INM004: Polyclonal Neutralizing Antibodies Against Shiga Toxin as a Treatment for Hemolytic Uremic Syndrome
Abstract
:1. STEC-HUS, a Neglected Disease
2. Epidemiology of STEC-HUS
3. Shiga Toxin and Pathogenesis
4. From Bench to Bedside: How Protein Engineering Helped to Create a New Treatment
4.1. BLS as a Perfect Scaffold to Stabilize and Increase the Immunogenicity of StxB Subunits
4.2. Engineering of BLS-Stx
4.3. BLS-StxB Chimeras Are Highly Immunogenic and Trigger Protective Antibody Responses Against STEC-HUS
4.4. How Can We Take Advantage of the Extraordinary Immunogenicity of BLS-StxB Chimeras?
5. Clinical Development of INM004: How to Deal with a Rare Disease
5.1. Phase 1 Clinical Trial in Healthy Adult Volunteers
5.2. Phase 2 of INM004 for Preventing the Development of HUS in STEC-Infected Patients: An Ideal but Difficult Goal
5.3. Phase 2 Assessing the Safety, Pharmacokinetics and Efficacy of INM004 in Pediatric Patients with STEC-HUS
5.4. A Phase 3 Study to Evaluate the Efficacy of INM004 in Pediatric Patients with STEC-HUS
6. Potential Extensions of Indication for INM004
7. Development of a Vaccine for Prevention of STEC-HUS
8. Etiological Diagnosis
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mele, C.; Remuzzi, G.; Noris, M. Hemolytic uremic syndrome. Semin. Immunopathol. 2014, 36, 399–420. [Google Scholar] [CrossRef] [PubMed]
- Loirat, C.; Fakhouri, F.; Ariceta, G.; Besbas, N.; Bitzan, M.; Bjerre, A.; Coppo, R.; Emma, F.; Johnson, S.; Karpman, D.; et al. An international consensus approach to the management of atypical hemolytic uremic syndrome in children. Pediatr. Nephrol. 2016, 31, 15–39. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, J.; Rout, P.; Sedhai, Y.R. Hemolytic Uremic Syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar] [PubMed]
- Bruyand, M.; Mariani-Kurkdjian, P.; Gouali, M.; de Valk, H.; King, L.; Le Hello, S.; Bonacorsi, S.; Loirat, C. Hemolytic uremic syndrome due to Shiga toxin-producing Escherichia coli infection. Med. Mal. Infect. 2018, 48, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Freedman, S.B.; Van De Kar, N.C.A.J.; Tarr, P.I. Shiga Toxin–Producing Escherichia coli and the Hemolytic–Uremic Syndrome. N. Engl. J. Med. 2023, 389, 1402–1414. [Google Scholar] [CrossRef]
- Majowicz, S.E.; Scallan, E.; Jones-Bitton, A.; Sargeant, J.M.; Stapleton, J.; Angulo, F.J.; Yeung, D.H.; Kirk, M.D. Global Incidence of Human Shiga Toxin–Producing Escherichia coli Infections and Deaths: A Systematic Review and Knowledge Synthesis. Foodborne Pathog. Dis. 2014, 11, 447–455. [Google Scholar] [CrossRef]
- Swaminathan, B.; Gerner-Smidt, P.; Ng, L.-K.; Lukinmaa, S.; Kam, K.-M.; Rolando, S.; Gutiérrez, E.P.; Binsztein, N. Building PulseNet International: An Interconnected System of Laboratory Networks to Facilitate Timely Public Health Recognition and Response to Foodborne Disease Outbreaks and Emerging Foodborne Diseases. Foodborne Pathog. Dis. 2006, 3, 36–50. [Google Scholar] [CrossRef]
- Joseph, A.; Cointe, A.; Mariani Kurkdjian, P.; Rafat, C.; Hertig, A. Shiga Toxin-Associated Hemolytic Uremic Syndrome: A Narrative Review. Toxins 2020, 12, 67. [Google Scholar] [CrossRef]
- Tack, D.M.; Kisselburgh, H.M.; Richardson, L.C.; Geissler, A.; Griffin, P.M.; Payne, D.C.; Gleason, B.L. Shiga Toxin-Producing Escherichia coli Outbreaks in the United States, 2010–2017. Microorganisms 2021, 9, 1529. [Google Scholar] [CrossRef]
- Diseases Active Surveillance Network. Available online: https://wwwn.cdc.gov/FoodNetFast/HUS (accessed on 11 March 2025).
- European Centre for Disease Prevention and Control. STEC infection. In Annual Epidemiological Report for 2022; ECDC: Stockholm, Sweden, 2024; Available online: https://www.ecdc.europa.eu/en/publications-data/stec-infection-annual-epidemiological-report-2022 (accessed on 11 March 2025).
- Vally, H.; Hall, G.; Dyda, A.; Raupach, J.; Knope, K.; Combs, B.; Desmarchelier, P. Epidemiology of Shiga Toxin Producing Escherichia coli in Australia, 2000–2010. BMC Public Health 2012, 12, 63. [Google Scholar] [CrossRef]
- Rivas, M.; Chinen, I.; Guth, B.E.C. Enterohemorrhagic (Shiga Toxin-Producing) Escherichia coli. In Escherichia coli in the Americas; Torres, A., Ed.; Springer: Cham, Switzerland, 2016; pp. 97–123. [Google Scholar]
- Atamari-Anahui, N.; Cabello-Coca, S.; Alvarado-Gamarra, G.; Apeña-Cabrera, C.L. Frecuencia de Hospitalizaciones Por Síndrome Urémico Hemolítico En Niños de 0 a 14 Años En El Perú, Periodo 2015 a 2022. An. Fac. Med. 2023, 84, 186–191. [Google Scholar] [CrossRef]
- Repetto, H.A. Epidemic Hemolytic-Uremic Syndrome in Children. Kidney Int. 1997, 52, 1708–1719. [Google Scholar] [CrossRef] [PubMed]
- Alconcher, L.F.; Lucarelli, L.I.; Bronfen, S.; Villarreal, F. Kidney Sequelae in 281 Shiga Toxin–Producing Escherichia -Hemolytic Uremic Syndrome Patients after a Median Follow-up of 12 Years. Pediatr. Nephrol. 2024, 39, 1221–1228. [Google Scholar] [CrossRef]
- Ministerio de Salud de Argentina. Boletín Integrado de Vigilancia No. 663 SE 30. Available online: https://www.argentina.gob.ar/sites/default/files/2024/04/ben_663_se_30.pdf (accessed on 11 March 2025).
