A Novel Vpb4 Gene and Its Mutants Exhibiting High Insecticidal Activity Against the Monolepta hieroglyphica
Abstract
:1. Introduction
2. Results
2.1. Insecticidal Activity of Bt B14D2 Strain Against M. hieroglyphica
2.2. Whole Genome Sequencing Analysis of Bt B14D2 Strain
2.3. Expression and Bioassay Analysis of Vpb4Fa1 Protein
2.4. Establishment of the Vpb4Fa1 Random Mutant Library
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Bacterial Strains and Culture Conditions
5.2. Genomic DNA Extraction and Sequencing
5.3. Establishment of the Random Mutation Library for the vpb4Fa1 Gene and Protein Extraction
5.4. Histopathological Changes in the Midgut of M. hieroglyphica
5.5. Bioassay Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Shao, Y.; Zhao, X.; Pei, Q.; Nan, N.; Zhang, F.; Jiang, X.; Li, X. High-efficiency fungicide screening and field control efficacy of maize southern corn rust. Crop Prot. 2025, 187, 106997. [Google Scholar]
- Zheng, F.; Jiang, H.; Jia, J.; Wang, R.; Zhang, Z.; Xu, H. Effect of dimethoate in controlling Monolepta hieroglyphica (Motschulsky) and its distribution in maize by drip irrigation. Pest Manag. Sci. 2020, 76, 1523–1530. [Google Scholar] [PubMed]
- Li, H.; Ma, D.; Ma, J. Overview and research status of the occurrence and research status of the leaf beetle of Diplopathic longum in Xinjiang. Xinjiang Agric. Sci. Technol. 2016, 5, 35–36. [Google Scholar]
- Zhao, X.; Zheng, X.; Guo, J.; Liu, Y.; Luo, B.; Wang, L.; Wang, L.; Liu, Y.; Li, Q.; Wang, Z. Occurrence of Monolepta hieroglyphica adults in cornfields in Qiqihar. Chin. J. Appl. Entomol. 2021, 58, 979–984. [Google Scholar]
- Zhao, Y.; Zhao, W. Analysis the causes and control measures of corn northern leaf blight and Monolepta hieroglyphica (Motschulsky) insect pest. Chin. Agric. Inf. 2013, 25, 112. [Google Scholar]
- Zhao, X.; Zheng, X.; Guo, J.; Wang, L.; Luo, B.; Wang, L.; Li, Q.; Liu, Y.; Han, Y.; Wang, Z. Influences of damaged silks by Monolepta hieroglyphica (Motschulsky) on corn yield. Plant Prot. 2021, 47, 109–114. [Google Scholar]
- Meissle, M.; Knecht, S.; Waldburger, M.; Romeis, J. Sensitivity of the cereal leaf beetle Oulema melanopus (Coleoptera: Chrysomelidae) to Bt maize-expressed Cry3Bb1 and Cry1Ab. Arthropod-Plant Interact. 2012, 6, 203–211. [Google Scholar]
- Bieńkowski, A.O.; Orlova-Bienkowskaja, M.J. Alien leaf beetles (Coleoptera, Chrysomelidae) of European Russia and some general tendencies of leaf beetle invasions. PLoS ONE 2018, 13, e0203561. [Google Scholar]
- Ramzan, M.; Khashaveh, A.; Yi, C.; Shan, S.; Tang, Z.; Liu, W.; Khan, K.A.; Zhang, Y. Biology, ecology, host range, and management approaches for Monolepta spp. (Coleoptera: Chrysomelidae), emerging threats to crops. J. Integr. Pest Manag. 2024, 15, 24. [Google Scholar]
