelson, M.; Wickware, C.; Choi, S.; Moon, G.; Xiong, E.; Orta, L.; Brideau-Andersen, A.; Brin, M.F.; Broide, R.S.; et al. OnabotulinumtoxinA Effects on Trigeminal Nociceptors. Cephalalgia 2023, 43, 03331024221141683. [Google Scholar] [CrossRef] [PubMed]
- Lora, V.R.M.M.; Clemente-Napimoga, J.T.; Abdalla, H.B.; Macedo, C.G.; Canales, G.d.l.T.; Barbosa, C.M.R. Botulinum Toxin Type A Reduces Inflammatory Hypernociception Induced by Arthritis in the Temporomadibular Joint of Rats. Toxicon 2017, 129, 52–57. [Google Scholar] [CrossRef]
- Shimizu, T.; Shibata, M.; Toriumi, H.; Iwashita, T.; Funakubo, M.; Sato, H.; Kuroi, T.; Ebine, T.; Koizumi, K.; Suzuki, N. Reduction of TRPV1 Expression in the Trigeminal System by Botulinum Neurotoxin Type-A. Neurobiol. Dis. 2012, 48, 367–378. [Google Scholar] [CrossRef]
- Ma, W.; Quirion, R. Inflammatory Mediators Modulating the Transient Receptor Potential Vanilloid 1 Receptor: Therapeutic Targets to Treat Inflammatory and Neuropathic Pain. Expert. Opin. Ther. Targets 2007, 11, 307–320. [Google Scholar] [CrossRef]
- Novo Pereira, I.; De la Torre Canales, G.; Durão, S.; Shado, R.; Braga, A.C.; Almeida, A.M.; Hassan, H.; Manso, A.C.; Faria-Almeida, R. Botulinum Toxin Effects on Biochemical Biomarkers Related to Inflammation-Associated Head and Neck Chronic Conditions: A Systematic Review of Preclinical Research. Toxins 2025, 17, 377. [Google Scholar] [CrossRef]
- Manuel Muñoz-Lora, V.R.; Abdalla, H.B.; Del Bel Cury, A.A.; Clemente-Napimoga, J.T. Modulatory Effect of Botulinum Toxin Type A on the Microglial P2X7/CatS/FKN Activated-Pathway in Antigen-Induced Arthritis of the Temporomandibular Joint of Rats. Toxicon 2020, 187, 116–121. [Google Scholar] [CrossRef]
- Baron, R.; Hans, G.; Dickenson, A.H. Peripheral Input and Its Importance for Central Sensitization. Ann. Neurol. 2013, 74, 630–636. [Google Scholar] [CrossRef]
- Schain, A.J.; Delgado Fajardo, D.; Strassman, A.M.; Kulkarni, S.; Broide, R.S.; Brideau-Andersen, A.D.; Adams, A.M.; Brin, M.F.; Burstein, R. OnabotulinumtoxinA Alters Pro- and Anti-Inflammatory Dural Macrophage Response to CSD in Female Mice. Cephalalgia 2025, 45, 03331024251378730. [Google Scholar] [CrossRef]
- Zhang, P.; Bi, R.Y.; Gan, Y.H. Glial Interleukin-1β Upregulates Neuronal Sodium Channel 1.7 in Trigeminal Ganglion Contributing to Temporomandibular Joint Inflammatory Hypernociception in Rats. J. Neuroinflamm. 2018, 15, 117. [Google Scholar] [CrossRef]
- Béret, M.; Barry, F.; Garcia-Fernandez, M.J.; Chijcheapaza-Flores, H.; Blanchemain, N.; Chai, F.; Nicot, R. Efficacy of Intra-Articular Injection of Botulinum Toxin Type A (IncobotulinumtoxinA) in Temporomandibular Joint Osteoarthritis: A Three-Arm Controlled Trial in Rats. Toxins 2023, 15, 261. [Google Scholar] [CrossRef]
