Effects of a Phytogenic Mycotoxin Detoxifier on Oxidative Status, Health, and Performance in Dairy Sheep
Abstract
1. Introduction
2. Results
2.1. Clinical Performance Parameters
2.2. Colostrum/Milk Quality Parameters
2.3. Quantification of Mycotoxins in Feed
2.4. Blood Laboratory Exams for Redox and Liver Biomarkers
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Compliance with Ethical Standards
5.2. Trial Farm
5.3. Trial Design
5.4. Sampling
5.5. Blood and Milk Laboratory Exams for Redox and Liver Biomarkers
5.6. Colostrum and Milk Laboratory Exams
5.7. Quantification of Mycotoxins in Feed
5.8. Recorded Parameters
- Temperature: Rectal temperature was measured within the first 24 h after lambing by a standard digital thermometer with the following scoring system: 0 = normal (up to 40 °C); 1 = 40–41 °C, indicating slight fever; and 2 = 41.5–42 °C, indicating high fever.
- Lameness: Sheep were assessed in an evaluation pen, with two animals placed together at a time to minimize the effects of behavioral isolation. While pen size and shape varied across farms, each was sufficiently spacious—at least approximately 2 m2—to allow the animals to move freely and permit proper gait assessments. Upon entry into the pen, each sheep’s gait was evaluated, with lameness defined as a score of 2 or higher. Lameness was scored on a four-point scale according to the AWIN welfare assessment protocol for sheep based of the following scoring system: 0 = no lame, 1 = minor lameness, 2 = lame, and 3 = severe lameness [50].
- Mastitis: The scoring system used for mastitis determination was moderated according to Phythian et al. [53]. Mammary glands were palpated for areas of focal or diffuse thickening, swelling, heat, pain, or discomfort (0—No mastitis or lesions present in any gland; 1—Mild mastitis and/or minor lesions/one gland affected by mastitis; 2—Mastitis and/or severe lesions/both glands affected by mastitis).
- Udder characteristics: In addition, mammary gland redness (0 = normal skin color, 1 = moderate redness, and 2 = pronounced redness), consistency (0 = loose, 1 = elastic, and 2 = firm), and pain sensitivity (0 = no pain, 1 = mild pain, and 2 = severe pain) were assessed. Specifically, the pain assessment was based on using behavioral indicators as these provide sensitive and non-invasive measures of pain, such as lip curling, trembling, teeth grinding, vocalizations, abnormal postures, or changes in posture, without moving or making contact to a painful body area [54,55,56].
5.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jard, G.; Liboz, T.; Mathieu, F.; Guyonvarch, A.; Lebrihi, A. Review of Mycotoxin Reduction in Food and Feed: From Prevention in the Field to Detoxification by Adsorption or Transformation. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess 2011, 28, 1590–1609. [Google Scholar] [CrossRef]
- Jouany, J.P. Methods for Preventing, Decontaminating and Minimizing the Toxicity of Mycotoxins in Feeds. Anim. Feed Sci. Technol. 2007, 137, 342–362. [Google Scholar] [CrossRef]
- Kabak, B.; Dobson, A.D.W.; Var, I. Strategies to Prevent Mycotoxin Contamination of Food and Animal Feed: A Review. Crit. Rev. Food Sci. Nutr. 2006, 46, 593–619. [Google Scholar] [CrossRef] [PubMed]
