Apitherapy with Royal Jelly and Green Propolis EPP-AF® Improves Cardiovascular Risk Markers in Patients Undergoing Hemodialysis
Abstract
1. Introduction
2. Results
2.1. Participant Characteristics
2.2. Dietary Intake Profile
2.3. Effects on Lipid Profile
2.4. Effects on Inflammatory and Oxidative Stress Markers
2.5. Effects on Uremic Toxins
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Study Design and Population
5.1.1. Anthropometric Analysis
5.1.2. Food Intake
5.1.3. Biochemical Analysis
5.2. Uremic Toxin Analysis
5.3. Determination of Inflammatory Cytokines IL-6 and TNF-α
5.4. Determination of Lipid Peroxidation
5.5. Determination of Plasma Protein Carbonyl Content
Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CKD | Chronic kidney disease |
CVD | Cardiovascular disease |
HDL-C | High-density lipoprotein cholesterol |
NF-kB | Nuclear factor kB |
RJ | Royal jelly |
GP | Green propolis |
P | Propolis |
IL-10 | Interleukin 10 |
IL-1β | Interleukin 1 beta |
IL-6 | Interleukin 6 |
TNF-α | Tumor Necrosis Factor alpha |
IFN-γ | Interferon gamma |
HRQoL | Health-related quality of life |
DM | Diabetes Mellitus |
BMI | Body mass index |
Kt/V | Kinetic index of dialysis adequacy |
HD | Hemodialysis |
LDL-C | Low-density lipoprotein cholesterol |
MDA | Malondialdehyde |
IS | Indoxyl Sulfate |
p-CS | P cresyl sulfate |
IAA | Indole-3-acetic acid |
HDS | Tukey Honest Significant Difference |
Nrf2 | Nuclear factor erythroid 2-related factor 2 |
MIP-1β | Macrophage inflammatory protein-1β |
ROS | Reactive oxygen species |
NO | Nitric oxide |
Cox-2 | Cyclooxygenase-2 |
mRNA | Messenger ribonucleic acid |
LPS | Lipopolysaccharide |
SA | Sebacic acid |
SOD | Superoxide Dismutase |
SQLE | Squalene epoxidase |
SREBP-1 | Sterol regulatory element-binding protein |
LDLR | Low-density lipoprotein receptor |
TIF | Tubulointerstitial fibrosis |
TGF-β | Transforming growth factor beta |
TLR4 | Toll-like receptor 4 |
References
- Foreman, K.J.; Marquez, N.; Dolgert, A.; Fukutaki, K.; Fullman, N.; McGaughey, M.; Pletcher, M.A.; Smith, A.E.; Tang, K.; Yuan, C.W.; et al. Forecasting Life Expectancy, Years of Life Lost, and All-Cause and Cause-Specific Mortality for 250 Causes of Death: Reference and Alternative Scenarios for 2016–40 for 195 Countries and Territories. Lancet 2018, 392, 2052–2090. [Google Scholar] [CrossRef]
- Yu, A.S.; Pak, K.J.; Zhou, H.; Shaw, S.F.; Shi, J.; Broder, B.I.; Sim, J.J. All-Cause and Cardiovascular-Related Mortality in CKD Patients With and Without Heart Failure: A Population-Based Cohort Study in Kaiser Permanente Southern California. Kidney Med. 2023, 5, 100624. [Google Scholar] [CrossRef]
