Extract of Indigofera spicata Exerts Antiproliferative Effects on Human Colorectal and Ovarian Carcinoma Cells
Abstract
1. Introduction
2. Results
2.1. Preparation of the Isp-Containing Extracts from Dried Biomass (Seedpods) of I. spicata
2.2. Impact of I. spicata Extract on the Viability of Human Carcinoma Cells
2.3. Effect of I. spicata Extract on the Residual Proliferative Potential of Cancer Cells
2.4. Antiproliferative Effect of I. spicata Extract in Combination with rhARGI
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Reagents
5.2. Cell Lines and Culture Conditions
5.3. Cell Viability Detection by the MTT Assay
5.4. Preparation of Plant Extracts from I. spicata
5.5. Thin Layer Chromatography of Extracts from I. spicata
5.6. LC-MS Analysis of Extracts from I. spicata
5.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morris, S.M., Jr. Arginine: Beyond protein. Am. J. Clin. Nutr. 2006, 83, 508s–512s. [Google Scholar] [CrossRef]
- Chen, C.-L.; Hsu, S.-C.; Ann, D.K.; Yen, Y.; Kung, H.-J. Arginine Signaling and Cancer Metabolism. Cancers 2021, 13, 3541. [Google Scholar] [CrossRef] [PubMed]
- Field, G.C.; Pavlyk, I.; Szlosarek, P.W. Bench-to-Bedside Studies of Arginine Deprivation in Cancer. Molecules 2023, 28, 2150. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.D.; Lai, M.W.; Yeh, C.T. Unlocking the Potential of Arginine Deprivation Therapy: Recent Breakthroughs and Promising Future for Cancer Treatment. Int. J. Mol. Sci. 2023, 24, 10668. [Google Scholar] [CrossRef]
- Anakha, J.; Kawathe, P.S.; Datta, S.; Jawalekar, S.S.; Banerjee, U.C.; Pande, A.H. Human arginase 1, a Jack of all trades? 3 Biotech 2022, 12, 264. [Google Scholar] [CrossRef]
- Endicott, M.; Jones, M.; Hull, J. Amino acid metabolism as a therapeutic target in cancer: A review. Amino Acids 2021, 53, 1169–1179. [Google Scholar] [CrossRef] [PubMed]
- Ascierto, P.A.; Scala, S.; Castello, G.; Daponte, A.; Simeone, E.; Ottaiano, A.; Beneduce, G.; De Rosa, V.; Izzo, F.; Melucci, M.T.; et al. Pegylated Arginine Deiminase Treatment of Patients with Metastatic Melanoma: Results From Phase I and II Studies. J. Clin. Oncol. 2005, 23, 7660–7668. [Google Scholar] [CrossRef]
- Glazer, E.S.; Piccirillo, M.; Albino, V.; Di Giacomo, R.; Palaia, R.; Mastro, A.A.; Beneduce, G.; Castello, G.; De Rosa, V.; Petrillo, A.; et al. Phase II Study of Pegylated Arginine Deiminase for Nonresectable and Metastatic Hepatocellular Carcinoma. J. Clin. Oncol. 2010, 28, 2220–2226. [Google Scholar] [CrossRef]
- Yang, T.S.; Lu, S.N.; Chao, Y.; Sheen, I.S.; Lin, C.C.; Wang, T.E.; Chen, S.C.; Wang, J.H.; Liao, L.Y.; Thomson, J.A.; et al. A randomised phase II study of pegylated arginine deiminase (ADI-PEG 20) in Asian advanced hepatocellular carcinoma patients. Br. J. Cancer 2010, 103, 954–960. [Google Scholar] [CrossRef]
- Yau, T.; Cheng, P.N.; Chan, P.; Chan, W.; Chen, L.; Yuen, J.; Pang, R.; Fan, S.T.; Poon, R.T. A phase 1 dose-escalating study of pegylated recombinant human arginase 1 (Peg-rhArg1) in patients with advanced hepatocellular carcinoma. Investig. New Drugs 2013, 31, 99–107. [Google Scholar] [CrossRef]