- Sayyari, A.; Framstad, T.; Krogenæs, A.K. Effects of Feeding Naturally Contaminated Deoxynivalenol Diets to Sows during Late Gestation and Lactation in a High-Yield Specific Pathogen-Free Herd. Porc. Health Manag. 2018, 4, 26. [Google Scholar] [CrossRef] [PubMed]
- Benthem de Grave, X.; Saltzmann, J.; Laurain, J.; Rodriguez, M.A.; Molist, F.; Dänicke, S.; Santos, R.R. The Ability of an Al-goclay-Based Mycotoxin Decontaminant to Decrease the Serum Levels of Zearalenone and Its Metabolites in Lactating Sows. Front. Vet. Sci. 2021, 8, 704796. [Google Scholar] [CrossRef]
- Wellington, K.; Jarvis, B. Silymarin: A Review of Its Clinical Properties in the Management of Hepatic Disorders. BioDrugs 2001, 15, 465–489. [Google Scholar] [CrossRef]
- Tedesco, D.E.A.; Guerrini, A. Use of Milk Thistle in Farm and Companion Animals: A Review. Planta Medica 2023, 89, 584–607. [Google Scholar] [CrossRef]
- Haddad, Y.; Vallerand, D.; Brault, A.; Haddad, P.S. Antioxidant and hepatoprotective effects of silibinin in a rat model of nonalcoholic steatohepatitis. Evid.-Based Complement. Altern. Med. 2011, 2011, 164. [Google Scholar] [CrossRef]
- Sherif, I.O.; Al-Gayyar, M.M. Antioxidant, Anti-Inflammatory and Hepatoprotective Effects of Silymarin on Hepatic Dysfunction Induced by Sodium Nitrite. Eur. Cytokine Netw. 2013, 24, 114–121. [Google Scholar] [CrossRef]
- Gao, X.; Xiao, Z.H.; Liu, M.; Zhang, N.Y.; Khalil, M.M.; Gu, C.Q.; Qi, D.S.; Sun, L.H. Dietary silymarin supplementation alleviates zearalenone-induced hepatotoxicity and reproductive toxicity in rats. J. Nutr. 2018, 148, 1209–1216. [Google Scholar] [CrossRef] [PubMed]
- Khaleghipour, B.; Khosravinia, H.; Toghiyani, M.; Azarfar, A. Effects of silymarin on productive performance; liver function and serum biochemical profile in broiler Japanese quail challenged with dietary aflatoxins. Ital. J. Anim. Sci. 2019, 18, 564–573. [Google Scholar] [CrossRef]
- Stoev, S.D.; Njobeh, P.; Zarkov, I.; Mircheva, T.; Zapryanova, D.; Denev, S.; Dimitrova, B. Selected Herbal Feed Additives Showing Protective Effects against Ochratoxin A Toxicosis in Broiler Chicks. World Mycotoxin J. 2019, 12, 257–268. [Google Scholar] [CrossRef]
- Khamisabadi, H. Effects of Silymarin on milk production; liver enzymes; oxidative status and HSP70 gene expression in postparturient Sanjabi ewes. Cell. Mol. Biol. 2020, 66, 76–81. [Google Scholar] [CrossRef]
- Ayati, Z.; Ramezani, M.; Amiri, M.S.; Moghadam, A.T.; Rahimi, H.; Abdollahzade, A. Ethnobotany, Phytochemistry and Traditional Uses of Curcuma spp. and Pharmacological Profile of Two Important Species (C. longa and C. zedoaria): A Review. Curr. Pharm. Des. 2019, 25, 871–935. [Google Scholar] [CrossRef]
- Jaguezeski, A.M.; Perin, G.; Bottari, N.B.; Wagner, R.; Fagundes, M.B.; Schetinger, M.R.C.; Morschb, V.M.; Steind, C.S.; Morescod, R.N.; Barretaa, D.A.; et al. Addition of curcumin to the diet of dairy sheep improves health; performance and milk quality. Anim. Feed Sci. Technol. 2018, 246, 144–157. [Google Scholar] [CrossRef]