- European Centre for Disease Prevention and Control Surveillance Atlas of Infectious Diseases. 2022. Available online: https://atlas.ecdc.europa.eu/public/index.aspx (accessed on 14 April 2025).
- Ardissino, G.; Salardi, S.; Colombo, E.; Testa, S.; Borsa-Ghiringhelli, N.; Paglialonga, F.; Paracchini, V.; Tel, F.; Possenti, I.; Belingheri, M.; et al. Epidemiology of haemolytic uremic syndrome in children. Data from the North Italian HUS network. Eur. J. Pediatr. 2016, 175, 465–473. [Google Scholar] [CrossRef]
- Lynn, R.M.; O’Brien, S.J.; Taylor, C.M.; Adak, G.K.; Chart, H.; Cheasty, T.; Coia, J.E.; Gillespie, I.A.; Locking, M.E.; Reilly, W.J.; et al. Childhood hemolytic uremic syndrome, United Kingdom and Ireland. Emerg. Infect. Dis. 2005, 11, 590–596. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Beczkiewicz, A.T.E.; Scharff, R.L.; Kowalcyk, B.B. Facilitating Evaluation of Hemolytic Uremic Syndrome Long-Term Health Outcomes Through Social Media Support Groups. Front. Public Health 2020, 8, 544154. [Google Scholar] [CrossRef]
- Pianciola, L.; Rivas, M. Genotypic Features of Clinical and Bovine Escherichia coli O157 Strains Isolated in Countries with Different Associated-Disease Incidences. Microorganisms 2018, 6, 36. [Google Scholar] [CrossRef]
- Gerber, A.; Karch, H.; Allerberger, F.; Verweyen, H.M.; Zimmerhackl, L.B. Clinical Course and the Role of Shiga Toxin–Producing Escherichia coli Infection in the Hemolytic-Uremic Syndrome in Pediatric Patients, 1997–2000, in Germany and Austria: A Prospective Study. J. Infect. Dis. 2002, 186, 493–500. [Google Scholar] [CrossRef]
- Karmali, M.A. Infection by Shiga Toxin-Producing Escherichia coli: An Overview. Mol. Biotechnol. 2004, 26, 117–122. [Google Scholar] [CrossRef]
- Brandal, L.T.; Wester, A.L.; Lange, H.; Løbersli, I.; Lindstedt, B.-A.; Vold, L.; Kapperud, G. Shiga Toxin-Producing Escherichia coli Infections in Norway, 1992–2012: Characterization of Isolates and Identification of Risk Factors for Haemolytic Uremic Syndrome. BMC Infect. Dis. 2015, 15, 324. [Google Scholar] [CrossRef]
- Nüesch-Inderbinen, M.; Morach, M.; Cernela, N.; Althaus, D.; Jost, M.; Mäusezahl, M.; Bloomberg, G.; Stephan, R. Serotypes and Virulence Profiles of Shiga Toxin-Producing Escherichia coli Strains Isolated during 2017 from Human Infections in Switzerland. Int. J. Med. Microbiol. 2018, 308, 933–939. [Google Scholar] [CrossRef]
- Alconcher, L.F.; Balestracci, A.; Coccia, P.A.; Suarez, A.D.C.; Ramírez, F.B.; Monteverde, M.L.; Perez Y Gutiérrez, M.G.; Carlopio, P.M.; Principi, I.; Estrella, P.; et al. Hemolytic Uremic Syndrome Associated with Shiga Toxin-Producing Escherichia coli Infection in Argentina: Update of Serotypes and Genotypes and Their Relationship with Severity of the Disease. Pediatr. Nephrol. 2021, 36, 2811–2817. [Google Scholar] [CrossRef] [PubMed]
- Bielaszewska, M.; Mellmann, A.; Bletz, S.; Zhang, W.; Köck, R.; Kossow, A.; Prager, R.; Fruth, A.; Orth-Höller, D.; Marejková, M.; et al. Enterohemorrhagic Escherichia coli O26:H11/H−: A New Virulent Clone Emerges in Europe. Clin. Infect. Dis. 2013, 56, 1373–1381. [Google Scholar] [CrossRef] [PubMed]
- Cointe, A.; Birgy, A.; Mariani-Kurkdjian, P.; Liguori, S.; Courroux, C.; Blanco, J.; Delannoy, S.; Fach, P.; Loukiadis, E.; Bidet, P.; et al. Emerging Multidrug-Resistant Hybrid Pathotype Shiga Toxin–Producing Escherichia coli O80 and Related Strains of Clonal Complex 165, Europe. Emerg. Infect. Dis. 2018, 24, 2262–2269. [Google Scholar] [CrossRef]
- Bielaszewska, M.; Mellmann, A.; Zhang, W.; Köck, R.; Fruth, A.; Bauwens, A.; Peters, G.; Karch, H. Characterisation of the Escherichia coli Strain Associated with an Outbreak of Haemolytic Uraemic Syndrome in Germany, 2011: A Microbiological Study. Lancet Infect. Dis. 2011, 11, 671–676. [Google Scholar] [CrossRef]
- Carbonari, C.C.; Ricciardi, M.; Calvo, A.R.; Montes, A.; Deza, N.L.; Conde Valentino, M.A.; Zolezzi, G.; Baschkier, A.; Vago, M.; Acosta, D.; et al. An Stx-EAEC O59:NM[H19] Strain Isolated from a Hemolytic Uremic Syndrome Case in Argentina. Rev. Argent. Microbiol. 2020, 52, 31–35. [Google Scholar] [CrossRef]
- Scheutz, F.; Teel, L.D.; Beutin, L.; Piérard, D.; Buvens, G.; Karch, H.; Mellmann, A.; Caprioli, A.; Tozzoli, R.; Morabito, S.; et al. Multicenter Evaluation of a Sequence-Based Protocol for Subtyping Shiga Toxins and Standardizing Stx Nomenclature. J. Clin. Microbiol. 2012, 50, 2951–2963. [Google Scholar] [CrossRef]