- Bello, A.K.; Okpechi, I.G.; Osman, M.A.; Cho, Y.; Htay, H.; Jha, V.; Wainstein, M.; Johnson, D.W. Epidemiology of Haemodialysis Outcomes. Nat. Rev. Nephrol. 2022, 18, 378–395. [Google Scholar] [CrossRef]
- Hobson, S.; de Loor, H.; Kublickiene, K.; Beige, J.; Evenepoel, P.; Stenvinkel, P.; Ebert, T. Lipid Profile Is Negatively Associated with Uremic Toxins in Patients with Kidney Failure—A Tri-National Cohort. Toxins 2022, 14, 412. [Google Scholar] [CrossRef]
- Suh, S.H.; Kim, S.W. Dyslipidemia in Patients with Chronic Kidney Disease: An Updated Overview. Diabetes Metab. J. 2023, 47, 612. [Google Scholar] [CrossRef]
- Jha, P.K.; Nakano, T.; Itto, L.Y.U.; Barbeiro, M.C.; Lupieri, A.; Aikawa, E.; Aikawa, M. Vascular Inflammation in Chronic Kidney Disease: The Role of Uremic Toxins in Macrophage Activation. Front. Cardiovasc. Med. 2025, 12, 1574489. [Google Scholar] [CrossRef]
- El-Didamony, S.E.; Gouda, H.I.A.; Zidan, M.M.M.; Amer, R.I. Bee Products: An Overview of Sources, Biological Activities and Advanced Approaches Used in Apitherapy Application. Biotechnol. Rep. 2024, 44, e00862. [Google Scholar] [CrossRef]
- Olas, B. Bee Products as Interesting Natural Agents for the Prevention and Treatment of Common Cardiovascular Diseases. Nutrients 2022, 14, 2267. [Google Scholar] [CrossRef]
- Pasupuleti, V.R.; Sammugam, L.; Ramesh, N.; Gan, S.H. Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits. Oxid. Med. Cell. Longev. 2017, 2017, 1259510. [Google Scholar] [CrossRef]
- Berretta, A.A.; Nascimento, A.P.; Bueno, P.C.P.; Leite Vaz, M.M.d.O.L.; Marchetti, J.M. Propolis Standardized Extract (EPP-AF ®), an Innovative Chemically and Biologically Reproducible Pharmaceutical Compound for Treating Wounds. Int. J. Biol. Sci. 2012, 8, 512–521. [Google Scholar] [CrossRef]
- MacHado, J.L.; Assunção, A.K.M.; Da Silva, M.C.P.; Reis, A.S.D.; Costa, G.C.; Arruda, D.D.S.; Rocha, B.A.; Vaz, M.M.D.O.L.L.; Paes, A.M.D.A.; Guerra, R.N.M.; et al. Brazilian Green Propolis: Anti-Inflammatory Property by an Immunomodulatory Activity. Evidence-based Complement. Altern. Med. 2012, 2012, 157652. [Google Scholar] [CrossRef]
- Hori, J.I.; Zamboni, D.S.; Carrão, D.B.; Goldman, G.H.; Berretta, A.A. The Inhibition of Inflammasome by Brazilian Propolis (EPP-AF). Evidence-based Complement. Altern. Med. 2013, 2013, 418508. [Google Scholar] [CrossRef]
- Bueno-Silva, B.; Kawamoto, D.; Ando-Suguimoto, E.S.; Alencar, S.M.; Rosalen, P.L.; Mayer, M.P.A. Brazilian Red Propolis Attenuates Inflammatory Signaling Cascade in Lpsactivated Macrophages. PLoS ONE 2015, 10, e0144954. [Google Scholar] [CrossRef]
- Kurek-Górecka, A.; Kłósek, M.; Pietsz, G.; Balwierz, R.; Olczyk, P.; Czuba, Z.P. Ethanolic Extract of Propolis and CAPE as Cardioprotective Agents against LPS and IFN-α Stressed Cardiovascular Injury. Nutrients 2024, 16, 627. [Google Scholar] [CrossRef]