- Jaguezeski, A.M.; Perin, G.; Crecencio, R.B.; Baldissera, M.D.; Stefanil, L.M.; da Silva, A.S. Addition of Curcumin in Dairy Sheep Diet in the Control of Subclinical Mastitis. Acta Sci. Vet. 2018, 46, 7. [Google Scholar] [CrossRef]
- European Commission. European Commission Directive 2002/32/EC of The European Parliament and of The Council of 7 May 2002 on Undesirable Substances in Animal Feed. Off. J. Eur. Union 2019, L289, 32–36. [Google Scholar]
- European Commission. Commission Recommendation of 17 August 2006 on the presence of deoxynivalenol; zearalenone; ochratoxin A; T-2 and HT-2 and fumonisins in products intended for animal feeding. Off. J. Eur. Union 2006, L229, 7–9. [Google Scholar]
- European Commission. Commission Recommendation of 27 March 2013 on the presence of T-2 and HT-2 toxin in cereals and cereal products. Off. J. Eur. Union 2013, L91, 12–15. [Google Scholar]
- European Commission. Commission Regulation (EU) No 574/2011 of 16 June 2011 amending Annex I to Directive 2002/32/EC of the European Parliament and of the Council as regards maximum levels for nitrite; melamine; Ambrosia spp. and carry-over of certain coccidiostats and histomonostats and consolidating Annexes I and II thereto. Off. J. Eur. Union 2011, L159, 7–24. [Google Scholar]
- Fink-Gremmels, J. The role of mycotoxins in the health and performance of dairy cows. Vet. J. 2008, 176, 84–92. [Google Scholar] [CrossRef]
- Santos, R.R.; Fink-Gremmels, J. Mycotoxin Syndrome in Dairy Cattle: Characterisation and Intervention Results. World Mycotoxin J. 2014, 7, 357–366. [Google Scholar] [CrossRef]
- Fiorbelli, E.; Lapris, M.; Errico, M.; Della Badia, A.; Riahi, I.; Rocchetti, G.; Gallo, A. Mycotoxin Challenge in Dairy Cows: Assessment of the Efficacy of an Anti-Mycotoxin Agent by Adopting an In Vitro Rumen Simulation Method. Toxins 2024, 16, 490. [Google Scholar] [CrossRef] [PubMed]
- Gallo, A.; Minuti, A.; Bani, P.; Bertuzzi, T.; Cappelli, F.P.; Doupovec, B.; Faas, J.; Schatzmayr, D.; Trevisi, E. A mycotoxin-deactivating feed additive counteracts the adverse effects of regular levels of Fusarium mycotoxins in dairy cows. J. Dairy Sci. 2020, 103, 11314–11331. [Google Scholar] [CrossRef] [PubMed]
- Stanford, K.; Swift, M.L.; Wang, Y.; McAllister, T.A.; McKinnon, J.; Blakley, B.; Chaves, A.V. Effects of Feeding a Mycotoxin Binder on Nutrient Digestibility, Alkaloid Recovery in Feces, and Performance of Lambs Fed Diets Contaminated with Cereal Ergot. Toxins 2018, 10, 312. [Google Scholar] [CrossRef] [PubMed]
- Loh, Z.H.; Ouwerkerk, D.; Klieve, A.V.; Hungerford, N.L.; Fletcher, M.T. Toxin Degradation by Rumen Microorganisms: A Review. Toxins 2020, 12, 664. [Google Scholar] [CrossRef]
- Zain, M.E. Impact of Mycotoxins on Humans and Animals. J. Saudi Chem. Soc. 2011, 15, 129–144. [Google Scholar] [CrossRef]
- Gallo, A.; Giuberti, G.; Frisvad, J.C.; Bertuzzi, T.; Nielsen, K.F. Review on Mycotoxin Issues in Ruminants: Occurrence in Forages, Effects of Mycotoxin Ingestion on Health Status and Animal Performance and Practical Strategies to Counteract Their Negative Effects. Toxins 2015, 7, 3057–3111. [Google Scholar] [CrossRef]
- Korosteleva, S.N.; Smith, T.K.; Boermans, H.J. Effects of Feedborne Fusarium Mycotoxins on the Performance, Metabolism, and Immunity of Dairy Cows. J. Dairy Sci. 2007, 90, 3867–3873. [Google Scholar] [CrossRef]