- Obata, F.; Obrig, T. Role of Shiga/Vero toxins in pathogenesis. Microbiol. Spectrum 2014, 2, 73–95. [Google Scholar] [CrossRef]
- Fuller, C.A.; Pellino, C.A.; Flagler, M.J.; Strasser, J.E.; Weiss, A.A. Shiga Toxin Subtypes Display Dramatic Differences in Potency. Infect. Immun. 2011, 79, 1329–1337. [Google Scholar] [CrossRef]
- Russo, L.M.; Melton-Celsa, A.R.; Smith, M.A.; Smith, M.J.; O’Brien, A.D. Oral Intoxication of Mice with Shiga Toxin Type 2a (Stx2a) and Protection by Anti-Stx2a Monoclonal Antibody 11E10. Infect. Immun. 2014, 82, 1213–1221. [Google Scholar] [CrossRef]
- Tarr, G.A.M.; Stokowski, T.; Shringi, S.; Tarr, P.I.; Freedman, S.B.; Oltean, H.N.; Rabinowitz, P.M.; Chui, L. Contribution and Interaction of Shiga Toxin Genes to Escherichia coli O157:H7 Virulence. Toxins 2019, 11, 607. [Google Scholar] [CrossRef]
- Ardissino, G.; Possenti, I.; Vignati, C.; Daprai, L.; Capone, V.; Brigotti, M.; Luini, M.V.; Consonni, D.; Montini, G. Is Shigatoxin 1 Protective for the Development of Shigatoxin 2-Related Hemolytic Uremic Syndrome in Children? Data from the ItalKid-HUS Network. Pediatr. Nephrol. 2020, 35, 1997–2001. [Google Scholar] [CrossRef] [PubMed]
- Stevens, M.P.; Frankel, G.M. The Locus of Enterocyte Effacement and Associated Virulence Factors of Enterohemorrhagic Escherichia coli. Microbiol. Spectr. 2014, 2, 97–130. [Google Scholar] [CrossRef]
- Fernández-Brando, R.J.; Ramos, M.V. Participación de la respuesta inflamatoria en el Síndrome Urémico Hemolítico (SUH). In Síndrome Hemolítico Urémico Post-Entérico Actualización en Patogénesis, Diagnóstico y Tratamiento del Síndrome Hemolítico Urémico Asociado a la Toxina Shiga; Palermo, M., Ed.; Editorial Académica Española: Deutschland, Germany, 2015; pp. 13–20. [Google Scholar]
- Mody, R.K.; Gu, W.; Griffin, P.M.; Jones, T.F.; Rounds, J.; Shiferaw, B.; Tobin-D’Angelo, M.; Smith, G.; Spina, N.; Hurd, S.; et al. Postdiarrheal Hemolytic Uremic Syndrome in United States Children: Clinical Spectrum and Predictors of In-Hospital Death. J. Pediatr. 2015, 166, 1022–1029. [Google Scholar] [CrossRef] [PubMed]
- Tarr, P.I.; Gordon, C.A.; Chandler, W.L. Shiga-Toxin-Producing Escherichia coli and Haemolytic Uraemic Syndrome. Lancet 2005, 365, 1073–1086. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.S.; Mooney, J.C.; Brandt, J.R.; Staples, A.O.; Jelacic, S.; Boster, D.R.; Watkins, S.L.; Tarr, P.I. Risk Factors for the Hemolytic Uremic Syndrome in Children Infected With Escherichia coli O157:H7: A Multivariable Analysis. Clin. Infect. Dis. 2012, 55, 33–41. [Google Scholar] [CrossRef]
- McKee, R.S.; Tarr, P.I.; Dietzen, D.J.; Chawla, R.; Schnadower, D. Clinical and Laboratory Predictors of Shiga Toxin–Producing Escherichia Infection in Children With Bloody Diarrhea. J. Pediatr. Infect. Dis. Soc. 2018, 7, e116–e122. [Google Scholar] [CrossRef]
- Park, S.Y.; Jeong, Y.J.; Lee, K.S.; Park, J.Y.; Park, J.; Tesh, V.L.; Lee, M.S. Shiga Toxins Produced by Enterohaemorrhagic Escherichia coli Induce Inflammation in Toxin-Sensitive Cells through the p38 MAPK/MK2/Tristetraprolin Signaling Pathway. J. Microbiol. Biotechnol. 2024, 34, 2439–2449. [Google Scholar] [CrossRef]
- Creydt, V.P.; Nuñez, P.; Boccoli, J.; Silberstein, C.; Zotta, E.; Goldstein, J.; Ibarra, C. Role of the Shiga toxin in the hemolytic uremic syndrome. Medicina 2006, 66 (Suppl. S3), 11–15. [Google Scholar]
- Amaral, M.; Ibarra, C.A. Las infecciones por Escherichia coli productor de toxina Shiga (STEC) y el desarrollo de Síndrome Urémico Hemolítico. In Síndrome Hemolítico Urémico Post-Entérico Actualización en Patogénesis, Diagnóstico y Tratamiento del Síndrome Hemolítico Urémico Asociado a la Toxina Shiga; Palermo, M., Ed.; Editorial Académica Española: Deutschland, Germany, 2015; pp. 4–11. [Google Scholar]
- Brigotti, M.; Tazzari, P.L.; Ravanelli, E.; Carnicelli, D.; Rocchi, L.; Arfilli, V.; Scavia, G.; Minelli, F.; Ricci, F.; Pagliaro, P.; et al. Clinical Relevance of Shiga Toxin Concentrations in the Blood of Patients With Hemolytic Uremic Syndrome. Pediatr. Infect. Dis. J. 2011, 30, 486–490. [Google Scholar] [CrossRef]
- Villysson, A.; Tontanahal, A.; Karpman, D. Microvesicle Involvement in Shiga Toxin-Associated Infection. Toxins 2017, 9, 376. [Google Scholar] [CrossRef]