- Franchin, M.; Freires, I.A.; Lazarini, J.G.; Nani, B.D.; da Cunha, M.G.; Colón, D.F.; de Alencar, S.M.; Rosalen, P.L. The Use of Brazilian Propolis for Discovery and Development of Novel Anti-Inflammatory Drugs. Eur. J. Med. Chem. 2018, 153, 49–55. [Google Scholar] [CrossRef]
- Nascimento, A.P.; Moraes, L.A.R.; Ferreira, N.U.; De Padua Moreno, G.; Uahib, F.G.M.; Barizon, E.A.; Berretta, A.A. The Lyophilization Process Maintains the Chemical and Biological Characteristics of Royal Jelly. Evid. Based Complement. Alternat. Med. 2015, 2015, 825068. [Google Scholar] [CrossRef]
- Kocot, J.; Kiełczykowska, M.; Luchowska-Kocot, D.; Kurzepa, J.; Musik, I. Antioxidant Potential of Propolis, Bee Pollen, and Royal Jelly: Possible Medical Application. Oxid. Med. Cell. Longev. 2018, 2018, 7074209. [Google Scholar] [CrossRef]
- Ahmad, S.; Campos, M.G.; Fratini, F.; Altaye, S.Z.; Li, J. New Insights into the Biological and Pharmaceutical Properties of Royal Jelly. Int. J. Mol. Sci. 2020, 21, 382. [Google Scholar] [CrossRef]
- Kumar, R.; Thakur, A.; Kumar, S.; Hajam, Y.A. Royal Jelly a Promising Therapeutic Intervention and Functional Food Supplement: A Systematic Review. Heliyon 2024, 10, e37138. [Google Scholar] [CrossRef]
- Silveira, M.A.D.; Teles, F.; Berretta, A.A.; Sanches, T.R.; Rodrigues, C.E.; Seguro, A.C.; Andrade, L. Effects of Brazilian Green Propolis on Proteinuria and Renal Function in Patients with Chronic Kidney Disease: A Randomized, Double-Blind, Placebo-Controlled Trial. BMC Nephrol. 2019, 20, 140. [Google Scholar] [CrossRef]
- Chermut, T.R.; Fonseca, L.; Figueiredo, N.; de Oliveira Leal, V.; Borges, N.A.; Cardozo, L.F.; Correa Leite, P.E.; Alvarenga, L.; Regis, B.; Delgado, A.; et al. Effects of Propolis on Inflammation Markers in Patients Undergoing Hemodialysis: A Randomized, Double-Blind Controlled Clinical Trial. Complement. Ther. Clin. Pract. 2023, 51, 101732. [Google Scholar] [CrossRef]
- Baptista, B.G.; Fanton, S.; Ribeiro, M.; Cardozo, L.F.; Regis, B.; Alvarenga, L.; Ribeiro-Alves, M.; Berretta, A.A.; Shiels, P.G.; Mafra, D. The Effect of Brazilian Green Propolis Extract on Inflammation in Patients with Chronic Kidney Disease on Peritoneal Dialysis: A Randomised Double-Blind Controlled Clinical Trial. Phytomedicine 2023, 114, 154731. [Google Scholar] [CrossRef]
- Anvarifard, P.; Ostadrahimi, A.; Ardalan, M.; Anbari, M.; Ghoreishi, Z. The Effects of Propolis on Pro-Oxidant–Antioxidant Balance, Glycemic Control, and Quality of Life in Chronic Kidney Disease: A Randomized, Double-Blind, Placebo-Controlled Trial. Sci. Rep. 2023, 13, 9884. [Google Scholar] [CrossRef]