- Battacone, G.; Nudda, A.; Palomba, M.; Mazzette, A.; Pulina, G. The transfer of aflatoxin M1 in milk of ewes fed diet naturally contaminated by aflatoxins and effect of inclusion of dried yeast culture in the diet. J. Dairy Sci. 2009, 92, 4997–5004. [Google Scholar] [CrossRef]
- Battacone, G.; Nudda, A.; Rassu, S.P.G.; Decandia, M.; Pulina, G. Excretion pattern of aflatoxin M1 in milk of goats fed a single dose of aflatoxin B1. J. Dairy Sci. 2012, 95, 2656–2661. [Google Scholar] [CrossRef] [PubMed]
- Özsoy, S.; Altunatmaz, K.; Horoz, H.; Kaşıkçı, G.; Alkan, S.; Bilal, T. The Relationship between Lameness, Fertility and Aflatoxin in a Dairy Cattle Herd. Turk. J. Vet. Anim. Sci. 2005, 29, 981–986. [Google Scholar]
- Oh, S.Y.; Fisher, R.E.; Swamy, H.V.L.N.; Boermans, H.J.; Yiannikouris, A.; Karrow, N.A. Silage Penicillium Mycotoxins: Hidden Modulators of the Immune System. In Mycotoxins: Occurrence, Toxicology and Management Strategies; Rios, C., Ed.; Nova Science Publishers: New York, NY, USA, 2015; pp. 1–40. [Google Scholar]
- Oswald, I.P.; Marin, D.E.; Bouhet, S.; Pinton, P.; Taranu, I.; Accensi, F. Immunotoxicological Risk of Mycotoxins for Domestic Animals. Food Addit. Contam. 2005, 22, 354–360. [Google Scholar] [CrossRef]
- Mukhamadieva, N.; Zainettinova, D.; Julanov, M.; Stefanik, V.; Nurzhumanova, Z.; Julanova, N.; Alimbekova, M.; Akzhigitov, N. Study of Mastitis Incidence in Cows of Dairy Farms in East Kazakhstan: Impacts of Nutrition, Endometritis, and Myxotoxin Contamination. Am. J. Anim. Vet. Sci. 2023, 18, 292–303. [Google Scholar] [CrossRef]
- Antonissen, G.; Martel, A.; Pasmans, F.; Ducatelle, R.; Verbrugghe, E.; Vandenbroucke, V.; Li, S.; Haesebrouck, F.; Van Immerseel, F.; Croubels, S. The impact of Fusarium mycotoxins on human health and animal host susceptibility to infectious diseases. Toxins 2014, 6, 430–452. [Google Scholar] [CrossRef]
- Bondy, G.S.; Pestka, J.J. Immunomodulation by fungal toxins. J. Toxicol. Environ. Health B 2000, 3, 109–143. [Google Scholar]
- Mostrom, M.S.; Raisbeck, M.F. Trichothecenes. In Veterinary Toxicology: Basic and Clinical Principles, 2nd ed.; Gupta, R.C., Ed.; Academic Press: San Diego, CA, USA, 2012; pp. 1239–1265. [Google Scholar]
- Bozakova, N.; Ivanov, V. Opportunities for sheep welfare improvement by silymarin additive–a review article. Bulg. J. Agric. Sci. 2022, 28, 502–509. [Google Scholar]
- Jaguezeski, A.M.; Gündel, S.S.; Favarin, F.R.; Gündel, A.; Souza, C.F.; Baldissera, M.D.; Cazarotto, C.C.; Volpato, A.; Fortuoso, B.F.; Ourique, A.F.; et al. Low-dose curcumin-loaded Eudragit L100-nanocapsules in the diet of dairy sheep increases antioxidant levels and reduces lipid peroxidation in milk. J. Food Biochem. 2019, 43, e12942. [Google Scholar] [CrossRef]
- Kiyothong, K.; Rowlinson, P.; Wanapat, M.; Khampa, S. Effect of mycotoxin deactivator product supplementation on dairy cows. Anim. Prod. Sci. 2012, 52, 832–841. [Google Scholar] [CrossRef]
- Krizova, L.; Hanuš, O.; Klimešová, M.; Nedelnik, J.; Kucera, P.; Roubal, J.; Kopecky, R. Chemical, physical and technological properties of milk as affected by the mycotoxin load of dairy herds. Arch. Anim. Breed. 2016, 59, 293–300. [Google Scholar] [CrossRef]
