Metabarcoding Reveals Diversity of Potentially Toxic Algae in Papeete Port (Tahiti)
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Sampling and eDNA Extraction
4.2. DNA Metabarcoding Library Preparation and Sequencing
4.3. Bioinformatics Analysis
4.4. Harmful Algae Events in French Polynesia
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erdner, D.L.; Dyble, J.; Parsons, M.L.; Stevens, R.C.; Hubbard, K.A.; Wrabel, M.L.; Moore, S.K.; Lefebvre, K.A.; Anderson, D.M.; Bienfang, P.; et al. Centers for Oceans and Human Health: A unified approach to the challenge of harmful algal blooms. Environ. Health 2008, 7 (Suppl. S2), S2. [Google Scholar] [CrossRef] [PubMed]
- Hallegraeff, G.M.; Anderson, D.M.; Belin, C.; Bottein, M.Y.D.; Bresnan, E.; Chinain, M.; Enevoldsen, H.; Iwataki, M.; Karlson, B.; McKenzie, C.H.; et al. Perceived global increase in algal blooms is attributable to intensified monitoring and emerging bloom impacts. Commun. Earth Environ. 2021, 2, 117. [Google Scholar] [CrossRef] [PubMed]
- Copeland, N.K.; Palmer, W.R.; Bienfang, P.K. Ciguatera fish poisoning in Hawai’i and the Pacific. Hawaii J. Med. Public Health 2014, 73 (Suppl. S2), 24–27. [Google Scholar] [PubMed]
- Skinner, M.P.; Brewer, T.D.; Johnstone, R.; Fleming, L.E.; Lewis, R.J. Ciguatera fish poisoning in the Pacific Islands (1998 to 2008). PLoS Negl. Trop. Dis. 2011, 5, e1416. [Google Scholar] [CrossRef]
- Chinain, M.; Gatti Howell, C.; Roué, M.; Ung, A.; Henry, K.; Revel, T.; Cruchet, P.; Viallon, J.; Darius, H.T. Ciguatera poisoning in French Polynesia: A review of the distribution and toxicity of Gambierdiscus spp., and related impacts on food web components and human health. Harmful Algae 2023, 129, 102525. [Google Scholar] [CrossRef]
- Chinain, M.; Gatti, C.M.I.; Ung, A.; Cruchet, P.; Revel, T.; Viallon, J.; Sibat, M.; Varney, P.; Laurent, V.; Hess, P.; et al. Evidence for the Range Expansion of Ciguatera in French Polynesia: A Revisit of the 2009 Mass-Poisoning Outbreak in Rapa Island (Australes Archipelago). Toxins 2020, 12, 759. [Google Scholar] [CrossRef]
- Chinain, M.; Gatti, C.M.I.; Darius, H.T.; Quod, J.P.; Tester, P.A. Ciguatera poisonings: A global review of occurrences and trends. Harmful Algae 2021, 102, 101873. [Google Scholar] [CrossRef]
- Ardura, A.; Borrell, Y.J.; Fernández, S.; González Arenales, M.; Martínez, J.L.; Garcia-Vazquez, E. Nuisance algae in ballast water facing international conventions. Insights from DNA Metabarcoding in ships arriving in Bay of Biscay. Water 2020, 12, 2168. [Google Scholar] [CrossRef]
- Doblin, M.A.; Popels, L.C.; Coyne, K.J.; Hutchins, D.A.; Cary, S.C.; Dobbs, F.C. Transport of the harmful bloom alga Aureococcus anophagefferens by oceangoing ships and coastal boats. Appl. Environ. Microbiol. 2004, 70, 6495–6500. [Google Scholar] [CrossRef]