- Yan, W.; Zheng, Q.; Yang, L.; Zhu, S.; Zhang, Z.; Xu, H. Efficacy of drip irrigation with thiamethoxam on control of Monolepta hieroglyphica, and uptake, translocation and dietary risk of thiamethoxam in maize. Pest Manag. Sci. 2023, 79, 4931–4941. [Google Scholar]
- Chang, X.; Zhang, G.; Sun, L.; Gao, Y.; Sun, W.; Wang, Y.; Li, L.; Zhou, S.; Zhang, Y.; Zhou, J.; et al. Integrated pests control pesticides selection aimed mainly at Monolepta hieroglyphica at corn middle to later growing stage. J. Maize Sci. 2022, 30, 171–176. [Google Scholar]
- Chen, Y.; Liu, P.; Du, Y.; Wang, K.; Ma, Y.; Dong, H. Screening of the insecticides against Monolepta hieroglyphica (Motschulsky) of maize. Agrochemicals 2021, 60, 143–146. [Google Scholar]
- Lan, Y.; Zhao, X.; Liu, Y.; Li, Q.; Wang, L.; Liu, Y. Research progress on comprehensive management of Monolepta hieroglyphica (Motschulsky). Heilongjiang Agric. Sci. 2022, 12, 100–105. [Google Scholar]
- Vilas-Bôas, G.T.; Peruca, A.P.; Arantes, O.M. Biology and taxonomy of Bacillus cereus, Bacillus anthracis, and Bacillus thuringiensis. Can. J. Microbiol. 2007, 53, 673–687. [Google Scholar]
- Raymond, B.; Johnston, P.R.; Nielsen-LeRoux, C.; Lereclus, D.; Crickmore, N. Bacillus thuringiensis: An impotent pathogen? Trends Microbiol. 2010, 18, 189–194. [Google Scholar]
- Schnepf, E.; Crickmore, N.; Van Rie, J.; Lereclus, D.; Baum, J.; Feitelson, J.; Zeigler, D.R.; Dean, D.H. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 1998, 62, 775–806. [Google Scholar]
- Estruch, J.J.; Warren, G.W.; Mullins, M.A.; Nye, G.J.; Craig, J.A.; Koziel, M.G. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against Lepidopteran insects. Proc. Natl. Acad. Sci. USA 1996, 93, 5389–5394. [Google Scholar]
- Donovan, W.P.; Engleman, J.T.; Donovan, J.C.; Baum, J.A.; Bunkers, G.J.; Chi, D.J.; Clinton, W.P.; English, L.; Heck, G.R.; Ilagan, O.M.; et al. Discovery and characterization of Sip1A: A novel secreted protein from Bacillus thuringiensis with activity against Coleopteran larvae. Appl. Microbiol. Biotechnol. 2006, 72, 713–719. [Google Scholar]
- Luo, H.; Xiong, J.; Zhou, Q.; Xia, L.; Yu, Z. The effects of Bacillus thuringiensis Cry6A on the survival, growth, reproduction, locomotion, and behavioral response of Caenorhabditis elegans. Appl. Microbiol. Biotechnol. 2013, 97, 10135–10142. [Google Scholar]
- Jouzani, G.S.; Valijanian, E.; Sharafi, R. Bacillus thuringiensis: A successful insecticide with new environmental features and tidings. Appl. Microbiol. Biotechnol. 2017, 101, 2691–2711. [Google Scholar]
- Yu, Y.; Yuan, Y.; Gao, M. Construction of an environmental safe Bacillus thuringiensis engineered strain against Coleoptera. Appl. Microbiol. Biotechnol. 2016, 100, 4027–4034. [Google Scholar] [PubMed]
- Park, Y.; Hua, G.; Taylor, M.D.; Adang, M.J. A coleopteran cadherin fragment synergizes toxicity of Bacillus thuringiensis toxins Cry3Aa, Cry3Bb, and Cry8Ca against lesser mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae). J. Invertebr. Pathol. 2014, 123, 1–5. [Google Scholar] [PubMed]