- Kessler, E.C.; Bruckmaier, R.M.; Gross, J.J. Short communication: Comparative estimation of colostrum quality by Brix refractometry in bovine; caprine; and ovine colostrum. J. Dairy Sci. 2021, 104, 2438–2444. [Google Scholar] [CrossRef]
- Di Trana, A.; Bonanno, A.; Cecchini, S.; Giorgio, D.; Di Grigoli, A.; Claps, S. Effects of Sulla Forage (Sulla coronarium L.) on the Oxidative Status and Milk Polyphenol Content in Goats. J. Dairy Sci. 2015, 98, 37–46. [Google Scholar] [CrossRef]
- Gatellier, P.; Mercier, Y.; Renerre, M. Effect of Diet Finishing Mode (Pasture or Mixed Diet) on Antioxidant Status of Charolais Bovine Meat. Meat Sci. 2004, 67, 385–394. [Google Scholar] [CrossRef]
- Celi, P. Biomarkers of Oxidative Stress in Ruminant Medicine. Immunopharmacol. Immunotoxicol. 2011, 33, 233–240. [Google Scholar] [CrossRef]
- Celi, P.; Gabai, G. Oxidant/Antioxidant Balance in Animal Nutrition and Health: The Role of Protein Oxidation. Front. Vet. Sci. 2015, 2, 48. [Google Scholar] [CrossRef]
- Santiago, M.R.; Fagundes, G.B.; do Nascimento, D.M.; Faustino, L.R.; da Silva, C.M.G.; Dias, F.E.F.; de Souza, A.P.; Arrivabene, M.; Cavalcante, T.V. Use of Digital Brix Refractometer to Estimate Total Protein Levels in Santa Inês Ewes’ Colostrum and Lambs’ Blood Serum. Small Rumin. Res. 2020, 182, 78–80. [Google Scholar] [CrossRef]
- Hamer, K.; Bellingham, M.; Evans, N.P.; Jones, R.O.; Denholm, K.S. Defining optimal thresholds for digital Brix refractometry to determine IgG concentration in ewe colostrum and lamb serum in Scottish lowland sheep flocks. Prev. Vet. Med. 2023, 218, 105988. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, C.; Ruiz, R.; Beltran de Heredia, I.; Canali, E.; Barbieri, S.; Zanella, A. AWIN Welfare Assessment Protocol For Sheep; AWIN Project. 2015. Available online: https://doi.org/10.13130/AWIN_sheep_2015 (accessed on 18 July 2025).
- Cabaret, J.; Gonnord, V.; Cortet, J.; Sauvé, C.; Ballet, J.; Tournadre, H.; Benoit, M. Indicators for internal parasitic infections in organic flocks: The diarrhoea score (DISCO) proposal for lambs. In Proceedings of the Joint Organic Congress, Odense, Denmark, 30–31 May 2006; Available online: https://orgprints.org/id/eprint/7243/ (accessed on 2 April 2021).
- Bentounsi, B.; Meradi, S.; Cabaret, J. Towards finding effective indicators (diarrhoea and anaemia scores and weight gains) for the implementation of targeted selective treatment against the gastro-intestinal nematodes in lambs in a steppic environment. Vet. Parasitol. 2012, 1, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Phythian, C.J.; Michalopoulou, E.; Duncan, J.S. Assessing the Validity of Animal-Based Indicators of Sheep Health and Welfare: Do Observers Agree? Agriculture 2019, 9, 88. [Google Scholar] [CrossRef]
- Mogil, J.S.; Crager, S.E. What should we be measuring in behavioral studies of chronic pain in animals? Pain 2004, 112, 12–15. [Google Scholar] [CrossRef]
- Grant, C. Behavioural responses of lambs to common painful husbandry procedures. Appl. Anim. Behav. Sci. 2004, 87, 255. [Google Scholar] [CrossRef]