- Osama, H.; Abdullah, A.; Gamal, B.; Emad, D.; Sayed, D.; Hussein, E.; Mahfouz, E.; Tharwat, J.; Sayed, S.; Medhat, S.; et al. Effect of Honey and Royal Jelly against Cisplatin-Induced Nephrotoxicity in Patients with Cancer. J. Am. Coll. Nutr. 2017, 36, 342–346. [Google Scholar] [CrossRef]
- Jagua-Gualdrón, A.; García-Reyes, N.A.; Africano-Lopez, H.L. Apitherapy for Drug-Induced Kidney Disease: A Narrative Review on Its Mechanisms. J. Complement. Integr. Med. 2025. [CrossRef]
- AKamel, A.A.; Marzouk, W.M.; Hashish, M.E.; Abd El Dayem, M.R. Synergistic antioxidant activity of honey bee products and their mixtures. Plant Arch. 2023, 23, 81–89. [Google Scholar] [CrossRef]
- Aboulghazi, A.; Fadil, M.; Touzani, S.; Hibaoui, L.; Hano, C.; Lyoussi, B. Phenolic Screening and Mixture Design Optimization for In Vitro Assessment of Antioxidant and Antimicrobial Activities of Honey, Propolis, and Bee Pollen. J. Food Biochem. 2024, 2024, 8246224. [Google Scholar] [CrossRef]
- Shaha, A.; Mizuguchi, H.; Kitamura, Y.; Fujino, H.; Yabumoto, M.; Takeda, N.; Fukui, H. Effect of Royal Jelly and Brazilian Green Propolis on the Signaling for Histamine H1 Receptor and Interleukin-9 Gene Expressions Responsible for the Pathogenesis of the Allergic Rhinitis. Biol. Pharm. Bull. 2018, 41, 1440–1447. [Google Scholar] [CrossRef]
- Gülpinar, D.G.; Polat, Z.A.; Çetinkaya, Ü. Therapeutic Potential of Propolis and Royal Jelly in Encephalitozoon Intestinalis Infection: An in Vitro Study. Acta Parasitol. 2025, 70, 26. [Google Scholar] [CrossRef]
- Barreto, D.V.; Barreto, F.C.; Liabeuf, S.; Temmar, M.; Lemke, H.D.; Tribouilloy, C.; Choukroun, G.; Vanholder, R.; Massy, Z.A. Plasma Interleukin-6 Is Independently Associated with Mortality in Both Hemodialysis and Pre-Dialysis Patients with Chronic Kidney Disease. Kidney Int. 2010, 77, 550–556. [Google Scholar] [CrossRef]
- Istanbuly, O.; Belcher, J.; Tabinor, M.; Solis-Trapala, I.; Lambie, M.; Davies, S.J. Estimating the Association between Systemic Interleukin-6 and Mortality in the Dialysis Population. Re-Analysis of the Global Fluid Study, Systematic Review and Meta-Analysis. BMC Nephrol. 2023, 24, 312. [Google Scholar] [CrossRef]
- Anvarifard, P.; Anbari, M.; Ostadrahimi, A.; Ardalan, M.; Ghoreishi, Z. A Comprehensive Insight into the Molecular and Cellular Mechanisms of the Effects of Propolis on Preserving Renal Function: A Systematic Review. Nutr. Metab. 2022, 19, 6. [Google Scholar] [CrossRef]
- Asgharpour, F.; Moghadamnia, A.A.; Motallebnejad, M.; Nouri, H.R. Propolis Attenuates Lipopolysaccharide-Induced Inflammatory Responses through Intracellular ROS and NO Levels along with Downregulation of IL-1β and IL-6 Expressions in Murine RAW 264.7 Macrophages. J. Food Biochem. 2019, 43, e12926. [Google Scholar] [CrossRef]