- Edmiston, C.A.; Cochlan, W.P.; Ikeda, C.E.; Chang, A.L. Impacts of a temperate to tropical voyage on the microalgal hull fouling community of an atypically-operated vessel. Mar. Poll. Bull. 2021, 165, 112112. [Google Scholar] [CrossRef]
- Medlin, L. Molecular tools for monitoring harmful algal blooms. Environ. Sci. Pollut. Res. 2013, 20, 6683–6685. [Google Scholar] [CrossRef]
- Valentini, A.; Taberlet, P.; Miaud, C.; Civade, R.; Herder, J.; Thomsen, P.F.; Bellemain, E.; Besnard, A.; Coissac, E.; Boyer, F.; et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 2016, 25, 929–942. [Google Scholar] [CrossRef]
- Deiner, K.; Bik, H.M.; Mächler, E.; Seymour, M.; Lacoursière-Roussel, A.; Altermatt, F.; Creer, S.; Bista, I.; Lodge, D.M.; de Vere, N.; et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 2017, 26, 5872–5895. [Google Scholar] [CrossRef] [PubMed]
- Rolton, A.; Rhodes, L.; Hutson, K.S.; Biessy, L.; Bui, T.; MacKenzie, L.; Symonds, J.E.; Smith, K.F. Effects of Harmful Algal Blooms on Fish and Shellfish Species: A Case Study of New Zealand in a Changing Environment. Toxins 2022, 14, 341. [Google Scholar] [CrossRef] [PubMed]
- SHIPNEXT. The Shipping Platform. Available online: https://shipnext.com/port/papeete-pfppt-pyf (accessed on 16 July 2025).
- Ardura, A.; Fernandez, S.; Haguenauer, A.; Planes, S.; Garcia-Vazquez, E. Ship-driven biopollution: How aliens transform the local ecosystem diversity in Pacific islands. Mar. Pollut. Bull. 2021, 166, 112251. [Google Scholar] [CrossRef]
- Lundholm, N.; Bernard, C.; Churro, C.; Escalera, L.; Hoppenrath, M.; Iwataki, M.; Larsen, J.; Mertens, K.; Moestrup, Ø.; Murray, S.; et al. (Eds.) IOC-UNESCO Taxonomic Reference List of Harmful Micro Algae; 2009 Onwards; Available online: https://www.marinespecies.org/hab (accessed on 30 April 2025).
- Hu, J.; Guo, R.; Lu, D.; Dai, X.; Zhu, Y.; Park, B.S.; Wang, P. Detection and Quantification of the Harmful Dinoflagellate Margalefidinium polykrikoides (East Asian Ribotype) in the Coastal Waters of China. Toxins 2022, 14, 95. [Google Scholar] [CrossRef] [PubMed]
- Karlson, B.; Andersen, P.; Arneborg, L.; Cembella, A.; Eikrem, W.; John, U.; West, J.J.; Klemm, J.K.; Kobos, J.; Lehtinen, S.; et al. Harmful algal blooms and their effects in coastal seas of Northern Europe. Harmful Algae 2021, 102, 101989. [Google Scholar] [CrossRef]
- Kim, J.H.; Tillmann, U.; Adams, N.G.; Krock, B.; Stutts, W.L.; Deeds, J.R.; Han, M.S.; Trainer, V.L. Identification of Azadinium species and a new azaspiracid from Azadinium poporum in Puget Sound, Washington State, USA. Harmful Algae 2017, 68, 152–167. [Google Scholar] [CrossRef]
- Soliño, L.; Costa, P.R. Global impact of ciguatoxins and ciguatera fish poisoning on fish, fisheries and consumers. Environ. Res. 2020, 182, 109111. [Google Scholar] [CrossRef]