- Guesgen, M.J.; Beausoleil, N.J.; Minot, E.O.; Stewart, M.; Stafford, K.J. Social context and other factors influence the behavioural expression of pain by lambs. Appl. Anim. Behav. Sci. 2014, 159, 41–49. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
Variable | Variable Scale | Groups | p-Value | |||
---|---|---|---|---|---|---|
T1 (Control Group) | T2 (Experimental Group) | |||||
N | Mean/Median ± SD (Min–Max) | N | Mean/Median ± SD (Min–Max) | |||
Temperature (24 h) | 0—Normal | 17 | 0.88/1 ± 0.76 (0–2) | 28 | 0.56/0 ± 0.74 (0–2) | 0.08 |
1—Slight fever | 20 | 13 | ||||
2—High fever | 11 | 7 | ||||
Diarrhea score | 0—normal feces | 44 | 0.083/0 ± 0.28 (0–1) | 43 | 0.1/0 ± 0.31 (0–1) | 1 |
1—“soft” feces | 4 | 5 | ||||
Lameness | 0—No lameness | 35 | 0.33/0 ± 0.6 (0–2) | 41 | 0.15/0 ± 0.36 (0–1) | 0.18 |
1—Minor lameness | 10 | 7 | ||||
2—Lameness | 3 | 0 | ||||
Mastitis | 0—No mastitis or lesions present | 25 | 0.65/0 ± 0.76 (0–2) | 30 | 0.46/0 ± 0.65 (0–2) | 0.41 |
1—Mild mastitis and/or minor lesions | 15 | 14 | ||||
2—Mastitis and/or severe lesions | 8 | 4 | ||||
Udder characteristics | ||||||
Formation/Regression | 0—In lactation | 21 | 0.66/1 ± 0.66 (0–2) | 36 | 0.25/0 ± 0.44 (0–1) | 0.002 * |
1—Poorly formed/in regression | 22 | 12 | ||||
2—Not formed/with low milk production | 5 | 0 | ||||
Redness | 0—Physiological skin color | 17 | 0.81/1 ± 0.7 (0–2) | 29 | 0.4/0 ± 0.49 (0–1) | 0.001 * |
1—Moderate redness | 23 | 19 | ||||
2—Strong redness | 8 | 0 | ||||
Consistency | 0—Loose | 16 | 0.71/1 ± 0.54 (0–2) | 32 | 0.35/0 ± 0.53 (0–2) | 0.002 * |
1—Elastic | 30 | 15 | ||||
2—Solid | 2 | 1 | ||||
Painfulness | 0—Not painful | 17 | 0.96/1 ± 0.82 (0–2) | 25 | 0.63/0 ± 0.73 (0–2) | 0.12 |
1—Low grade painful | 16 | 16 | ||||
2—High grade Painful | 15 | 7 |
Variable | Variable Scale | Groups | p-Value | |||
---|---|---|---|---|---|---|
T1 (Control Group) | T2 (Experimental Group) | |||||
N | Mean/Median ± SD (Min–Max) | N | Mean/Median ± SD (Min–Max) | |||
Brix Thresholds | Poor (<22%) | 15 | 23.33/23 ± 3.51 (17–29) | 3 | 26.5/28 ± 2.8 (19–29) | 0.004 * |
Fair (22–26%) | 21 | 13 | ||||
Good (>26%) | 12 | 32 | ||||
Fat | 5.97/5.85 ± 0.4 (5.44–6.98) | 6.63/6.6 ± 0.38 (5.68–7.38) | <0.001 * | |||
Lactose | 4.88/4.86 ± 0.1 (4.76–5.16) | 4.89/4.88 ± 0.15 (4.58–5.09) | 0.53 | |||
Protein | 5.48/5.47 ± 0.15 (5.27–5.88) | 5.56/5.47 ± 0.26 (5.26–6.24) | 0.9 | |||
Total solids | 17.1/16.96 ± 0.32 (16.72–17.78) | 17.56/17.48 ± 0.46 (16.81–19.06) | <0.001 * |
Mycotoxins | Concentration (μg/kg) | Maximum Level (μg/kg) According to EU Regulation * | Technical Limit (μg/kg) |
---|---|---|---|
AF-B1 | 26.66 | 20 | 5 |
FUM (B1 + B2) | >4000 | 20,000–50,000 | 1500 |
OTA | 1.62 | 250 | 50 |
DON | <150 | 2000 | 300 |
ZEN | <35 | 500 | 100 |
T2/HT-2 | <40 | 250 | 50 |
Parameters | T1 (Control Group) | T2 (Experimental Group) | p Value |
---|---|---|---|
TBARS (μM MDA) | 3.84 ± 0.31 a | 2.17 ± 0.26 b | <0.001 |
Carbs (nmol/mg protein) | 1.85 ± 0.13 a | 1.25 ± 0.19 b | <0.014 |
TAC (mM Trolox Equivalent) | 0.79 ± 0.01 a | 0.87 ± 0.03 a | 0.211 |
Parameter | T1 (Control Group) | T2 (Experimental Group) | p Value |
---|---|---|---|
Alanine aminotransferase (ALT, U/L) | 38.14 ± 0.78 a | 17.73 ± 0.63 b | 0.011 |