- Bi, Y.; Zhang, Y.; Shu, C.; Crickmore, N.; Wang, Q.; Du, L.; Song, F.; Zhang, J. Genomic sequencing identifies novel Bacillus thuringiensis Vip1/Vip2 binary and Cry8 toxins that have high toxicity to Scarabaeoidea larvae. Appl. Microbiol. Biotechnol. 2015, 99, 753–760. [Google Scholar] [PubMed]
- Yin, Y.; Flasinski, S.; Moar, W.; Bowen, D.; Chay, C.; Milligan, J.; Kouadio, J.L.; Pan, A.; Werner, B.; Buckman, K.; et al. A new Bacillus thuringiensis protein for western corn rootworm control. PLoS ONE 2020, 15, e0242791. [Google Scholar]
- Kouadio, J.L.; Zheng, M.; Aikins, M.; Duda, D.; Duff, S.; Chen, D.; Zhang, J.; Milligan, J.; Taylor, C.; Mamanella, P.; et al. Structural and functional insights into the first Bacillus thuringiensis vegetative insecticidal protein of the Vpb4 fold, active against western corn rootworm. PLoS ONE 2021, 16, e0260532. [Google Scholar]
- Shu, C.; Liu, R.; Wang, R.; Zhang, J.; Feng, S.; Huang, D.; Song, F. Improving toxicity of Bacillus thuringiensis strain contains the cry8Ca gene specific to Anomala corpulenta larvae. Curr. Microbiol. 2007, 55, 492–496. [Google Scholar]
- Kumar, A.S.; Aronson, A.I. Analysis of mutations in the pore-forming region essential for insecticidal activity of a Bacillus thuringiensis delta-endotoxin. J. Bacteriol. 1999, 181, 6103–6107. [Google Scholar]
- Wang, G.; Zhang, J.; Song, F.; Wu, J.; Feng, S.; Huang, D. Engineered Bacillus thuringiensis GO33A with broad insecticidal activity against Lepidopteran and coleopteran pests. Appl. Microbiol. Biotechnol. 2006, 72, 924–930. [Google Scholar]
- Crickmore, N.; Berry, C.; Panneerselvam, S.; Mishra, R.; Connor, T.R.; Bonning, B.C. A structure-based nomenclature for Bacillus thuringiensis and other bacteria-derived pesticidal proteins. J. Invertebr. Pathol. 2021, 186, 107438. [Google Scholar]
- Babendreier, D.; Kalberer, N.M.; Romeis, J.; Fluri, P.; Mulligan, E.; Bigler, F. Influence of Bt-transgenic pollen, Bt-toxin and protease inhibitor (SBTI) ingestion on development of the hypopharyngeal glands in honeybees. Apidologie 2005, 36, 585–594. [Google Scholar]
- Sims, S.R. Bacillus thuringiensis var. kurstaki (CryIA (C)) protein expressed in transgenic cotton: Effects on beneficial and other non-target insects. Southwest. Entomol. 1995, 20, 493–500. [Google Scholar]
- Sousa, M.E.; Santos, F.A.; Wanderley-Teixeira, V.; Teixeira, A.A.; de Siqueira, H.; Alves, L.C.; Torres, J.B. Histopathology and ultrastructure of midgut of Alabama argillacea (Hübner) (Lepidoptera: Noctuidae) fed Bt-cotton. J. Insect Physiol. 2010, 56, 1913–1919. [Google Scholar]