- Savaraj, N.; Wu, C.; Li, Y.Y.; Wangpaichitr, M.; You, M.; Bomalaski, J.; He, W.; Kuo, M.T.; Feun, L.G. Targeting argininosuccinate synthetase negative melanomas using combination of arginine degrading enzyme and cisplatin. Oncotarget 2015, 6, 6295–6309. [Google Scholar] [CrossRef]
- Liu, J.; Ma, J.; Wu, Z.; Li, W.; Zhang, D.; Han, L.; Wang, F.; Reindl, K.M.; Wu, E.; Ma, Q. Arginine deiminase augments the chemosensitivity of argininosuccinate synthetase-deficient pancreatic cancer cells to gemcitabine via inhibition of NF-κB signaling. BMC Cancer 2014, 14, 686. [Google Scholar] [CrossRef]
- Bean, G.R.; Kremer, J.C.; Prudner, B.C.; Schenone, A.D.; Yao, J.-C.; Schultze, M.B.; Chen, D.Y.; Tanas, M.R.; Adkins, D.R.; Bomalaski, J.; et al. A metabolic synthetic lethal strategy with arginine deprivation and chloroquine leads to cell death in ASS1-deficient sarcomas. Cell Death Dis. 2016, 7, e2406. [Google Scholar] [CrossRef]
- Bobak, Y.; Kurlishchuk, Y.; Vynnytska-Myronovska, B.; Grydzuk, O.; Shuvayeva, G.; Redowicz, M.J.; Kunz-Schughart, L.A.; Stasyk, O. Arginine deprivation induces endoplasmic reticulum stress in human solid cancer cells. Int. J. Biochem. Cell Biol. 2016, 70, 29–38. [Google Scholar] [CrossRef]
- Kurlishchuk, Y.; Vynnytska-Myronovska, B.; Grosse-Gehling, P.; Bobak, Y.; Manig, F.; Chen, O.; Merker, S.R.; Henle, T.; Löck, S.; Stange, D.E.; et al. Co-application of canavanine and irradiation uncouples anticancer potential of arginine deprivation from citrulline availability. Oncotarget 2016, 7, 45. [Google Scholar] [CrossRef]
- Shuvayeva, G.Y.; Bobak, Y.P.; Vovk, O.I.; Kunz-Schughart, L.A.; Fletcher, M.T.; Stasyk, O.V. Indospicine combined with arginine deprivation triggers cancer cell death via caspase-dependent apoptosis. Cell Biol. Int. 2021, 45, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Lang, C.-S.; Wong, S.-H.; Chow, S.; Challinor, V.L.; Yong, K.W.L.; Fletcher, M.T.; Arthur, D.M.; Ng, J.C.; De Voss, J.J. Synthesis of l-indospicine, [5,5,6-2H3]-l-indospicine and l-norindospicine. Org. Biomol. Chem. 2016, 14, 6826–6832. [Google Scholar] [CrossRef]
- Salmon, S.E.; Hall, S.L.; Phillips, D.E.; Dries, L.R.; Sarandopoulos, J.; Coghill, A.; Hawes, M.C. Hepatopathy in Victorian dogs consuming pet meat contaminated with indospicine. Aust. Vet. J. 2022, 100, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Tan, E.T.T.; Materne, C.M.; Silcock, R.G.; D’Arcy, B.R.; Al Jassim, R.; Fletcher, M.T. Seasonal and Species Variation of the Hepatotoxin Indospicine in Australian Indigofera Legumes As Measured by UPLC-MS/MS. J. Agric. Food Chem. 2016, 64, 6613–6621. [Google Scholar] [CrossRef] [PubMed]
- Plants of the World Online. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:500027-1 (accessed on 17 August 2025).
- Australian Plant Census (APC) Council of Heads of Australian Herbaria. Available online: http://www.anbg.gov.au/chah/apc/index.html (accessed on 17 August 2025).