Aspartate aminotransferase (AST, U/L) | 110.31 ± 1.33 a | 79.51 ± 1.16 b | 0.027 |
Alkaline phosphatase (ALP, U/L) | 136.98 ± 1.42 a | 97.89 ± 1.69 b | 0.021 |
Parameters | T1 (Control Group) | T2 (Experimental Group) | p Value |
---|---|---|---|
TBARS (μM MDA) | 21.03 ± 1.32 a | 9.88 ± 0.89 b | <0.001 |
CARBS (nmol/mg protein) | 0.48 ± 0.11 a | 0.24 ± 0.04 b | <0.001 |
Ingredients | kg per Ton |
---|---|
Alfalfa hay | 300 |
Corn silage | 200 |
Soybean meal | 100 |
Corn grain | 150 |
Barley grain | 100 |
Sunflower meal | 60 |
Wheat brans | 72 |
Fat | 5 |
Molasses | 15 |
Mineral and vitamin premix * | 10 |
Monofos | 7 |
Sodium bicarbonate | 3 |
Salt | 4 |
Adhesive | 3 |
Calcium carbonate | 21 |
Chemical composition | |
Energy (KJ/100 g) | 1525 |
Crude protein (%) | 17.7 |
Crude fiber (%) | 3.32 |
Crude fat (%) | 3.38 |
Ash (%) | 6.36 |
Sodium (Na) (%) | 0.33 |
Calcium (Ca) (%) | 1.19 |
Phosphorus (P) (%) | 0.55 |
Magnesium (Mg) (%) | 0.28 |
Vitamins | Trace Elements | ||
---|---|---|---|
Vitamin A (3a672a) | 15,000 I.U. | Sodium selenite (Se) | 0.35 mg |
Vitamin D3 | 2500 I.U. | Iron (II) sulfate monohydrate | 120 mg |
Vitamin Ε (dl-a tocopheryl acetate) | 50 mg | Manganese (II) oxide | 105.4 mg |
Zinc oxide | 78 mg | ||
Vitamin Β1 | 5 mg | Co (II) carbonate | 0.3 mg |
Vitamin Β2 | 0.8 mg | Iodine (calcium Iodate) | 4 mg |
Vitamin B6 | 0.35 mg | Zinc chelate of glycine hydrate | 34 mg |
Vitamin B12 | 20 mcg | Selenium (selenomethionine) | 0.07 mg |
Niacin | 24.75 mg | Antioxidants: (Ε310) | 0.4 mg |
Biotin | 2.4 mg | ΒHΤ (Ε321) | 0.2 mg |
Saccharomyces cerevisiae | 750 × 107 cfu | 1a330 Citric acid | 0.2 mg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papakonstantinou, G.I.; Eliopoulos, C.; Meletis, E.; Riahi, I.; Stampinas, E.-G.; Arapoglou, D.; Gougoulis, D.; Dimoveli, K.; Filippou, D.; Manouras, A.; et al. Effects of a Phytogenic Mycotoxin Detoxifier on Oxidative Status, Health, and Performance in Dairy Sheep. Toxins 2025, 17, 425. https://doi.org/10.3390/toxins17080425
Papakonstantinou GI, Eliopoulos C, Meletis E, Riahi I, Stampinas E-G, Arapoglou D, Gougoulis D, Dimoveli K, Filippou D, Manouras A, et al. Effects of a Phytogenic Mycotoxin Detoxifier on Oxidative Status, Health, and Performance in Dairy Sheep. Toxins. 2025; 17(8):425. https://doi.org/10.3390/toxins17080425
Chicago/Turabian StylePapakonstantinou, Georgios I., Christos Eliopoulos, Eleftherios Meletis, Insaf Riahi, Evangelos-Georgios Stampinas, Dimitrios Arapoglou, Dimitrios Gougoulis, Konstantina Dimoveli, Dimitrios Filippou, Alexandros Manouras, and et al. 2025. "Effects of a Phytogenic Mycotoxin Detoxifier on Oxidative Status, Health, and Performance in Dairy Sheep" Toxins 17, no. 8: 425. https://doi.org/10.3390/toxins17080425
APA StylePapakonstantinou, G. I., Eliopoulos, C., Meletis, E., Riahi, I., Stampinas, E.-G., Arapoglou, D., Gougoulis, D., Dimoveli, K., Filippou, D., Manouras, A., Tsekouras, N., Fotos, L., Kostoulas, P., Christodoulopoulos, G., & Papatsiros, V. G. (2025). Effects of a Phytogenic Mycotoxin Detoxifier on Oxidative Status, Health, and Performance in Dairy Sheep. Toxins, 17(8), 425. https://doi.org/10.3390/toxins17080425