Electrophysiological Evidence of Contralateral Neuromuscular Effects Following Long-Term Botulinum Toxin Therapy in Hemifacial Spasm
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
- A confirmed diagnosis of HFS based on clinical neurological examination.
- A minimum of three months since the most recent botulinum toxin type A (BoNT-A) injection, to eliminate acute-phase interference with neuromuscular assessments.
- Exclusion criteria included:
- Known neuromuscular disorders (e.g., myasthenia gravis).
- History of facial trauma, cosmetic facial surgery, or permanent facial implants.
- Active systemic or localized infections.
- Prior history of peripheral facial palsy (due to potential neuromuscular remodeling unrelated to BoNT-A effects).
- Coagulopathies or current use of anticoagulant or muscle relaxant medications.
- Pregnancy or lactation, due to potential hormonal effects on neuromuscular physiology and associated ethical considerations.
2.2. Ethical Approval
2.3. BoNT-A Injection Protocol
2.4. Electrophysiological Assessments
2.5. CMAP Recordings
2.6. Single-Fiber Electromyography (SFEMG) and Jitter Analysis
- An MCD value greater than 34 µs was considered pathological.
- In addition, if ≥2 out of 20 fiber pairs exhibited jitter >44 µs, the result was also regarded as abnormal.
3. Results
- First-time BoNT-A recipients: n = 10 (25.6%)
- Recurrent BoNT-A recipients: n = 29 (74.4%)
3.1. CMAP Amplitude Changes
- Injected (affected) side: mean amplitude decreased from 1.5 ± 0.6 mV to 1.0 ± 0.4 mV, representing a 33.3% reduction (p < 0.001).
- Contralateral (non-injected) side: amplitude declined from 1.9 ± 0.7 mV to 1.5 ± 0.5 mV, indicating a 21.1% reduction (p < 0.001).
3.2. MCD and Jitter Changes (Contralateral Side)
- MCD: increased by 26.2%, from 28.6 ± 5.2 µs to 36.1 ± 6.8 µs (p < 0.001).
- Jitter: increased by 27.9%, from 30.1 ± 4.9 µs to 38.5 ± 7.2 µs (p < 0.001).
3.3. Subgroup Analysis: First-Time vs. Recurrent BoNT-A Recipients
3.3.1. Contralateral MCD:
- Pre-injection: first-time recipients: 26.2 ± 3.8 µs; recurrent recipients: 29.5 ± 5.1 µs (p = 0.009)
- Post-injection: first-time: 32.4 ± 4.6 µs; recurrent: 37.6 ± 6.9 µs (p < 0.001)
- Within-group increases:
- First-time: +23.7% (p = 0.049)
- Recurrent: +27.5% (p < 0.001)
- Between-group difference in increase: p = 0.039
3.3.2. Contralateral Jitter:
- Pre-injection: first-time: 27.8 ± 3.5 µs; recurrent: 31.2 ± 5.1 µs (p < 0.001)
- Post-injection: first-time: 33.2 ± 4.9 µs; recurrent: 39.5 ± 7.0 µs (p < 0.001)
- Within-group increases:
- ○
- First-time: +19.4% (p = 0.014)
- ○
- Recurrent: +26.6% (p < 0.001)
- Between-group difference in increase: p = 0.009 (Table 4)
4. Discussion
4.1. Clinical Implications
4.2. Limitations
4.3. Future Directions
- Longitudinal cohort studies tracking neuromuscular transmission parameters across multiple treatment cycles to evaluate cumulative effects.
- Combined functional imaging and neurophysiological approaches, such as transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI), should be used to characterize bilateral facial motor circuit involvement.
- Correlative histological investigations exploring patterns of denervation and reinnervation at the neuromuscular junction following repeated toxin exposure.