- Lefebvre, K.A.; Robertson, A. Domoic acid and human exposure risks: A review. Toxicon 2010, 56, 218–230. [Google Scholar] [CrossRef]
- Robeson, M.S.; Devon, O.R.; Kaehler, B.D.; Ziemski, M.; Dillon, M.R.; Foster, J.T.; Bokulich, N.A. Rescript: Reproducible sequence taxonomy reference database management. PLoS Comput. Biol. 2021, 17, e1009581. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Leung, P.T.Y.; Gu, J.; Lam, V.T.T.; Murray, J.S.; Harwood, D.T.; Wai, T.-C.; Lam, P.K.S. Hemolysis associated toxicities of benthic dinoflagellates from Hong Kong waters. Mar. Poll. Bull. 2020, 155, 111114. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Wang, M.; Tang, Y.; Zhang, Q.; Duan, S.; Gobler, C.J. Acute toxicity of the cosmopolitan bloom-forming dinoflagellate Akashiwo sanguinea to finfish, shellfish, and zooplankton. Aquat. Microb. Ecol. 2017, 3, 209–222. [Google Scholar] [CrossRef]
- Gémin, M.-P.; Lanceleur, R.; Meslier, L.; Hervé, F.; Réveillon, D.; Amzil, Z.; Ternon, E.; Thomas, O.P.; Fessard, V. Toxicity of palytoxin, purified ovatoxin-a, ovatoxin-d and extracts of Ostreopsis cf. ovata on the Caco-2 intestinal barrier model. Environ. Toxicol. Pharmacol. 2022, 94, 103909. [Google Scholar] [CrossRef]
- Manning, S.R.; La Claire, J.W. Prymnesins: Toxic metabolites of the golden alga, Prymnesium parvum Carter (Haptophyta). Mar. Drugs 2010, 8, 678–704. [Google Scholar] [CrossRef]
- Larsson, K.; Hajdu, S.; Kilpi, M.; Larsson, R.; Leito, A.; Lyngs, P. Effects of an extensive Prymnesium polylepis bloom on breeding eiders in the Baltic Sea. J. Sea Res. 2014, 88, 21–28. [Google Scholar] [CrossRef]
- Etheridge, S.M. Paralytic shellfish poisoning: Seafood safety and human health perspectives. Toxicon 2010, 56, 108–122. [Google Scholar] [CrossRef]
- Deeds, J.R.; Landsberg, J.H.; Etheridge, S.M.; Pitcher, G.C.; Longan, S.W. Non-Traditional Vectors for Paralytic Shellfish Poisoning. Mar. Drugs 2008, 6, 308–348. [Google Scholar] [CrossRef]
- Place, A.R.; Ramos-Franco, J.; Waters, A.L.; Hamann, M.T. A toxic sterolysin from a 1950s culture of Gymnodinium veneficum Ballantine. Sci. Rep. 2024, 14, 17998. [Google Scholar] [CrossRef]
- Wang, X.; Fon, M.; Andersen, A.J.C.; Solhaug, A.; Ingebrigtsen, R.A.; Samdal, I.A.; Uhlig, S.; Miles, C.O.; Edvardsen, B.; Larsen, T.O. Insights into the nature of ichthyotoxins from the Chrysochromulina leadbeateri blooms in Northern Norwegian fjords. Harmful Algae 2024, 137, 102681. [Google Scholar] [CrossRef] [PubMed]
- Nieves, M.G.; Díaz, P.A.; Araya, M.; Salgado, P.; Rojas, R.; Quiroga, E.; Pizarro, G.; Álvarez, G. Effects of the toxic dinoflagellate Protoceratium reticulatum and its yessotoxins on the survival and feed ingestion of Argopecten purpuratus veliger larvae. Mar. Poll. Bull. 2024, 199, 116022. [Google Scholar] [CrossRef]