- Brigotti, M.; He, X.; Carnicelli, D.; Arfilli, V.; Porcellini, E.; Galassi, E.; Tazzari, P.L.; Ricci, F.; Patfield, S.A.; Testa, S.; et al. Particulate Shiga Toxin 2 in Blood Is Associated to the Development of Hemolytic Uremic Syndrome in Children. Thromb Haemost 2020, 120, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Varrone, E.; Carnicelli, D.; Brigotti, M. Extracellular Vesicles and Renal Endothelial Cells. Am. J. Pathol. 2021, 191, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Brigotti, M.; Carnicelli, D.; Arfilli, V.; Tamassia, N.; Borsetti, F.; Fabbri, E.; Tazzari, P.L.; Ricci, F.; Pagliaro, P.; Spisni, E.; et al. Identification of TLR4 as the Receptor That Recognizes Shiga Toxins in Human Neutrophils. J. Immunol. 2013, 191, 4748–4758. [Google Scholar] [CrossRef] [PubMed]
- te Loo, D.M.; Monnens, L.A.; van Der Velden, T.J.; Vermeer, M.A.; Preyers, F.; Demacker, P.N.; van Den Heuvel, L.P.; van Hinsbergh, V.W. Binding and Transfer of Verocytotoxin by Polymorphonuclear Leukocytes in Hemolytic Uremic Syndrome. Blood 2000, 95, 3396–3402. [Google Scholar] [CrossRef] [PubMed]
- Brigotti, M.; Arfilli, V.; Carnicelli, D.; Ricci, F.; Tazzari, P.L.; Ardissino, G.; Scavia, G.; Morabito, S.; He, X. Soluble Toll-Like Receptor 4 Impairs the Interaction of Shiga Toxin 2a with Human Serum Amyloid P Component. Toxins 2018, 10, 379. [Google Scholar] [CrossRef]
- Richardson, S.E.; Karmal, M.A.; Becker, L.E.; Smith, C.R. The histopathology of the hemolytic uremic syndrome associated with verocytotoxin-producing Escherichia coli infections. Hum. Pathol. 1988, 19, 1102–1108. [Google Scholar] [CrossRef]
- Zoja, C.; Buelli, S.; Morigi, M. Shiga Toxin-Associated Hemolytic Uremic Syndrome: Pathophysiology of Endothelial Dysfunction. Pediatr. Nephrol. 2010, 25, 2231–2240. [Google Scholar] [CrossRef]
- Proulx, F.; Seidman, E.G.; Karpman, D. Pathogenesis of Shiga Toxin-Associated Hemolytic Uremic Syndrome. Pediatr. Res. 2001, 50, 163–171. [Google Scholar] [CrossRef]
- Remuzzi, G.; Ruggenenti, P. The Hemolytic Uremic Syndrome. Kidney Int. 1995, 48, 2–19. [Google Scholar] [CrossRef]
- Bachmann, M.F.; Kopf, M. The Role of B Cells in Acute and Chronic Infections. Curr. Opin. Immunol. 1999, 11, 332–339. [Google Scholar] [CrossRef]
- Ludwig, C.; Wagner, R. Virus-like Particles—Universal Molecular Toolboxes. Curr. Opin. Biotechnol. 2007, 18, 537–545. [Google Scholar] [CrossRef]
- Jennings, G.T.; Bachmann, M.F. The Coming of Age of Virus-like Particle Vaccines. Biol. Chem. 2008, 389, 521–536. [Google Scholar] [CrossRef] [PubMed]
- Nieba, L.; Bachmann, M.F. A new generation of vaccines. Mod. Asp. Immunobiol. 2000, 1, 36–39. [Google Scholar]
- Zylberman, V.; Craig, P.O.; Klinke, S.; Braden, B.C.; Cauerhff, A.; Goldbaum, F.A. High Order Quaternary Arrangement Confers Increased Structural Stability to Brucella sp. Lumazine Synthase. J. Biol. Chem. 2004, 279, 8093–8101. [Google Scholar] [CrossRef] [PubMed]
- Bonomi, H.R.; Marchesini, M.I.; Klinke, S.; Ugalde, J.E.; Zylberman, V.; Ugalde, R.A.; Comerci, D.J.; Goldbaum, F.A. An Atypical Riboflavin Pathway Is Essential for Brucella abortus Virulence. PLoS ONE 2010, 5, e9435. [Google Scholar] [CrossRef]
- Klinke, S.; Zylberman, V.; Vega, D.R.; Guimarães, B.G.; Braden, B.C.; Goldbaum, F.A. Crystallographic Studies on Decameric Brucella spp. Lumazine Synthase: A Novel Quaternary Arrangement Evolved for a New Function? J. Mol. Biol. 2005, 353, 124–137. [Google Scholar] [CrossRef]
- Klinke, S.; Zylberman, V.; Bonomi, H.R.; Haase, I.; Guimarães, B.G.; Braden, B.C.; Bacher, A.; Fischer, M.; Goldbaum, F.A. Structural and Kinetic Properties of Lumazine Synthase Isoenzymes in the Order Rhizobiales. J. Mol. Biol. 2007, 373, 664–680. [Google Scholar] [CrossRef]
- Cassataro, J.; Pasquevich, K.A.; Estein, S.M.; Laplagne, D.A.; Velikovsky, C.A.; De La Barrera, S.; Bowden, R.; Fossati, C.A.; Giambartolomei, G.H.; Goldbaum, F.A. A Recombinant Subunit Vaccine Based on the Insertion of 27 Amino Acids from Omp31 to the N-Terminus of BLS Induced a Similar Degree of Protection against B. Ovis than Rev.1 Vaccination. Vaccine 2007, 25, 4437–4446. [Google Scholar] [CrossRef]
- Cassataro, J.; Pasquevich, K.A.; Estein, S.M.; Laplagne, D.A.; Zwerdling, A.; De La Barrera, S.; Bowden, R.; Fossati, C.A.; Giambartolomei, G.H.; Goldbaum, F.A. A DNA Vaccine Coding for the Chimera BLSOmp31 Induced a Better Degree of Protection against B. Ovis and a Similar Degree of Protection against B. Melitensis than Rev.1 Vaccination. Vaccine 2007, 25, 5958–5967. [Google Scholar] [CrossRef]