- Comparative dosing strategies, including booster versus maintenance protocols, to determine optimal regimens that reduce unintended diffusion while maintaining efficacy.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Ethical Publication Statement
Conflicts of Interest
Abbreviations
BoNT-A | Botulinum Toxin Type A |
CMAP | Compound Muscle Action Potential |
EMG | Electromyography |
HFS | Hemifacial Spasm |
MCD | Mean Consecutive Difference |
REZ | Root Exit Zone |
SFEMG | Single-Fiber Electromyography |
References
- Blitzer, A.L.; Phelps, P.O. Facial spasms. Dis. Mon. 2020, 66, 101041. [Google Scholar] [CrossRef]
- Elston, J.S. The management of blepharospasm and hemifacial spasm. J. Neurol. 1992, 239, 5–8. [Google Scholar] [CrossRef]
- Tan, N.C.; Chan, L.L.; Tan, E.K. Hemifacial spasm and involuntary facial movements. QJM 2002, 95, 493–500. [Google Scholar] [CrossRef]
- Ansari, A.; Tavanaei, R.; Alikhani, A.; Hajikarimloo, B.; Zoghi, S.; Alnemari, A.M.; Khorasanizadeh, M.H.; Zwagerman, N.T. Vascular compression in facial nerve hyperexcitability: A systematic review. Neurosurg. Rev. 2025, 48, 285. [Google Scholar] [CrossRef]
- Hyun, S.J.; Kong, D.S.; Park, K. Microvascular decompression for hemifacial spasm: Lessons learned from a prospective study of 1,174 operations. Neurosurg. Rev. 2010, 33, 325–334. [Google Scholar] [CrossRef]
- Montava, M.; Rossi, V.; Curto Fais, C.L.; Mancini, J.; Lavieille, J.P. Long-term surgical results in microvascular decompression for hemifacial spasm: Efficacy, morbidity, and quality of life. ACTA Otorhinolaryngol. Ital. 2016, 36, 220–227. [Google Scholar] [CrossRef]
- Cho, K.R.; Lee, H.S.; Kim, M.; Park, S.K.; Park, K. Optimal method for reliable lateral spread response monitoring during microvascular decompression surgery for hemifacial spasm. Sci. Rep. 2023, 13, 21672. [Google Scholar] [CrossRef]
- Eleopra, R.; Tugnoli, V.; Quatrale, R.; Rossetto, O.; Montecucco, C. Different types of botulinum toxin in humans. Mov. Disord. 2004, 19 (Suppl. 8), S53–S59. [Google Scholar] [CrossRef]
- Costa, J.; Espírito-Santo, C.; Borges, A.; Ferreira, J.; Coelho, M.M.; Moore, P.; Sampaio, C. Botulinum toxin type A therapy for hemifacial spasm. Cochrane Database Syst. Rev. 2005, CD004899. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Luo, W.; Liu, T.; Ni, Y.; Qin, Z. Neurotoxins acting at synaptic sites: A brief review on mechanisms and clinical applications. Toxins 2022, 15, 18. [Google Scholar] [CrossRef] [PubMed]
- Frick, C.G.; Richtsfeld, M.; Sahani, N.D.; Kaneki, M.; Blobner, M.; Martyn, J.A.J. Long-term effects of botulinum toxin on neuromuscular function. Anesthesiology 2007, 106, 1135–1146. [Google Scholar] [CrossRef] [PubMed]
- Borodic, G.E.; Ferrante, R.; Pearce, L.B.; Smith, K. Histologic assessment of dose-related diffusion and muscle fiber response after therapeutic botulinum A toxin injections. Mov. Disord. 1994, 9, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Kim, J. Contralateral botulinum toxin injection to improve facial asymmetry after acute facial paralysis. Otol. Neurotol. 2013, 34, 424–428. [Google Scholar] [CrossRef]
- Alimohammadi, M.; Rostedt Punga, A. Neurophysiological measures of efficacy and safety for botulinum toxin injection in facial and bulbar muscles: Special considerations. Toxins 2017, 9, 352. [Google Scholar] [CrossRef]