- Pearman, J.K.; von Ammon, U.; Laroche, O.; Zaiko, A.; Wood, S.A.; Zubia, M.; Planes, S.; Pochon, X. Metabarcoding as a tool to enhance marine surveillance of nonindigenous species in tropical harbors: A case study in Tahiti. Environ. DNA 2021, 3, 173–189. [Google Scholar] [CrossRef]
- King, T.L.; Nguyen, N.; Doucette, G.J.; Wang, Z.; Bill, B.D.; Peacock, M.B.; Madera, S.L.; Elston, R.A.; Trainer, V.L. Hiding in plain sight: Shellfish-killing phytoplankton in Washington State. Harmful Algae 2021, 105, 102032. [Google Scholar] [CrossRef] [PubMed]
- Johnston, W.; Hine, D.; Southgate, P. Overview of the Development and Modern Landscape of Marine Pearl Culture in the South Pacific. J. Shellfish Res. 2019, 38, 499. [Google Scholar] [CrossRef]
- Smith, K.F.; Biessy, L.; Argyle, P.A.; Trnski, T.; Halafihi, T.; Rhodes, L.L. Molecular Identification of Gambierdiscus and Fukuyoa (Dinophyceae) from Environmental Samples. Mar. Drugs 2017, 15, 243. [Google Scholar] [CrossRef]
- Santoferrara, L.F. Current practice in plankton metabarcoding: Optimization and error management. J. Plankton Res. 2019, 41, 571–582. [Google Scholar] [CrossRef]
- Moutinho, J.; Costa, F.O.; Duarte, S. Advancements in DNA Metabarcoding Protocols for Monitoring Zooplankton in Marine and Brackish Environments. J. Mar. Sci. Eng. 2024, 12, 2093. [Google Scholar] [CrossRef]
- Gallardo-Rodríguez, J.J.; Astuya-Villalón, A.; Llanos-Rivera, A.; Avello-Fontalba, V.; Ulloa-Jofré, V. A Critical Review on Control Methods for Harmful Algal Blooms. Rev. Aquac. 2019, 11, 661–684. [Google Scholar] [CrossRef]
- Seger, A.; Park, T.-G.; Hallegraeff, G. Assessment of the Efficacy of Clay Flocculation in Korean Fish Farm Waters: Cochlodinium Cell Removal and Mitigation of Ichthyotoxicity. Harmful Algae 2017, 61, 46–55. [Google Scholar] [CrossRef]
- Pal, M.; Yesankar, P.J.; Dwivedi, A.; Qureshi, A. Biotic Control of Harmful Algal Blooms (HABs): A Brief Review. J. Environ. Manag. 2020, 268, 110687. [Google Scholar] [CrossRef]
- Oh, J.W.; Pushparaj, S.S.C.; Muthu, M.; Gopal, J. Review of Harmful Algal Blooms (HABs) Causing Marine Fish Kills: Toxicity and Mitigation. Plants 2023, 12, 3936. [Google Scholar] [CrossRef]
- Sylvers, L.H.; Gobler, C.J. Cultivable seaweeds eliminate the lethal effects of the harmful alga, Margalefidinium polykrikoides, on early life stage fish. Aquaculture 2023, 574, 739676. [Google Scholar] [CrossRef]
- Hallegraeff, G.M. Transport of harmful marine microalgae via ship’s ballast water: Management and mitigation with special reference to the Arabian Gulf region. Aquat. Ecosys. Health Manag. 2015, 18, 290–298. [Google Scholar] [CrossRef]
- Direction des Ressources Marines de la Polynésie Française. Available online: https://www.ressources-marines.gov.pf/cartes-thematiques/zpr/ (accessed on 16 July 2025).