- Berguer, P.M.; Mundiñano, J.; Piazzon, I.; Goldbaum, F.A. A Polymeric Bacterial Protein Activates Dendritic Cells via TLR4. J. Immunol. 2006, 176, 2366–2372. [Google Scholar] [CrossRef]
- Stein, P.E.; Boodhoo, A.; Tyrrell, G.J.; Brunton, J.L.; Read, R.J. Crystal Structure of the Cell-Binding B Oligomer of Verotoxin-1 from E. coli. Nature 1992, 355, 748–750. [Google Scholar] [CrossRef] [PubMed]
- Fraser, M.E.; Chernaia, M.M.; Kozlov, Y.V.; James, M.N.G. Crystal Structure of the Holotoxino from Shigella dysenteriae at 2.5 Å Resolution. Nat. Struct. Mol. Biol. 1994, 1, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Lingwood, C. Role of Verotoxin Receptors in Pathogenesis. Trends Microbiol. 1996, 4, 147–153. [Google Scholar] [CrossRef]
- Ling, H.; Boodhoo, A.; Hazes, B.; Cummings, M.D.; Armstrong, G.D.; Brunton, J.L.; Read, R.J. Structure of the Shiga-like Toxin I B-Pentamer Complexed with an Analogue of Its Receptor Gb3, Biochemistry 1998, 37, 1777–1788. [Google Scholar] [CrossRef]
- Kitov, P.I.; Sadowska, J.M.; Mulvey, G.; Armstrong, G.D.; Ling, H.; Pannu, N.S.; Read, R.J.; Bundle, D.R. Shiga-like Toxins Are Neutralized by Tailored Multivalent Carbohydrate Ligands. Nature 2000, 403, 669–672. [Google Scholar] [CrossRef]
- Fraser, M.E.; Fujinaga, M.; Cherney, M.M.; Melton-Celsa, A.R.; Twiddy, E.M.; O’Brien, A.D.; James, M.N.G. Structure of Shiga Toxin Type 2 (Stx2) from Escherichia coli O157:H7. J. Biol. Chem. 2004, 279, 27511–27517. [Google Scholar] [CrossRef]
- Marcato, P.; Mulvey, G.; Read, R.J.; Vander Helm, K.; Nation, P.N.; Armstrong, G.D. Immunoprophylactic Potential of Cloned Shiga Toxin 2 B Subunit. J. Infect. Dis. 2001, 183, 435–443. [Google Scholar] [CrossRef]
- Kitova, E.N.; Mulvey, G.L.; Dingle, T.; Sinelnikov, I.; Wee, S.; Griener, T.P.; Armstrong, G.D.; Klassen, J.S. Assembly and Stability of the Shiga Toxins Investigated by Electrospray Ionization Mass Spectrometry. Biochemistry 2009, 48, 5365–5374. [Google Scholar] [CrossRef]
- Laplagne, D.A.; Zylberman, V.; Ainciart, N.; Steward, M.W.; Sciutto, E.; Fossati, C.A.; Goldbaum, F.A. Engineering of a Polymeric Bacterial Protein as a Scaffold for the Multiple Display of Peptides. Proteins 2004, 57, 820–828. [Google Scholar] [CrossRef]
- Mejias, M.P.; Ghersi, G.; Craig, P.O.; Panek, C.A.; Bentancor, L.V.; Baschkier, A.; Goldbaum, F.A.; Zylberman, V.; Palermo, M.S. Immunization with a Chimera Consisting of the B Subunit of Shiga Toxin Type 2 and Brucella Lumazine Synthase Confers Total Protection against Shiga Toxins in Mice. J. Immunol. 2013, 191, 2403–2411. [Google Scholar] [CrossRef]
- Goldbaum, F.A.; Zylberman, V.; Craig, P.O.; Ghersi, G.; Palermo, M.S.; Mejías, M.P.; Bentancor, L.V. Chimeras of Brucella lumazine synthase and Beta Subunit of AB5 Toxins. US 10,633,639 B2, 19 March 2020. [Google Scholar]
- Mejias, M.P.; Cabrera, G.; Fernández-Brando, R.J.; Baschkier, A.; Ghersi, G.; Abrey-Recalde, M.J.; Miliwebsky, E.; Meiss, R.; Goldbaum, F.; Zylberman, V.; et al. Protection of Mice against Shiga Toxin 2 (Stx2)-Associated Damage by Maternal Immunization with a Brucella Lumazine Synthase-Stx2 B Subunit Chimera. Infect. Immun. 2014, 82, 1491–1499. [Google Scholar] [CrossRef] [PubMed]
- Mejías, M.P.; Hiriart, Y.; Lauché, C.; Fernández-Brando, R.J.; Pardo, R.; Bruballa, A.; Ramos, M.V.; Goldbaum, F.A.; Palermo, M.S.; Zylberman, V. Development of Camelid Single Chain Antibodies against Shiga Toxin Type 2 (Stx2) with Therapeutic Potential against Hemolytic Uremic Syndrome (HUS). Sci. Rep. 2016, 6, 24913. [Google Scholar] [CrossRef] [PubMed]
- Yanina, H.; Romina, P.; Lucas, B.; Constanza, L.; Luciana, M.; Andrea, L.B.; Mariana, C.; Hugo, H.O.; Goldbaum, F.A.; Sanguineti, S.; et al. Preclinical Studies of NEAST (Neutralizing Equine Anti-Shiga To Xin): A Potential Treatment for Prevention of Stec-Hus. Int. J. Drug Dev. Res. 2019, 11, 15–24. [Google Scholar] [CrossRef]
- Cristófalo, A.E.; Sharma, A.; Cerutti, M.L.; Sharma, K.; Melero, R.; Pardo, R.; Goldbaum, F.A.; Borgnia, M.; Zylberman, V.; Otero, L.H. Cryo-EM Structures of Engineered Shiga Toxin-Based Immunogens Capable of Eliciting Neutralizing Antibodies with Therapeutic Potential against Hemolytic Uremic Syndrome (Submitted). Available online: https://www.biorxiv.org/content/10.1101/2024.12.21.626268v1 (accessed on 15 April 2025).