- Kim, E.; Son, H.; Zhang, Y.; Shannonhouse, J.; Gomez, R.; Han, D.; Park, J.T.; Kim, S.T.; Amarista, F.; Perez, D.; et al. BoNT Injection into Temporomandibular Joint Alleviates TMJ Pain in Forced Mouth Opening Mouse Model. J. Neurosci. 2025, 45, e2035242025. [Google Scholar] [CrossRef] [PubMed]
- Coskun, U.; Altintas, N.Y. Structural Changes in the Temporomandibular Joint After Botulinum Toxin Injection Into the Masseter Muscle in Experimentally Induced Osteoarthritis in Rats. J. Oral Rehabil. 2025, 52, 1801–1809. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Coffield, J.A. Structural and Functional Interactions between Transient Receptor Potential Vanilloid Subfamily 1 and Botulinum Neurotoxin Serotype A. PLoS ONE 2016, 11, e0143024. [Google Scholar] [CrossRef]
- Fan, C.; Chu, X.; Wang, L.; Shi, H.; Li, T. Botulinum Toxin Type A Reduces TRPV1 Expression in the Dorsal Root Ganglion in Rats with Adjuvant-Arthritis Pain. Toxicon 2017, 133, 116–122. [Google Scholar] [CrossRef]
- Qiao, H.; Gao, Y.; Zhang, C.; Zhou, H. Increased Expression of TRPV1 in the Trigeminal Ganglion Is Involved in Orofacial Pain during Experimental Tooth Movement in Rats. Eur. J. Oral Sci. 2015, 123, 17–23. [Google Scholar] [CrossRef]
- Thammanichanon, P.; Kaewpitak, A.; Binlateh, T.; Pavasant, P.; Leethanakul, C. Varied Temporal Expression Patterns of Trigeminal TRPA1 and TRPV1 and the Neuropeptide CGRP during Orthodontic Force-Induced Pain. Arch. Oral Biol. 2021, 128, 105170. [Google Scholar] [CrossRef] [PubMed]
- Filipović, B.; Matak, I.; Bach-Rojecky, L.; Lacković, Z. Central Action of Peripherally Applied Botulinum Toxin Type a on Pain and Dural Protein Extravasation in Rat Model of Trigeminal Neuropathy. PLoS ONE 2012, 7, e29803. [Google Scholar] [CrossRef]
- Zychowska, M.; Rojewska, E.; Makuch, W.; Luvisetto, S.; Pavone, F.; Marinelli, S.; Przewlocka, B.; Mika, J. Participation of Pro- and Anti-Nociceptive Interleukins in Botulinum Toxin A-Induced Analgesia in a Rat Model of Neuropathic Pain. Eur. J. Pharmacol. 2016, 791, 377–388. [Google Scholar] [CrossRef]
- Moreau, N.; Korai, S.A.; Sepe, G.; Panetsos, F.; Papa, M.; Cirillo, G. Peripheral and Central Neurobiological Effects of Botulinum Toxin A (BoNT/A) in Neuropathic Pain: A Systematic Review. Pain 2024, 165, 1674–1688. [Google Scholar] [CrossRef] [PubMed]
- De Tommaso, M.; Brighina, F.; Delussi, M. Effects of Botulinum Toxin a on Allodynia in Chronic Migraine: An Observational Open-Label Two-Year Study. Eur. Neurol. 2019, 81, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Matak, I.; Rossetto, O.; Lacković, Z. Botulinum Toxin Type A Selectivity for Certain Types of Pain Is Associated with Capsaicin-Sensitive Neurons. Pain 2014, 155, 1516–1526. [Google Scholar] [CrossRef] [PubMed]
- Matak, I.; Tékus, V.; Bölcskei, K.; Lacković, Z.; Helyes, Z. Involvement of Substance P in the Antinociceptive Effect of Botulinum Toxin Type A: Evidence from Knockout Mice. Neuroscience 2017, 358, 137–145. [Google Scholar] [CrossRef]