- Zulhendri, F.; Lesmana, R.; Tandean, S.; Christoper, A.; Chandrasekaran, K.; Irsyam, I.; Suwantika, A.A.; Abdulah, R.; Wathoni, N. Recent Update on the Anti-Inflammatory Activities of Propolis. Molecules 2022, 27, 8473. [Google Scholar] [CrossRef]
- Oršolić, N.; Jazvinšćak Jembrek, M. Royal Jelly: Biological Action and Health Benefits. Int. J. Mol. Sci. 2024, 25, 6023. [Google Scholar] [CrossRef]
- Ogawa, E.; Suzuki, N.; Kamiya, T.; Hara, H. Sebacic Acid, a Royal Jelly-Containing Fatty Acid, Decreases LPS-Induced IL-6 MRNA Expression in Differentiated Human THP-1 Macrophage-like Cells. J. Clin. Biochem. Nutr. 2024, 74, 192–198. [Google Scholar] [CrossRef]
- Khalifa, H.A.M.I.; Eleiwa, N.Z.H.; Nazim, H.A. Royal Jelly, A Super Food, Protects Against Celecoxib-Induced Renal Toxicity in Adult Male Albino Rats. Can. J. Kidney Heal. Dis. 2024, 11, 20543581241235526. [Google Scholar] [CrossRef]
- El-Seedi, H.R.; Eid, N.; Abd El-Wahed, A.A.; Rateb, M.E.; Afifi, H.S.; Algethami, A.F.; Zhao, C.; Al Naggar, Y.; Alsharif, S.M.; Tahir, H.E.; et al. Honey Bee Products: Preclinical and Clinical Studies of Their Anti-Inflammatory and Immunomodulatory Properties. Front. Nutr. 2022, 8, 761267. [Google Scholar] [CrossRef]
- Gu, H.; Song, I.B.; Han, H.J.; Lee, N.Y.; Cha, J.Y.; Son, Y.K.; Kwon, J. Anti-Inflammatory and Immune-Enhancing Effects of Enzyme-Treated Royal Jelly. Appl. Biol. Chem. 2018, 61, 227–233. [Google Scholar] [CrossRef]
- Minegaki, N.; Koshizuka, T.; Hatasa, K.; Kondo, H.; Kato, H.; Tannaka, M.; Takahashi, K.; Tsuji, M.; Inoue, N. The C-Terminal Penta-Peptide Repeats of Major Royal Jelly Protein 3 Ameliorate the Progression of Inflammation In Vivo and In Vitro. Biol. Pharm Bull. 2022, 45, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Khoshpey, B.; Djazayeri, S.; Amiri, F.; Malek, M.; Hosseini, A.F.; Hosseini, S.; Shidfar, S.; Shidfar, F. Effect of Royal Jelly Intake on Serum Glucose, Apolipoprotein A-I (ApoA-I), Apolipoprotein B (ApoB) and ApoB/ApoA-I Ratios in Patients with Type 2 Diabetes: A Randomized, Double-Blind Clinical Trial Study. Can. J. Diabetes 2016, 40, 324–328. [Google Scholar] [CrossRef]
- Chiu, H.F.; Chen, B.K.; Lu, Y.Y.; Han, Y.C.; Shen, Y.C.; Venkatakrishnan, K.; Golovinskaia, O.; Wang, C.K. Hypocholesterolemic Efficacy of Royal Jelly in Healthy Mild Hypercholesterolemic Adults. Pharm. Biol. 2016, 55, 497. [Google Scholar] [CrossRef]
- Kamakura, M.; Moriyama, T.; Sakaki, T. Changes in Hepatic Gene Expression Associated with the Hypocholesterolaemic Activity of Royal Jelly. J. Pharm. Pharmacol. 2006, 58, 1683–1689. [Google Scholar] [CrossRef]
- Chang, J.F.; Hsieh, C.Y.; Lu, K.C.; Chen, Y.W.; Liang, S.S.; Lin, C.C.; Hung, C.F.; Liou, J.C.; Wu, M.S. Therapeutic Targeting of Aristolochic Acid Induced Uremic Toxin Retention, SMAD 2/3 and JNK/ERK Pathways in Tubulointerstitial Fibrosis: Nephroprotective Role of Propolis in Chronic Kidney Disease. Toxins 2020, 12, 364. [Google Scholar] [CrossRef]