- Ling, H.; Pannu, N.S.; Boodhoo, A.; Armstrong, G.D.; Clark, C.G.; Brunton, J.L.; Read, R.J. A Mutant Shiga-like Toxin IIe Bound to Its Receptor Gb 3: Structure of a Group II Shiga-like Toxin with Altered Binding Specificity. Structure 2000, 8, 253–264. [Google Scholar] [CrossRef]
- Insights From Industry Experts: Developing vaccines for rare diseases. October 22, 2024, by Infection Control Today® Editorial Staff. Available online: https://www.infectioncontroltoday.com/view/insights-industry-experts-developing-vaccines-rare-diseases (accessed on 15 April 2025).
- Bitzan, M.; Poole, R.; Mehran, M.; Sicard, E.; Brockus, C.; Thuning-Roberson, C.; Rivière, M. Safety and Pharmacokinetics of Chimeric Anti-Shiga Toxin 1 and Anti-Shiga Toxin 2 Monoclonal Antibodies in Healthy Volunteers. Antimicrob. Agents Chemother. 2009, 53, 3081–3087. [Google Scholar] [CrossRef]
- López, E.L.; Contrini, M.M.; Glatstein, E.; González Ayala, S.; Santoro, R.; Allende, D.; Ezcurra, G.; Teplitz, E.; Koyama, T.; Matsumoto, Y.; et al. Safety and Pharmacokinetics of Urtoxazumab, a Humanized Monoclonal Antibody, against Shiga-Like Toxin 2 in Healthy Adults and in Pediatric Patients Infected with Shiga-Like Toxin-Producing Escherichia coli. Antimicrob. Agents Chemother. 2010, 54, 239–243. [Google Scholar] [CrossRef]
- Jin, B.; Odongo, S.; Radwanska, M.; Magez, S. NANOBODIES®: A Review of Diagnostic and Therapeutic Applications. Int. J. Mol. Sci. 2023, 24, 5994. [Google Scholar] [CrossRef]
- Ascoli, C.A.; Aggeler, B. Overlooked Benefits of Using Polyclonal Antibodies. Biol. Tech. 2018, 65, 127–136. [Google Scholar] [CrossRef]
- Quiambao, B.P.; DyTioco, H.Z.; Dizon, R.M.; Crisostomo, M.E.; Laot, T.M.; Teuwen, D.E. Rabies Post-Exposure Prophylaxis in the Philippines: Health Status of Patients Having Received Purified Equine F(Ab’)2 Fragment Rabies Immunoglobulin (Favirab). PLoS Negl. Trop. Dis. 2008, 2, e243. [Google Scholar] [CrossRef]
- Boyer, L.; Degan, J.; Ruha, A.-M.; Mallie, J.; Mangin, E.; Alagón, A. Safety of Intravenous Equine F(Ab’)2: Insights Following Clinical Trials Involving 1534 Recipients of Scorpion Antivenom. Toxicon 2013, 76, 386–393. [Google Scholar] [CrossRef]
- Reveneau, E.; Cottin, P.; Rasuli, A. Two Decades of Pharmacovigilance and Clinical Experience with Highly Purified Rabies Immunoglobulin F(Ab’)2 Fragments. Expert. Rev. Vaccines 2017, 16, 273–287. [Google Scholar] [CrossRef] [PubMed]
- Chippaux, J. Clinical Safety of a Polyvalent F(Ab′)2 Equine Antivenom in 223 African Snake Envenomations: A Field Trial in Cameroon. Trans. R. Soc. Trop. Med. Hyg. 1998, 92, 657–662. [Google Scholar] [CrossRef]
- Hiriart, Y.; Pardo, R.; Bukata, L.; Lauché, C.; Muñoz, L.; Colonna, M.; Goldbaum, F.; Sanguineti, S.; Zylberman, V. Development of a product anti-Shiga toxin for prevention of the hemolytic uremic syndrome. Medicina 2018, 78, 107–112. [Google Scholar]
- Clarke, J.T.R.; Coyle, D.; Evans, G.; Martin, J.; Winquist, E. Toward a Functional Definition of a “Rare Disease” for Regulatory Authorities and Funding Agencies. Value Health 2014, 17, 757–761. [Google Scholar] [CrossRef]
- Cremers, S.; Aronson, J.K. Drugs for Rare Disorders. Brit. J. Clin. Pharm. 2017, 83, 1607–1613. [Google Scholar] [CrossRef]
- Cox, G.F. The Art and Science of Choosing Efficacy Endpoints for Rare Disease Clinical Trials. Am. J. Med. Genet. A 2018, 176, 759–772. [Google Scholar] [CrossRef]
- Gobburu, J.; Pastoor, D. Drugs Against Rare Diseases: Are The Regulatory Standards Higher? Clin. Pharmacol. Ther. 2016, 100, 322–323. [Google Scholar] [CrossRef]
- Jansen-van Der Weide, M.C.; Gaasterland, C.M.W.; Roes, K.C.B.; Pontes, C.; Vives, R.; Nikolakopoulos, S.; Vermeulen, E.; Van Der Lee, J.H. Rare Disease Registries: Potential Applications towards Impact on Development of New Drug Treatments. Orphanet J. Rare Dis. 2018, 13, 154. [Google Scholar] [CrossRef]
- U.S Food & Drug Administration. Designating an Orphan Product: Drugs and Biological Products. 2024. Available online: https://www.fda.gov/industry/medical-products-rare-diseases-and-conditions/designating-orphan-product-drugs-and-biological-products (accessed on 20 March 2025).