- Matak, I.; Bach-Rojecky, L.; Filipović, B.; Lacković, Z. Behavioral and Immunohistochemical Evidence for Central Antinociceptive Activity of Botulinum Toxin A. Neuroscience 2011, 186, 201–207. [Google Scholar] [CrossRef]
- Dubner, R.; Yang, K.Y.; Kim, M.J.; Ju, J.S.; Park, S.K.; Lee, C.G.; Kim, S.T.; Bae, Y.C.; Ahn, D.K. Antinociceptive Effects of Botulinum Toxin Type A on Trigeminal Neuropathic Pain. J. Dent. Res. 2016, 95, 1183–1190. [Google Scholar] [CrossRef]
- Burstein, R.; Zhang, X.C.; Levy, D.; Aoki, K.R.; Brin, M.F. Selective Inhibition of Meningeal Nociceptors by Botulinum Neurotoxin Type A: Therapeutic Implications for Migraine and Other Pains. Cephalalgia 2014, 34, 853–869. [Google Scholar] [CrossRef]
- Lackovic, Z.; Filipovic, B.; Matak, I.; Helyes, Z. Activity of Botulinum Toxin Type A in Cranial Dura: Implications for Treatment of Migraine and Other Headaches. Br. J. Pharmacol. 2016, 173, 279–291. [Google Scholar] [CrossRef]
- Noma, N.; Watanabe, K.; Sato, Y.; Imamura, Y.; Yamamoto, Y.; Ito, R.; Maruno, M.; Shimizu, K.; Iwata, K. Botulinum Neurotoxin Type A Alleviates Mechanical Hypersensitivity Associated with Infraorbital Nerve Constriction Injury in Rats. Neurosci. Lett. 2017, 637, 96–101. [Google Scholar] [CrossRef]
- Paterson, K.; Ephane Lolignier, S.; Wood, J.N.; Mcmahon, S.B.; Bennett, D.L.H. Botulinum Toxin-A Treatment Reduces Human Mechanical Pain Sensitivity and Mechanotransduction. Ann. Neurol. 2014, 75, 591–596. [Google Scholar] [CrossRef]
- Ranoux, D.; Attal, N.; Morain, F.; Bouhassira, D. Botulinum Toxin Type A Induces Direct Analgesic Effects in Chronic Neuropathic Pain. Ann. Neurol. 2008, 64, 274–283. [Google Scholar] [CrossRef]
- Hammer, R.E.; A. Omoniyi, A.; Richner, M.; Lezmi, S.; B. Vaegter, C.; Kalinichev, M.; Karlsson, P.; R. Nyengaard, J. The Effect of Recombinant Botulinum Neurotoxin A on Neuropathic Pain in the Spared Nerve Injury Mouse Model. J. Neural Transm. 2025, 132, 1779–1795. [Google Scholar] [CrossRef]
- Oehler, B.; Périer, C.; Martin, V.; Fisher, A.; Lezmi, S.; Kalinichev, M.; McMahon, S.B. Evaluation of Recombinant Botulinum Neurotoxin Type A1 Efficacy in Peripheral Inflammatory Pain in Mice. Front. Mol. Neurosci. 2022, 15, 909835. [Google Scholar] [CrossRef]
- De la Torre Canales, G.; Poluha, R.; Pinzón, Y.; Conti, P.; Manfredini, D.; Sánchez-Ayala, A.; Rizzatti-Barbosa, C. Effects of Botulinum Toxin Type A on the Psychosocial Features of Myofascial Pain TMD Subjects: A Randomized Controlled Trial. J. Oral Facial Pain Headache 2021, 35, 288–296. [Google Scholar] [CrossRef] [PubMed]
- De la Torre Canales, G.; Poluha, R.L.; Pinzón, N.A.; Da Silva, B.R.; Almeida, A.M.; Ernberg, M.; Manso, A.C.; Bonjardim, L.R.; Rizzatti-Barbosa, C.M. Efficacy of Botulinum Toxin Type-A I in the Improvement of Mandibular Motion and Muscle Sensibility in Myofascial Pain TMD Subjects: A Randomized Controlled Trial. Toxins 2022, 14, 441. [Google Scholar] [CrossRef] [PubMed]