- da Cunha, F.M.; Caetano, F.H.; Wanderley-Teixeira, V.; Torres, J.B.; Teixeira, A.A.; Alves, L.C. Ultra-structure and histochemistry of digestive cells of Podisus nigrispinus (Hemiptera: Pentatomidae) fed with prey reared on bt-cotton. Micron 2012, 43, 245–250. [Google Scholar]
- Gong, C.; Qu, C.; Wei, Y.; Wang, R.; Luo, C.; Shi, W. Pathological changes in the midgut of Phyllotreta striolata adults after feeding on Cry3Aa. Plant Prot. 2023, 49, 159–163+171. [Google Scholar]
- Wei, H.; Tan, S.; Cao, Y.; Yan, J.; Li, K.; Shu, C.; Yin, J. Pathological changes in the midgut of Holotrichia parallela larvae after feeding on HD8E and HD8G. Chin. J. Appl. Entomol. 2017, 54, 1015–1022. [Google Scholar]
- Gea, F.J.; Navarro, M.J.; Santos, M.; Diánez, F.; Herraiz-Peñalver, D. Screening and evaluation of essential oils from mediterranean aromatic plants against the mushroom cobweb Disease, Cladobotryum mycophilum. Agronomy 2019, 9, 656. [Google Scholar] [CrossRef]
- Lakshita, N.; Yulani, R.A.; Wijonarko, A.; Indarti, S. Genomic DNA extraction methods and phylogenetic analysis of Beauveria bassiana from Central Java, Indonesia, and its toxicity against the fall armyworm, Spodoptera frugiperda J.E. Smith (Lepidoptera: Noctuidae). Egypt. J. Biol. Pest Control 2024, 34, 59. [Google Scholar]
- Chin, C.S.; Alexander, D.H.; Marks, P.; Klammer, A.A.; Drake, J.; Heiner, C.; Clum, A.; Copeland, A.; Huddleston, J.; Eichler, E.E.; et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 2013, 10, 563–569. [Google Scholar]
- Hyatt, D.; Chen, G.L.; Locascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010, 11, 119. [Google Scholar]
- Powell, S.; Forslund, K.; Szklarczyk, D.; Trachana, K.; Roth, A.; Huerta-Cepas, J.; Gabaldón, T.; Rattei, T.; Creevey, C.; Kuhn, M.; et al. eggNOG v4.0: Nested orthology inference across 3686 organisms. Nucleic Acids Res. 2014, 42, D231–D239. [Google Scholar]
- Gao, Y.; Jurat-Fuentes, J.L.; Oppert, B.; Fabrick, J.A.; Liu, C.; Gao, J.; Lei, Z. Increased toxicity of Bacillus thuringiensis Cry3Aa against Crioceris quatuordecimpunctata, Phaedon brassicae and Colaphellus bowringi by a Tenebrio molitor cadherin fragment. Pest Manag. Sci. 2011, 67, 1076–1081. [Google Scholar] [CrossRef] [PubMed]
- Xue, B.; Wang, M.; Wang, Z.; Shu, C.; Geng, L.; Zhang, J. Analysis of synergism between extracellular polysaccharide from Bacillus thuringensis subsp. kurstaki HD270 and insecticidal proteins. Toxins 2023, 15, 590. [Google Scholar] [CrossRef] [PubMed]
- Liang GeMei, L.G.; Tan WeiJia, T.W.; Guo YuYuan, G.Y. An improvement in the technique of artificial rearing of the cotton bollworm. Plant Prot. 1999, 25, 15–17. [Google Scholar]
- Yang, J.; Zeng, H.M.; Lin, H.F.; Yang, X.F.; Liu, Z.; Guo, L.H.; Yuan, J.J.; Qiu, D.W. An insecticidal protein from Xenorhabdus budapestensis that results in prophenoloxidase activation in the wax moth, Galleria mellonella. J. Invertebr. Pathol. 2012, 110, 60–67. [Google Scholar]