- Belvisi, D.; Leodori, G.; Costanzo, M.; Conte, A.; Berardelli, A. How does botulinum toxin really work? In Botulinum Toxin: Therapy for Neurologic Disorders. Handbook of Clinical Neurology; Brin, M.F., Hallett, M., Jankovic, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 221–236. [Google Scholar]
- Ruet, A.; Durand, M.C.; Denys, P.; Lofaso, F.; Genet, F.; Schnitzler, A. Single fiber electromyography analysis of botulinum toxin diffusion in patients with fatigue and pseudobotulism. Arch. Phys. Med. Rehabil. 2015, 96, 1103–1109. [Google Scholar] [CrossRef]
- Picelli, A.; Tamburin, S.; Di Censo, R.; Smania, N.; Filippetti, M. Does the diffusion profile differ between botulinum toxin type A formulations? Implications for the management of post-stroke spasticity. Toxins 2024, 16, 480. [Google Scholar] [CrossRef]
- Stålberg, E.V.; Sanders, D.B. Jitter recordings with concentric needle electrodes. Muscle Nerve 2009, 40, 331–339. [Google Scholar] [CrossRef]
- Stålberg, E.; Sanders, D.B.; Ali, S.; Cooray, G.; Leonardis, L.; Löseth, S.; Machado, F.; Maldonado, A.; Martinez-Aparicio, C.; Sandberg, A.; et al. Reference values for jitter recorded by concentric needle electrodes in healthy controls: A multicenter study. Muscle Nerve 2016, 53, 351–362. [Google Scholar] [CrossRef]
- Punga, A.R.; Eriksson, A.; Alimohammadi, M. Regional diffusion of botulinum toxin in facial muscles: A randomised double blind study and a consideration for clinical studies with split face design. Acta Derm. Venereol. 2015, 95, 948–951. [Google Scholar] [CrossRef]
- Siperstein, R. Review of botulinum toxin uptake and novel theory regarding potential spread days after injection. Aesthetic Surg. J. 2023, 43, 887–892. [Google Scholar] [CrossRef] [PubMed]
- Punga, A.R.; Alimohammadi, M.; Liik, M. Keeping up appearances: Don’t frown upon the effects of botulinum toxin injections in facial muscles. Clin. Neurophysiol. Pract. 2023, 8, 100–108. [Google Scholar] [CrossRef]
- Punga, A.R.; Alimohammadi, M. Concentric needle SFEMG reliability. Muscle Nerve 2017, 55, 385–391. [Google Scholar] [CrossRef]
- Roche, N.; Schnitzler, A.; Genêt, F.; Durand, M.; Bensmail, D. Undesirable distant effects following botulinum toxin type A injection. Clin. Neuropharmacol. 2008, 31, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Castaneda, J.; Jankovic, J. Long-term efficacy and safety of botulinum toxin injections in dystonia. Toxins 2013, 5, 249–266. [Google Scholar] [CrossRef]
- Kouyoumdjian, J.A.; Graça, C.R.; Oliveira, F.N. Jitter evaluation in distant and adjacent muscles after botulinum neurotoxin type A injection in 78 cases. Toxins 2020, 12, 549. [Google Scholar] [CrossRef]
- Tilki, H.E. Some reasons for frowning upon the effects of botulinum toxin injections in facial muscles. Clin. Neurophysiol. Pract. 2023, 8, 174–176. [Google Scholar] [CrossRef]
- Kouyoumdjian, J.A.; Stålberg, E.V. Concentric needle single–fiber electromyography: Normative jitter values on voluntarily activated extensor digitorum communis and orbicularis oculi muscles. Muscle Nerve 2008, 37, 694–699. [Google Scholar] [CrossRef] [PubMed]