- Kurtoglu, C.; Gur, O.H.; Kurkcu, M.; Sertdemir, Y.; Guler-Uysal, F.; Uysal, H. Effect of Botulinum Toxin-A in Myofascial Pain Patients with or Without Functional Disc Displacement. J. Oral Maxillofac. Surg. 2008, 66, 1644–1651. [Google Scholar] [CrossRef] [PubMed]
- Guarda-Nardini, L.; Stecco, A.; Stecco, C.; Masiero, S.; Manfredini, D. Myofascial Pain of the Jaw Muscles: Comparison of Short-Term Effectiveness of Botulinum Toxin Injections and Fascial Manipulation Technique. Cranio-J. Craniomandib. Sleep Pract. 2012, 30, 95–102. [Google Scholar] [CrossRef]
- Rezazadeh, F.; Esnaashari, N.; Azad, A.; Emad, S. The Effects of Botulinum Toxin A Injection on the Lateral Pterygoid Muscle in Patients with a Painful Temporomandibular Joint Click: A Randomized Clinical Trial Study. BMC Oral Health 2022, 22, 217. [Google Scholar] [CrossRef]
- Sitnikova, V.; Kämppi, A.; Teronen, O.; Kemppainen, P. Effect of Botulinum Toxin Injection on EMG Activity and Bite Force in Masticatory Muscle Disorder: A Randomized Clinical Trial. Toxins 2022, 14, 545. [Google Scholar] [CrossRef]
- Zhang, L.D.; Liu, Q.; Zou, D.R.; Yu, L. feng Occlusal Force Characteristics of Masseteric Muscles after Intramuscular Injection of Botulinum Toxin A(BTX–A)for Treatment of Temporomandibular Disorder. Br. J. Oral Maxillofac. Surg. 2016, 54, 736–740. [Google Scholar] [CrossRef]
- De La Torre Canales, G.; Câmara-Souza, M.B.; Poluha, R.L.; Grillo, C.M.; Conti, P.C.R.; de Sousa, M.d.L.R.; Rodrigues Garcia, R.C.M.; Rizzatti-Barbosa, C.M. Botulinum Toxin Type A and Acupuncture for Masticatory Myofascial Pain: A Randomized Clinical Trial. J. Appl. Oral Sci. 2021, 29, e20201035. [Google Scholar] [CrossRef]
- Diener, H.C.; Tassorelli, C.; Dodick, D.W.; Silberstein, S.D.; Lipton, R.B.; Ashina, M.; Becker, W.J.; Ferrari, M.D.; Goadsby, P.J.; Pozo-Rosich, P.; et al. Guidelines of the International Headache Society for Controlled Trials of Preventive Treatment of Migraine Attacks in Episodic Migraine in Adults. Cephalalgia 2020, 40, 1026–1044. [Google Scholar] [CrossRef]
- Diener, H.C.; Tassorelli, C.; Dodick, D.W.; Silberstein, S.D.; Lipton, R.B.; Ashina, M.; Becker, W.J.; Ferrari, M.D.; Goadsby, P.J.; Pozo-Rosich, P.; et al. Guidelines of the International Headache Society for Controlled Trials of Acute Treatment of Migraine Attacks in Adults: Fourth Edition. Cephalalgia 2019, 39, 687–710. [Google Scholar] [CrossRef] [PubMed]
- Khawaja, S.N.; Scrivani, S.J.; Holland, N.; Keith, D.A. Effectiveness, Safety, and Predictors of Response to Botulinum Toxin Type A in Refractory Masticatory Myalgia: A Retrospective Study. J. Oral Maxillofac. Surg. 2017, 75, 2307–2315. [Google Scholar] [CrossRef] [PubMed]