Insect | Order | Corrected Mortality (Mean ± SD, %) | LC50 (μg/g) | 95% Confidence Interval (μg) |
---|---|---|---|---|
M. hieroglyphica | Coleoptera | 22.2 ± 3.87 (Adults) * | / | / |
40.4 ± 12.01 (Larvae) * | / | / | ||
M. separata | Lepidoptera | / | 0.29 | 0.127~0.706 |
H. armigera | Lepidoptera | 93.0 ± 2.32 ** | / | |
P. xylostella | Lepidoptera | 98.8 ± 2.01 ** | / |
Gene | Base | Amino Acids | Station | Alignment |
---|---|---|---|---|
cry1Ea | 3516 | 1171 | Plasmid4 | Cry1Ea1 (100%) |
cry2Ab | 1902 | 633 | Plasmid2 | Cry2Ab4 (100%) |
vip3Aa | 2370 | 789 | Plasmid2 | Vip3Aa59 (100%) |
vpb4Da | 2931 | 976 | Plasmid1 | VpbDa2 (53.5%) |
Treatment | Corrected Mortality (Mean ± SD, %) | Mutation Site | Mutated Amino Acids | Domain |
---|---|---|---|---|
4C10 | 69.44 ± 4.81 | 311 | S-P | II |
905 | L-P | VI | ||
963 | S-P | |||
6C2 | 62.07 ± 15.8 | 182 | E-G | Ι |
311 | S-P | II | ||
617 | I-V | III | ||
6A7 | 65.52 ± 11.95 | 110 | N-D | Ι |
126 | M-V | |||
233 | I-T | |||
311 | S-P | II | ||
604 | K-E | III | ||
878 | V-I | VI | ||
4G7 | 60.71 ± 6.19 | 311 | S-P | II |
397 | P-S | |||
440 | N-S | |||
6D7 | 64.29 ± 16.37 | 311 | S-P | II |
353 | G-R | |||
892 | F-S | VI | ||
4C6 | 60.71 ± 12.37 | 205 | I-V | Ι |
311 | S-P | II | ||
C9 | 82.14 ± 12.37 | 41 | K-E | Ι |
135 | E-G | |||
225 | G-D | |||
305 | N-D | II | ||
311 | S-P | |||
387 | N-D | |||
400 | D-G | |||
466 | A-V | |||
803 | V-L | V | ||
4H12 | 0 ± 0 | 218 | P-L | Ι |
311 | S-P | II | ||
593 | E-G | III | ||
735 | K-E | IV | ||
887 | H-R | VI | ||
5A8 | 0 ± 0 | 71 | L-P | Ι |
311 | S-P | II | ||
930 | F-S | VI | ||
H4 | 2.78 ± 4.81 | 84 | I-V | Ι |
311 | S-P | II | ||
2C2 | 5.56 ± 9.62 | 288 | Y-C | Ι |
311 | S-P | II | ||
674 | Y-H | VI | ||
WT | 16.67 ± 8.33 | / | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Shi, R.; Xu, P.; Huang, W.; Liu, C.; Wang, J.; Shu, C.; Zhang, J.; Geng, L. A Novel Vpb4 Gene and Its Mutants Exhibiting High Insecticidal Activity Against the Monolepta hieroglyphica. Toxins 2025, 17, 167. https://doi.org/10.3390/toxins17040167
Zhang Y, Shi R, Xu P, Huang W, Liu C, Wang J, Shu C, Zhang J, Geng L. A Novel Vpb4 Gene and Its Mutants Exhibiting High Insecticidal Activity Against the Monolepta hieroglyphica. Toxins. 2025; 17(4):167. https://doi.org/10.3390/toxins17040167
Chicago/Turabian StyleZhang, Ying, Rongrong Shi, Pengdan Xu, Wei Huang, Chunqin Liu, Jian Wang, Changlong Shu, Jie Zhang, and Lili Geng. 2025. "A Novel Vpb4 Gene and Its Mutants Exhibiting High Insecticidal Activity Against the Monolepta hieroglyphica" Toxins 17, no. 4: 167. https://doi.org/10.3390/toxins17040167
APA StyleZhang, Y., Shi, R., Xu, P., Huang, W., Liu, C., Wang, J., Shu, C., Zhang, J., & Geng, L. (2025). A Novel Vpb4 Gene and Its Mutants Exhibiting High Insecticidal Activity Against the Monolepta hieroglyphica. Toxins, 17(4), 167. https://doi.org/10.3390/toxins17040167