- Wilson, P.; Rowe, R. A revision of the Indigofereae (Fabaceae) in Australia. 2. Indigofera species with trifoliolate and alternately pinnate leaves. Telopea 2008, 12, 293–307. [Google Scholar] [CrossRef]
- Aylward, J.H.; Court, R.D.; Haydock, K.P.; Strickland, R.W.; Hegarty, M.P. Indigofera species with agronomic potential in the tropics. Rat toxicity studies. Aust. J. Agric. Res. 1987, 38, 177–186. [Google Scholar] [CrossRef]
- Tool, B.C.C.W.I. Creeping Indigo. Available online: https://weeds.brisbane.qld.gov.au/weeds/creeping-indigo (accessed on 17 August 2025).
- Baranowska, I.; Markowski, P.; Wilczek, A.; Szostek, M.; Stadniczuk, M. Normal and Reversed-Phase Thin-Layer Chromatography in the Analysis of l-Arginine, its Metabolites, and Selected Drugs. JPC J. Planar Chromatogr. Mod. TLC 2009, 22, 89–96. [Google Scholar] [CrossRef]
- Bhawani, S.A.; Mohamad Ibrahim, M.N.; Sulaiman, O.; Hashim, R.; Mohammad, A.; Hena, S. THIN-LAYER CHROMATOGRAPHY OF AMINO ACIDS: A REVIEW. J. Liq. Chromatogr. Relat. Technol. 2012, 35, 1497–1516. [Google Scholar] [CrossRef]
- Stauß, A.C.; Fuchs, C.; Jansen, P.; Repert, S.; Alcock, K.; Ludewig, S.; Rozhon, W. The Ninhydrin Reaction Revisited: Optimisation and Application for Quantification of Free Amino Acids. Molecules 2024, 29, 3262. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M. Applications of the ninhydrin reaction for analysis of amino acids, peptides, and proteins to agricultural and biomedical sciences. J. Agric. Food Chem. 2004, 52, 385–406. [Google Scholar] [CrossRef] [PubMed]
- Gardner, D.R.; Riet-Correa, F. Analysis of the Toxic Amino Acid Indospicine by Liquid Chromatography-Tandem Mass Spectrometry. Int. J. Poisonous Plant Res. 2011, 1, 20–27. [Google Scholar]
- Bobak, Y.P.; Vynnytska, B.O.; Kurlishchuk, Y.V.; Sibirny, A.A.; Stasyk, O.V. Cancer cell sensitivity to arginine deprivation in vitro is not determined by endogenous levels of arginine metabolic enzymes. Cell Biol. Int. 2010, 34, 1085–1089. [Google Scholar] [CrossRef]
- Chan, S.L.; Cheng, P.N.M.; Liu, A.M.; Chan, L.L.; Li, L.; Chu, C.M.; Chong, C.C.N.; Lau, Y.M.; Yeo, W.; Ng, K.K.C.; et al. A phase II clinical study on the efficacy and predictive biomarker of pegylated recombinant arginase on hepatocellular carcinoma. Investig. New Drugs 2021, 39, 1375–1382. [Google Scholar] [CrossRef] [PubMed]
- Yau, T.; Cheng, P.N.M.; Chiu, J.; Kwok, G.G.W.; Leung, R.; Liu, A.M.; Cheung, T.T.; Ng, C.T. A phase 1 study of pegylated recombinant arginase (PEG-BCT-100) in combination with systemic chemotherapy (capecitabine and oxaliplatin)[PACOX] in advanced hepatocellular carcinoma patients. Investig. New Drugs 2022, 40, 314–321. [Google Scholar] [CrossRef]
- Cheng, P.N.M.; Liu, A.M.; Bessudo, A.; Mussai, F. Safety, PK/PD and preliminary anti-tumor activities of pegylated recombinant human arginase 1 (BCT-100) in patients with advanced arginine auxotrophic tumors. Investig. New Drugs 2021, 39, 1633–1640. [Google Scholar] [CrossRef]