- Akar, Ö.; Demirci, A. Risk analysis, assessment and management for local fishing ports in Northeastern Mediterranean, Türkiye. Mar. Sci. Tech. Bull. 2023, 12, 201–211. [Google Scholar] [CrossRef]
- Wang, H.; Hu, Z.; Shang, L.; Leaw, C.P.; Lim, P.T.; Tang, Y.Z. Toxicity comparison among four strains of Margalefidinium polykrikoides from China, Malaysia, and USA (belonging to two ribotypes) and possible implications. J. Exp. Mar. Biol. Ecol. 2020, 524, 151293. [Google Scholar] [CrossRef]
- Trainer, V.L.; Moore, S.K.; Hallegraeff, G.; Kudela, R.M.; Clement, A.; Mardones, J.I.; Cochlan, W.P. Pelagic harmful algal blooms and climate change: Lessons from nature’s experiments with extremes. Harmful Algae 2020, 91, 101591. [Google Scholar] [CrossRef]
- Douard, M.; Fernandez, S.; Garcia-Vazquez, E.; Planes, S. Rapid expansion and ecosystem health risk of invasive biopollutants dispersed by maritime traffic in French Polynesia. Mar. Poll. Bull. 2024, 208, 116927. [Google Scholar] [CrossRef] [PubMed]
- Vasselon, V.; Rimet, F.; Tapolczai, K.; Bouchez, A. Assessing ecological status with diatoms DNA metabarcoding: Scaling-up on a WFD monitoring network (Mayotte island, France). Ecol. Indicators 2017, 82, 1–12. [Google Scholar] [CrossRef]
- Leray, M.; Yang, J.Y.; Meyer, C.P.; Mills, S.C.; Agudelo, N.; Ranwez, V.; Boehm, J.T.; Machida, R.J. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: Application for characterizing coral reef fish gut contents. Front. Zool. 2013, 10, 34. [Google Scholar] [CrossRef]
- Yu, D.W.; Ji, Y.; Emerson, B.C.; Wang, X.; Ye, C.; Yang, C.; Ding, Z. Biodiversity soup: Metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods Ecol. Evol. 2012, 3, 613–623. [Google Scholar] [CrossRef]
- Zhan, A.; Hulák, M.; Sylvester, F.; Huang, X.; Adebayo, A.A.; Abbott, C.L.; Adamowicz, S.J.; Heath, D.D.; Cristescu, M.E.; MacIsaac, H.J. High sensitivity of 454 pyrosequencing for detection of rare species in aquatic communities. Methods Ecol. Evol. 2013, 4, 558–565. [Google Scholar] [CrossRef]
- Vierna, J.; Doña, J.; Vizcaíno, A.; Serrano, D.; Roger, J. PCR cycles above routine numbers do not compromise high-throughput DNA barcoding results. Genome 2017, 60, 868–873. [Google Scholar] [CrossRef] [PubMed]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A quality control tool for high throughput sequence data. 2010. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 16 July 2025).
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Caporaso, J.G. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef]
- Ahyong, S.; Boyko, C.B.; Bernot, J.; Brandão, S.N.; Daly, M.; De Grave, S.; de Voogd, N.J.; Gofas, S.; Hernandez, F.; Hughes, L.; et al. World Register of Marine Species. 2025. Available online: https://www.marinespecies.org (accessed on 17 July 2025).
- FAIRsharing.org: INPN; National Inventory of Natural Heritage. Available online: https://fairsharing.org/10.25504/FAIRsharing.d9e488 (accessed on 12 August 2025).
- Intergovernmental Oceanographic Commission of UNESCO. Harmful Algae Event Database (HAEDAT). 2021. Available online: http://haedat.iode.org (accessed on 20 July 2025).
- Formulaire de Déclaration. Réseau de Surveillance de la Ciguatera et des Intoxications par Produits Marins de la Polynésie Française. Available online: https://www.ciguatera.pf/images/Fiches/Fiche%20Tahiti.pdf (accessed on 16 July 2025).