- U.S Food & Drug Administration. Rare Pediatric Disease Designation and Priority Review Voucher Programs. 2024. Available online: https://www.fda.gov/industry/medical-products-rare-diseases-and-conditions/rare-pediatric-disease-designation-and-priority-review-voucher-programs (accessed on 15 April 2025).
- Martins, A.C.; Oshiro, M.Y.; Albericio, F.; De La Torre, B.G. Food and Drug Administration (FDA) Approvals of Biological Drugs in 2023. Biomedicines 2024, 12, 1992. [Google Scholar] [CrossRef]
- Belloso, W.H.; Popp, A.G.; Rizzo, M.; Chiale, C.A. Innovation Support from Regulatory Agencies. National and International Experiences: The Case of the Multidisciplinary Innovation Support Team of the ANMAT. Cienc. Reguladora 2019, 5, 14–18. [Google Scholar]
- U.S Food & Drug Administration. Rare Pediatric Disease Priority Review Vouchers Guidance for Industry. p. 27. 2019. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/rare-pediatric-disease-priority-review-vouchers (accessed on 20 March 2025).
- Hwang, T.J.; Bourgeois, F.T.; Franklin, J.M.; Kesselheim, A.S. Impact Of The Priority Review Voucher Program On Drug Development For Rare Pediatric Diseases. Health Aff. 2019, 38, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Hiriart, Y.; Scibona, P.; Ferraris, A.; Belloso, W.H.; Beruto, V.; Garcia Bournissen, F.; Zylberman, V.; Muñoz, L.; Goldbaum, F.; Spatz, L.; et al. A Phase I Study to Evaluate the Safety, Tolerance and Pharmacokinetics of anti-Shiga Toxin Hyperimmune Equine F (Ab′)2 Fragments in Healthy Volunteers. Br. J. Clin. Pharmacol. 2024, 90, 1142–1151. [Google Scholar] [CrossRef] [PubMed]
- Ghadessi, M.; Tang, R.; Zhou, J.; Liu, R.; Wang, C.; Toyoizumi, K.; Mei, C.; Zhang, L.; Deng, C.Q.; Beckman, R.A. A Roadmap to Using Historical Controls in Clinical Trials—By Drug Information Association Adaptive Design Scientific Working Group (DIA-ADSWG). Orphanet J. Rare Dis. 2020, 15, 69. [Google Scholar] [CrossRef] [PubMed]
- Thorlund, K.; Dron, L.; Park, J.J.; Mills, E.J. Synthetic and External Controls in Clinical Trials—A Primer for Researchers. Clin. Epidemiol. 2020, 12, 457–467. [Google Scholar] [CrossRef]
- European Medicines Agency. Guideline on Clinical Trials in Small Populations; EMA: London, UK, 2006; Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-clinical-trials-small-populations_en.pdf (accessed on 20 March 2025).
- Fayad, A.; Principi, I.; Balestracci, A.; Alconcher, L.; Coccia, P.; Adragna, M.; Amoreo, O.; Bettendorff, M.C.; Blumetti, M.V.; Bonany, P.; et al. Open-Label, Controlled, Phase 2 Clinical Trial Assessing the Safety, Efficacy, and Pharmacokinetics of INM004 in Pediatric Patients with Shiga Toxin-Producing Escherichia coli—Associated Hemolytic Uremic Syndrome. Pediatr. Nephrol. 2025, 40, 1983–1995. [Google Scholar] [CrossRef]
- Boyer, O.; Niaudet, P. Hemolytic-Uremic Syndrome in Children. Pediatr. Clin. N. Am. 2022, 69, 1181–1197. [Google Scholar] [CrossRef]
- Billings IV, F.T.; Shaw, A.D. Clinical Trial Endpoints in Acute Kidney Injury. Nephron Clin. Pract. 2014, 127, 89–93. [Google Scholar] [CrossRef]
- Chawla, L.S.; Eggers, P.W.; Star, R.A.; Kimmel, P.L. Acute Kidney Injury and Chronic Kidney Disease as Interconnected Syndromes. N. Engl. J. Med. 2014, 371, 58–66. [Google Scholar] [CrossRef]
- Palevsky, P.M. Endpoints for Clinical Trials of Acute Kidney Injury. Nephron 2018, 140, 111–115. [Google Scholar] [CrossRef]
- Kellum, J.A.; Zarbock, A.; Nadim, M.K. What Endpoints Should Be Used for Clinical Studies in Acute Kidney Injury? Intensive Care Med. 2017, 43, 901–903. [Google Scholar] [CrossRef]
- Wijnsma, K.L.; Van Bommel, S.A.M.; Van Der Velden, T.; Volokhina, E.; Schreuder, M.F.; Van Den Heuvel, L.P.; Van De Kar, N.C.A.J. Fecal Diagnostics in Combination with Serology: Best Test to Establish STEC-HUS. Pediatr. Nephrol. 2016, 31, 2163–2170. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Thaker, H.; Wang, C.; Xu, Z.; Dong, M. Diagnosis and Treatment for Shiga Toxin-Producing Escherichia coli Associated Hemolytic Uremic Syndrome. Toxins 2022, 15, 10. [Google Scholar] [CrossRef] [PubMed]
- Wijnsma, K.L.; Veissi, S.T.; Van Bommel, S.A.M.; Heuver, R.; Volokhina, E.B.; Comerci, D.J.; Ugalde, J.E.; Van De Kar, N.C.A.J.; Van Den Heuvel, L.P.W.J. Glyco-iELISA: A Highly Sensitive and Unambiguous Serological Method to Diagnose STEC-HUS Caused by Serotype O157. Pediatr. Nephrol. 2019, 34, 631–639. [Google Scholar] [CrossRef]
- Melli, L.J.; Ciocchini, A.E.; Caillava, A.J.; Vozza, N.; Chinen, I.; Rivas, M.; Feldman, M.F.; Ugalde, J.E.; Comerci, D.J. Serogroup-Specific Bacterial Engineered Glycoproteins as Novel Antigenic Targets for Diagnosis of Shiga Toxin-Producing-Escherichia coli-Associated Hemolytic-Uremic Syndrome. J. Clin. Microbiol. 2015, 53, 528–538. [Google Scholar] [CrossRef]
- Ministerio de Salud de Argentina. Boletín Epidemiológico Nacional N°560 SE30/2021. Available online: https://www.chemtest.net/docs/chemstrip-e-coli-O157-O145-bibliografia-03.pdf (accessed on 20 March 2025).