- Mussai, F.; De Santo, C.; Cheng, P.; Thomas, I.F.; Ariti, C.; Upton, L.; Scarpa, U.; Stavrou, V.; Sydenham, M.; Burnett, A.K.; et al. A randomised evaluation of low-dose Ara-C plus pegylated recombinant arginase BCT-100 versus low dose Ara-C in older unfit patients with acute myeloid leukaemia: Results from the LI-1 trial. Br. J. Haematol. 2023, 200, 573–578. [Google Scholar] [CrossRef] [PubMed]
- Szlosarek, P.W.; Wimalasingham, A.G.; Phillips, M.M.; Hall, P.E.; Chan, P.Y.; Conibear, J.; Lim, L.; Rashid, S.; Steele, J.; Wells, P.; et al. Phase 1, pharmacogenomic, dose-expansion study of pegargiminase plus pemetrexed and cisplatin in patients with ASS1-deficient non-squamous non-small cell lung cancer. Cancer Med. 2021, 10, 6642–6652. [Google Scholar] [CrossRef]
- Hegarty, M.P.; Pound, A.W. Indospicine, a Hepatotoxic Amino Acid from Indigofera Spicat A: Isolation, Structure, and Biological Studies. Aust. J. Biol. Sci. 1970, 23, 831–842. [Google Scholar] [CrossRef]
- Dabbousy, R.; Rima, M.; Roufayel, R.; Rahal, M.; Legros, C.; Sabatier, J.-M.; Fajloun, Z. Plant Metabolomics: The Future of Anticancer Drug Discovery. Pharmaceuticals 2024, 17, 1307. [Google Scholar] [CrossRef] [PubMed]
- Pastuña-Fasso, J.V.; Quiroz-Moreno, C.D.; Medina-Villamizar, E.J.; Cooperstone, J.L.; Radice, M.; Peñuela-Mora, M.C.; Almeida, J.R.; Mogollón, N.G.S. Metabolite fingerprinting of Urospatha sagittifolia (Araceae) tubers at different growth stages by multi-platform metabolomics and molecular networking. Microchem. J. 2024, 199, 110058. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shuvayeva, G.; Tupychak, M.; Vovk, O.; Demash, D.; Chernyshuk, S.; Bobak, Y.; Prokopiv, A.; Pokhodylo, N.; Kunz-Schughart, L.A.; Fletcher, M.T.; et al. Extract of Indigofera spicata Exerts Antiproliferative Effects on Human Colorectal and Ovarian Carcinoma Cells. Toxins 2025, 17, 431. https://doi.org/10.3390/toxins17090431
Shuvayeva G, Tupychak M, Vovk O, Demash D, Chernyshuk S, Bobak Y, Prokopiv A, Pokhodylo N, Kunz-Schughart LA, Fletcher MT, et al. Extract of Indigofera spicata Exerts Antiproliferative Effects on Human Colorectal and Ovarian Carcinoma Cells. Toxins. 2025; 17(9):431. https://doi.org/10.3390/toxins17090431
Chicago/Turabian StyleShuvayeva, Galyna, Mykola Tupychak, Olena Vovk, Dmytro Demash, Svitlana Chernyshuk, Yaroslav Bobak, Andriy Prokopiv, Nazariy Pokhodylo, Leoni A. Kunz-Schughart, Mary T. Fletcher, and et al. 2025. "Extract of Indigofera spicata Exerts Antiproliferative Effects on Human Colorectal and Ovarian Carcinoma Cells" Toxins 17, no. 9: 431. https://doi.org/10.3390/toxins17090431
APA StyleShuvayeva, G., Tupychak, M., Vovk, O., Demash, D., Chernyshuk, S., Bobak, Y., Prokopiv, A., Pokhodylo, N., Kunz-Schughart, L. A., Fletcher, M. T., & Stasyk, O. (2025). Extract of Indigofera spicata Exerts Antiproliferative Effects on Human Colorectal and Ovarian Carcinoma Cells. Toxins, 17(9), 431. https://doi.org/10.3390/toxins17090431