- Alimohammadi, M.; Andersson, M.; Punga, A.R. Correlation of botulinum toxin dose with neurophysiological parameters of efficacy and safety in the glabellar muscles: A double-blind, placebo-controlled, randomized study. Acta Derm. Venereol. 2014, 94, 32–37. [Google Scholar] [CrossRef] [PubMed]
Variable | Min–Max/n (%) | Median | Mean ± SD |
---|---|---|---|
Age (years) | 29–65 | 63 | 58.6 ± 8.5 |
Treatment duration (years) | 1–20 | 5 | 6.2 ± 5.5 |
Gender: Male | 19 (48.7%) | ||
Gender: Female | 20 (51.3%) |
Amplitude | Affected Side | Contralateral Side | p | ||||
---|---|---|---|---|---|---|---|
Mean ± SD | Med (Min–Max) | Mean ± SD | Med (Min–Max) | ||||
Before BoNT-A | 1.5 ± 0.6 | 1.5 | 0.6–3.4 | 1.9 ± 0.7 | 1.8 | 0.9–3.7 | 0.000 w |
After BoNT-A | 1.0 ± 0.4 | 1.0 | 0.4–2.5 | 1.5 ± 0.5 | 1.4 | 0.6–2.9 | 0.000 w |
Before/After BoNT-A | 0.5 ± 0.4 | 0.4 | 0.0–1.8 | 0.5 ± 0.6 | 0.4 | 0.7–2.5 | 0.501 w |
Before/After BoNT-A p | 0.000 w | 0.000 w |
Measurement Parameter | Mean ± SD | Median | Min–Max | p |
---|---|---|---|---|
Contralateral Side MCD | ||||
Before BoNT-A | 33.2 ± 5.6 | 33 | 22–44 | 0.000 w |
After BoNT-A | 37.0 ± 5.3 | 36 | 28–48 | |
Contralateral Side Jitter | ||||
Before BoNT-A | 7.9 ± 6.2 | 5 | 0–24 | 0.000 w |
After BoNT-A | 14.3 ± 8.1 | 14 | 0–30 |
Measurement Timepoint | First-Time BoNT Injection (10 Patients) | Recurrent Treatment (29 Patients) | p | ||||
---|---|---|---|---|---|---|---|
Mean ± SD | Med (Min–Max) | Mean ± SD | Med (Min–Max) | ||||
Contralateral Side MCD | |||||||
Before BoNT-A | 29.2 ± 4.0 | 29.0 | 23.0–35.0 | 34.6 ± 5.5 | 34.0 | 22.0–44.0 | 0.009 m |
After BoNT-A | 31.4 ± 2.8 | 31.5 | 28.0–35.0 | 39.0 ± 4.5 | 39.0 | 30.0–48.0 | 0.00 m |
Before/After BoNT-A Change | 2.2 ± 3.1 | 2.0 | −4.0–7.0 | 4.8 ± 3.7 | 4.5 | −3.0–11.0 | 0.03 m |
Before/After BoNT-A Change p | 0.049 w | 0.000 w | |||||
Contralateral Side Jitter | |||||||
Before BoNT-A | 2.0 ± 2.6 | 0.0 | 0.0–5.0 | 9.9±5.7 | 10.0 | 0.0–24.0 | 0.000 m |
After BoNT-A | 5.0 ± 3.3 | 5.0 | 0.0–10.0 | 17.4 ± 6.7 | 15.0 | 9.0–30.0 | 0.000 m |
Before/After BoNT-A Change | 3.0 ± 2.6 | 5.0 | 0.0–5.0 | 7.3 ± 4.1 | 5.0 | 0.0–20.0 | 0.009 m |
Before/After BoNT-A Change p | 0.014 w | 0.000 w |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aliyeva, T.; Oztekin, M.F.; Eren, Y.; Oztekin, Z.N. Electrophysiological Evidence of Contralateral Neuromuscular Effects Following Long-Term Botulinum Toxin Therapy in Hemifacial Spasm. Toxins 2025, 17, 407. https://doi.org/10.3390/toxins17080407
Aliyeva T, Oztekin MF, Eren Y, Oztekin ZN. Electrophysiological Evidence of Contralateral Neuromuscular Effects Following Long-Term Botulinum Toxin Therapy in Hemifacial Spasm. Toxins. 2025; 17(8):407. https://doi.org/10.3390/toxins17080407
Chicago/Turabian StyleAliyeva, Tehran, Mehmet Fevzi Oztekin, Yasemin Eren, and Zeynep Nese Oztekin. 2025. "Electrophysiological Evidence of Contralateral Neuromuscular Effects Following Long-Term Botulinum Toxin Therapy in Hemifacial Spasm" Toxins 17, no. 8: 407. https://doi.org/10.3390/toxins17080407
APA StyleAliyeva, T., Oztekin, M. F., Eren, Y., & Oztekin, Z. N. (2025). Electrophysiological Evidence of Contralateral Neuromuscular Effects Following Long-Term Botulinum Toxin Therapy in Hemifacial Spasm. Toxins, 17(8), 407. https://doi.org/10.3390/toxins17080407