- Ministerio de Salud de Argentina. Boletín Integrado de Vigilancia No. 702 SE 17. Available online: https://www.argentina.gob.ar/sites/default/files/2024/04/ben-702_se17.pdf (accessed on 13 March 2025).
- Landivar, S.M.; Melli, L.J.; Maiztegui, C.; Schesi, C.; Baschkier, A.; Francisetti, V.; Chinen, I.; Miliwebsky, E.; Rivas, M.; Comerci, D.J.; et al. A Novel Multiplex and Glycoprotein-Based Immunochromatographic Serologic IgM Test for the Rapid Diagnosis of Escherichia coli O157 and O145 Causing Bloody Diarrhea and Hemolytic Uremic Syndrome. J. Clin. Microbiol. 2024, 62, e01003-24. [Google Scholar] [CrossRef]
- Caillava, A.J.; Melli, L.J.; Landoni, M.; Landivar, S.M.; Chinen, I.; Couto, A.S.; Rivas, M.; Ugalde, J.E.; Comerci, D.J.; Ciocchini, A.E. Development of a Set of Bacterial Engineered Glycoconjugates as Novel Serogroup-Specific Antigens for the Serodiagnosis of Escherichia coli O26, O111, O103 and O45 Infections Associated to Hemolytic Uremic Syndrome. Microbial Cell Fact. 2025, in press. [Google Scholar] [CrossRef]
- Carbonari, C.C.; Miliwebsky, E.S.; Zolezzi, G.; Deza, N.L.; Fittipaldi, N.; Manfredi, E.; Baschkier, A.; D’Astek, B.A.; Melano, R.G.; Schesi, C.; et al. The Importance of Shiga Toxin-Producing Escherichia coli O145:NM[H28]/H28 Infections in Argentina, 1998–2020. Microorganisms 2022, 10, 582. [Google Scholar] [CrossRef]
- Guerra, J.A.; Zhang, C.; Bard, J.E.; Yergeau, D.; Halasa, N.; Gómez-Duarte, O.G. Comparative Genomic Analysis of a Shiga Toxin-Producing Escherichia coli (STEC) O145:H25 Associated with a Severe Pediatric Case of Hemolytic Uremic Syndrome in Davidson County, Tennessee, US. BMC Genom. 2020, 21, 564. [Google Scholar] [CrossRef]
- Andreoli, S.; Monnens, L. Role of INM004 Shiga-Toxin Antibodies in Treatment of STEC-HUS. Pediatr. Nephrol. 2025, 40, 1835–1837. [Google Scholar] [CrossRef]
Country | HUS | Reference |
---|---|---|
Argentina | 6.03 | [17] |
Belgium | 3.18 | [18] |
Czechia | 2.33 | [18] |
Italy | 1.57 | [19] |
The United Kingdom and Ireland | 1.54 | [20] |
Sweden | 1.53 | [18] |
United States | 1.22 | [21] |
Canada | 1.04 | [22] |
Germany | 1.03 | [18] |
Romania | 0.72 | [18] |
Poland | 0.70 | [18] |
Australia | 0.49 | [12] |
Portugal | 0.49 | [18] |
Norway | 0.36 | [18] |
Netherlands | 0.23 | [18] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivas, M.; Pichel, M.; Zylberman, V.; Colonna, M.; Valerio, M.; Massa, C.; Pardo, R.; Ciocchini, A.E.; Sanguineti, S.; Roubicek, I.; et al. INM004: Polyclonal Neutralizing Antibodies Against Shiga Toxin as a Treatment for Hemolytic Uremic Syndrome. Toxins 2025, 17, 282. https://doi.org/10.3390/toxins17060282
Rivas M, Pichel M, Zylberman V, Colonna M, Valerio M, Massa C, Pardo R, Ciocchini AE, Sanguineti S, Roubicek I, et al. INM004: Polyclonal Neutralizing Antibodies Against Shiga Toxin as a Treatment for Hemolytic Uremic Syndrome. Toxins. 2025; 17(6):282. https://doi.org/10.3390/toxins17060282
Chicago/Turabian StyleRivas, Marta, Mariana Pichel, Vanesa Zylberman, Mariana Colonna, Marina Valerio, Carolina Massa, Romina Pardo, Andrés E. Ciocchini, Santiago Sanguineti, Ian Roubicek, and et al. 2025. "INM004: Polyclonal Neutralizing Antibodies Against Shiga Toxin as a Treatment for Hemolytic Uremic Syndrome" Toxins 17, no. 6: 282. https://doi.org/10.3390/toxins17060282
APA StyleRivas, M., Pichel, M., Zylberman, V., Colonna, M., Valerio, M., Massa, C., Pardo, R., Ciocchini, A. E., Sanguineti, S., Roubicek, I., Spatz, L., & Goldbaum, F. A. (2025). INM004: Polyclonal Neutralizing Antibodies Against Shiga Toxin as a Treatment for Hemolytic Uremic Syndrome. Toxins, 17(6), 282. https://doi.org/10.3390/toxins17060282