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 4. [Google Scholar]
Phylum | Species | Sequences |
---|---|---|
Bacillariophyta | 115 | 881,323 |
Chlorophyta | 5 | 18,852 |
Cryptophyta | 3 | 133 |
Crysophyta | 1 | 73 |
Haptophyta | 4 | 1581 |
Heterokontophyta | 1 | 3393 |
Myzozoa | 52 | 125,937 |
Ochrophyta | 10 | 69,793 |
Class | Species | Main Toxins | Reads | Sampling Locations |
---|---|---|---|---|
Bacillariophyceae | Pseudo-nitzschia caciantha | Domoic acid | 12 | 4 |
Bacillariophyceae | Pseudo-nitzschia cuspidata | Domoic acid | 3395 | 13 |
Bacillariophyceae | Pseudo-nitzschia delicatissima | Domoic acid | 62 | 12 |
Bacillariophyceae | Pseudo-nitzschia galaxiae | Domoic acid | 694,147 | 13 |
Dinophyceae | Akashiwo sanguinea | Hemolysin-like | 313 | 13 |
Dinophyceae | Alexandrium affine | PSP toxins | 252 | 10 |
Dinophyceae | Amphidinium carterae | Hemolysins | 13 | 1 |
Dinophyceae | Amphidoma languida | Azaspiracids | 3056 | 13 |
Dinophyceae | Azadinium poporum | Azaspiracid | 71 | 11 |
Dinophyceae | Azadinium spinosum | Azaspiracids | 476 | 13 |
Dinophyceae | Coolia canariensis | Yessotoxin analogue | 10 | 2 |
Dinophyceae | Gambierdiscus carpenteri | Maitotoxin | 11 | 1 |
Dinophyceae | Gambierdiscus pacificus | Ciguatoxin- and MTX-like toxins | 33 | 4 |
Dinophyceae | Margalefidinium fulvescens | Associated with fish kills without confirmed toxin production | 130 | 12 |
Dinophyceae | Margalefidinium polykrikoides | Associated with fish kills without confirmed toxin production | 2884 | 13 |
Dinophyceae | Ostreopsis ovata | Ovatoxins | 683 | 13 |
Dinophyceae | Protoceratium reticulatum | Yessotoxin | 48 | 11 |
Dinophyceae | Tripos fusus | Associated with fish kills, without confirmed toxin production | 513 | 13 |
Haptophyta | Chrysochromulina leadbeateri | Sterolysin-like | 254 | 13 |
Haptophyta | Phaeocystis globosa | Hemolysins | 288 | 13 |
Haptophyta | Prymnesium polylepis | Prymnesins | 119 | 13 |
Toxin | Main Harmful Effects | Affected Species | Carriers of Producing Algae |
---|---|---|---|
Azaspiracids [20] | AZP | Humans | Shellfish, crabs |
CFP toxins [21] | CFP, reduced recruitment | Humans, fish | Fish |
Domoic acid [22] | ASP, neurotoxicity | Humans, birds, mammals | Shellfish, finfish |
Hemolysins, hemolysin-like [23,24] | Increased mortality | Shellfish; finfish | Shellfish |
Ovatoxins [25] | Inflammatory response | Humans | Direct contact |
Prymnesins [26,27] | Increased mortality | Fish, shellfish, seabirds | Direct contact/shellfish |
PSP toxins [28,29] | PSP | Humans | Shellfish, fish, crustaceans |
Sterolysins, sterolysin-like [30,31] | Increased mortality | Fish | Direct contact |
Yessotoxin and analogues [32,33] | Increased mortality | Fish, shellfish | Shellfish |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandez, S.; Cartairade, L.; Garcia-Vazquez, E.; Planes, S. Metabarcoding Reveals Diversity of Potentially Toxic Algae in Papeete Port (Tahiti). Toxins 2025, 17, 424. https://doi.org/10.3390/toxins17080424
Fernandez S, Cartairade L, Garcia-Vazquez E, Planes S. Metabarcoding Reveals Diversity of Potentially Toxic Algae in Papeete Port (Tahiti). Toxins. 2025; 17(8):424. https://doi.org/10.3390/toxins17080424
Chicago/Turabian StyleFernandez, Sara, Lucie Cartairade, Eva Garcia-Vazquez, and Serge Planes. 2025. "Metabarcoding Reveals Diversity of Potentially Toxic Algae in Papeete Port (Tahiti)" Toxins 17, no. 8: 424. https://doi.org/10.3390/toxins17080424
APA StyleFernandez, S., Cartairade, L., Garcia-Vazquez, E., & Planes, S. (2025). Metabarcoding Reveals Diversity of Potentially Toxic Algae in Papeete Port (Tahiti). Toxins, 17(8), 424. https://doi.org/10.3390/toxins17080424