- Fonseca, L.; Ribeiro, M.; Schultz, J.; Borges, N.A.; Cardozo, L.; Leal, V.O.; Ribeiro-Alves, M.; Paiva, B.R.; Leite, P.E.C.; Sanz, C.L.; et al. Effects of Propolis Supplementation on Gut Microbiota and Uremic Toxin Profiles of Patients Undergoing Hemodialysis. Toxins 2024, 16, 416. [Google Scholar] [CrossRef]
- Chi, X.; Liu, Z.; Wang, H.; Wang, Y.; Wei, W.; Xu, B. Royal Jelly Enhanced the Antioxidant Activities and Modulated the Gut Microbiota in Healthy Mice. J. Food Biochem. 2021, 45, e13701. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- de Loor, H.; Meijers, B.K.; Meyer, T.W.; Bammens, B.; Verbeke, K.; Dehaen, W.; Evenepoel, P. Sodium octanoate to reverse indoxyl sulfate and p-cresyl sulfate albumin binding in uremic and normal serum during sample preparation followed by fluorescence liquid chromatography. J. Chromatogr. A 2009, 1216, 4684–4688. [Google Scholar] [CrossRef] [PubMed]
- Meert, N.; Schepers, E.; Glorieux, G.; Van Landschoot, M.; Goeman, J.L.; Waterloos, M.A.; Dhondt, A.; Van der Eycken, J.; Vanholder, R. Novel method for simultaneous determination of p-cresylsulphate and p-cresylglucuronide: Clinical data and pathophysiological implications. Nephrol. Dial. Transplant. 2012, 27, 2388–2396. [Google Scholar] [CrossRef] [PubMed]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Levine, R.L.; Garland, D.; Oliver, C.N.; Amici, A.; Climent, I.; Lenz, A.G.; Ahn, B.W.; Shaltiel, S.; Stadtman, E.R. Determination of Carbonyl Content in Oxidatively Modified Proteins. Methods Enzymol. 1990, 186, 464–478. [Google Scholar] [CrossRef]
Parameters | Overall | RJ + GP Group (N = 19) | Placebo Group (N = 19) | p-Value |
---|---|---|---|---|
Sex (Female/Male) | 12/26 | 7/12 | 5/14 | 0.72 |
Age (years) | 59.5 (17.0) | 59.0 (18.5) | 60.0 (16.5) | 0.91 |
BMI (Kg/m2) | 25.7 (5.8) | 24.2 (4.8) | 25.9 (10.7) | 0.45 |
Kt/V | 2.4 (0.5) | 2.3 (0.6) | 2.4 (0.7) | 0.18 |
HD vintage (months) | 57.0 (62.2) | 48.0 (41.5) | 60.0 (69.0) | 0.18 |
Dietary Variables | RJ + GP Group (N = 19) | Placebo Group (N = 19) | p-Value |
---|---|---|---|
Energy (kcal/day) | 1576.8 (1314.4–1839.1) | 1202.4 (940.9–1463.3) | 0.54 |
Carbohydrates (g/day) | 187.0 (153.8–220.3) | 147.4 (114.3–180.6) | 0.28 |
Lipids (g/day) | 55.0 (44.2–65.8) | 40.3 (29.5–51.1) | 0.19 |
Protein (g/kg/day) | 1.0 (0.9–1.2) | 0.9 (0.8–1.1) | 0.88 |
Potassium (mg/day) | 1789.6 (1528.5–2050.7) | 1398.3 (1138–1658.6) | 0.12 |
Phosphorus (mg/day) | 919.3 (767.7–1071.0) | 680.7 (529.6–831.9) | 0.09 |
Sodium (mg/day) | 1785.3 (1393.3–2177.4) | 1324.5 (933.7–1715.3) | 0.30 |
Fibers (g/day) | 16.1 (12.0–20.2) | 16.6 (12.6–20.7) | 0.99 |