- Sitnikova, V.; Kämppi, A.; Kämppi, L.; Alvesalo, E.; Burakova, M.; Kemppainen, P.; Teronen, O. Clinical Benefit of Botulinum Toxin for Treatment of Persistent TMD-Related Myofascial Pain: A Randomized, Placebo-Controlled, Cross-over Trial. Pain Pract. 2024, 24, 1014–1023. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.A.; Lerner, M.Z.; Blitzer, A. IncobotulinumtoxinA Injection for Temporomandibular Joint Disorder: A Randomized Controlled Pilot Study. Ann. Otol. Rhinol. Laryngol. 2017, 126, 328–333. [Google Scholar] [CrossRef]
- De la Torre Canales, G.; Poluha, R.L.; Bonjardim, L.R.; Ernberg, M.; Conti, P.C.R. Botulinum Toxin-A Effects on Pain, Somatosensory and Psychosocial Features of Patients with Refractory Masticatory Myofascial Pain: A Randomized Double-Blind Clinical Trial. Sci. Rep. 2024, 14, 4201. [Google Scholar] [CrossRef]
- Balanta-Melo, J.; Toro-Ibacache, V.; Kupczik, K.; Buvinic, S. Mandibular Bone Loss after Masticatory Muscles Intervention with Botulinum Toxin: An Approach from Basic Research to Clinical Findings. Toxins 2019, 11, 84. [Google Scholar] [CrossRef]
- Raphael, K.G.; Janal, M.N.; Tadinada, A.; Santiago, V.; Sirois, D.A.; Lurie, A.G. Effect of Multiple Injections of Botulinum Toxin into Painful Masticatory Muscles on Bone Density in the Temporomandibular Complex. J. Oral Rehabil. 2020, 47, 1319–1329. [Google Scholar] [CrossRef] [PubMed]
- Romero-Reyes, M.; Arman, S.; Teruel, A.; Kumar, S.; Hawkins, J.; Akerman, S. Pharmacological Management of Orofacial Pain. Drugs 2023, 83, 1269–1292. [Google Scholar] [CrossRef] [PubMed]
- Rossetto, O.; Pirazzini, M.; Montecucco, C. Botulinum Neurotoxins: Genetic, Structural and Mechanistic Insights. Nat. Rev. Microbiol. 2014, 12, 535–549. [Google Scholar] [CrossRef] [PubMed]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Chaudhry, B.A.; Robinson, C.L.; Caronna, E.; Dodd-Glover, F.; Virk, A.S.; Prieto Peres, M.F.; O’Brien, H.L.; Romero-Reyes, M.; Ashina, S. Central and Peripheral Sensitization in Temporomandibular Disorders: Proposed Mechanisms of Botulinum Toxin Therapy. Toxins 2026, 18, 28. https://doi.org/10.3390/toxins18010028
Chaudhry BA, Robinson CL, Caronna E, Dodd-Glover F, Virk AS, Prieto Peres MF, O’Brien HL, Romero-Reyes M, Ashina S. Central and Peripheral Sensitization in Temporomandibular Disorders: Proposed Mechanisms of Botulinum Toxin Therapy. Toxins. 2026; 18(1):28. https://doi.org/10.3390/toxins18010028
Chicago/Turabian StyleChaudhry, Basit Ali, Christopher L. Robinson, Edoardo Caronna, Freda Dodd-Glover, Amrittej Singh Virk, Mario Fernando Prieto Peres, Hope L. O’Brien, Marcela Romero-Reyes, and Sait Ashina. 2026. "Central and Peripheral Sensitization in Temporomandibular Disorders: Proposed Mechanisms of Botulinum Toxin Therapy" Toxins 18, no. 1: 28. https://doi.org/10.3390/toxins18010028
APA StyleChaudhry, B. A., Robinson, C. L., Caronna, E., Dodd-Glover, F., Virk, A. S., Prieto Peres, M. F., O’Brien, H. L., Romero-Reyes, M., & Ashina, S. (2026). Central and Peripheral Sensitization in Temporomandibular Disorders: Proposed Mechanisms of Botulinum Toxin Therapy. Toxins, 18(1), 28. https://doi.org/10.3390/toxins18010028