Variables | RJ + GP (N = 19) | p-Value | Placebo (N = 19) | p-Value | ||
---|---|---|---|---|---|---|
Baseline | Post | Baseline | Post | |||
Glucose (mg/dL) | 106.2 (88.2–124.2) | 106.0 (87.6–124.5) | 0.99 | 106.7 (89.9–123.5) | 118.7 (101.9–135.4) | 0.54 |
Phosphorus (mg/dL) | 5.0 (4.1–5.9) | 4.6 (3.7–5.5) | 0.74 | 4.4 (3.6–5.3) | 4.5 (3.7–5.4) | 0.99 |
Potassium (mg/dL) | 5.5 (5.0–6.0) | 5.4 (4.8–5.9) | 0.98 | 5.1 (4.6–5.6) | 5.5 (5.0–6.0) | 0.55 |
Urea (mg/dL) | 126.5 (108.1–144.8) | 134.2 (115.2–153.1) | 0.91 | 96.8 (79.6–114.0) | 132.7 (115.6–149.8) | 0.007 |
Creatinine (mg/dL) | 11.2 (9.4–12.9) | 11.7 (9.9–13.5) | 0.88 | 8.4 (6.7–10.1) | 10.9 (9.2–12.6) | 0.001 |
Albumin (mg/dL) | 4.1 (3.8–4.5) | 3.7 (3.4–4.1) | 0.25 | 4.3 (4.0–4.6) | 3.7 (3.4–4.0) | 0.03 |
Total cholesterol (mg/dL) | 140.5 (121.8–159.1) | 113.7 (94.8–132.6) | 0.03 | 136.2 (118.8–153.6) | 117.1 (99.8–134.5) | 0.10 |
Triglycerides (mg/dL) | 171.7 (116.4–227.1) | 138.4 (83.2–193.6) | 0.33 | 156.9 (104.8–209.0) | 141.2 (89.2–193.2) | 0.77 |
HDL-C (mg/dL) | 41.9 (36.3–47.6) | 37.4 (31.8–43.1) | 0.09 | 38.5 (33.1–43.8) | 41.9 (36.3–47.6) | 0.51 |
LDL-C (mg/dL) | 63.2 (49.0–77.4) | 50.0 (34.9–65.0) | 0.28 | 66.6 (53.0–80.3) | 52.9 (39.3–66.5) | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kemp, J.A.; Mendonça, M.; Chrispim, P.; Ribeiro, M.; Britto, I.; Coutinho-Wolino, K.S.; Ribeiro-Alves, M.; Nakao, L.S.; Kussi, F.; Coelho, E.B.; et al. Apitherapy with Royal Jelly and Green Propolis EPP-AF® Improves Cardiovascular Risk Markers in Patients Undergoing Hemodialysis. Toxins 2025, 17, 369. https://doi.org/10.3390/toxins17080369
Kemp JA, Mendonça M, Chrispim P, Ribeiro M, Britto I, Coutinho-Wolino KS, Ribeiro-Alves M, Nakao LS, Kussi F, Coelho EB, et al. Apitherapy with Royal Jelly and Green Propolis EPP-AF® Improves Cardiovascular Risk Markers in Patients Undergoing Hemodialysis. Toxins. 2025; 17(8):369. https://doi.org/10.3390/toxins17080369
Chicago/Turabian StyleKemp, Julie Ann, Marianna Mendonça, Paloma Chrispim, Marcia Ribeiro, Isadora Britto, Karen S. Coutinho-Wolino, Marcelo Ribeiro-Alves, Lia S. Nakao, Fernanda Kussi, Eduardo B. Coelho, and et al. 2025. "Apitherapy with Royal Jelly and Green Propolis EPP-AF® Improves Cardiovascular Risk Markers in Patients Undergoing Hemodialysis" Toxins 17, no. 8: 369. https://doi.org/10.3390/toxins17080369
APA StyleKemp, J. A., Mendonça, M., Chrispim, P., Ribeiro, M., Britto, I., Coutinho-Wolino, K. S., Ribeiro-Alves, M., Nakao, L. S., Kussi, F., Coelho, E. B., Berretta, A. A., Mafra, D., & Cardozo, L. (2025). Apitherapy with Royal Jelly and Green Propolis EPP-AF® Improves Cardiovascular Risk Markers in Patients Undergoing Hemodialysis. Toxins, 17(8), 369. https://doi.org/10.3390/toxins17080369