Biomonitoring Pilot Surveys of Zearalenone in Breastmilk and the Urine of Children in Central Portugal
Abstract
:1. Introduction
2. Results
2.1. Urine Biomonitoring Study
2.2. Breastmilk Biomonitoring Study
3. Discussion
3.1. Urine Biomonitoring Study
3.2. Breastmilk Biomonitoring Study
4. Final Remarks
5. Materials and Methods
5.1. Sampling
5.2. Sociodemographic Data and Eating Habits
5.3. Analytical Determination of ZEA
5.4. Risk Assessment
5.5. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ropejko, K.; Twarużek, M. Zearalenone and Its Metabolites—General Overview, Occurrence, and Toxicity. Toxins 2021, 13, 35. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, K.; Habrowska-Górczyńska, D.E.; Piastowska-Ciesielska, A.W. Zearalenone as an Endocrine Disruptor in Humans. Environ. Toxicol. Pharmacol. 2016, 48, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Rai, A.; Das, M.; Tripathi, A. Occurrence and Toxicity of a Fusarium Mycotoxin, Zearalenone. Crit. Rev. Food Sci. Nutr. 2020, 60, 2710–2729. [Google Scholar] [CrossRef] [PubMed]
- Duarte, S.; Silva, L.J.G.; Pereira, A.M.P.T.; Gimbi, M.; Cesar, C.; Vidal, V.; Basílio, R.; Almeida, A.; Lino, C.; Pena, A. Mycotoxins Exposure in Cabinda, Angola—A Pilot Biomonitoring Survey of Breastmilk. Toxins 2022, 14, 204. [Google Scholar] [CrossRef]
- Valitutti, F.; De Santis, B.; Trovato, C.; Montuori, M.; Gatti, S.; Oliva, S.; Brera, C.; Catassi, C. Assessment of Mycotoxin Exposure in Breastfeeding Mothers with Celiac Disease. Nutrients 2018, 10, 336. [Google Scholar] [CrossRef]
- Dinleyici, M.; Aydemir, O.; Yildirim, G.K.; Kaya, T.B.; Carman, K.B. Human Mature Milk Zearalenone and Deoxynivalenol Levels in Turkey. Neuro Endocrinol. Lett. 2018, 39, 325–330. [Google Scholar]
- Gromadzka, K.; Waskiewicz, A.; Chelkowski, J.; Golinski, P. Zearalenone and Its Metabolites: Occurrence, Detection, Toxicity and Guidelines. World Mycotoxin J. 2008, 1, 209–220. [Google Scholar] [CrossRef]
- Lorenz, N.; Dänicke, S.; Edler, L.; Gottschalk, C.; Lassek, E.; Marko, D.; Rychlik, M.; Mally, A. A Critical Evaluation of Health Risk Assessment of Modified Mycotoxins with a Special Focus on Zearalenone. Mycotoxin Res. 2019, 35, 27–46. [Google Scholar] [CrossRef]
- Bulgaru, C.V.; Marin, D.E.; Pistol, G.C.; Taranu, I. Zearalenone and the Immune Response. Toxins 2021, 13, 248. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, R.; Wu, P.; Zhao, D.; Chen, J.; Pan, X.; Wang, J.; Zhang, H.; Qi, X.; Weng, Q.; et al. Occurrence and Exposure Assessment of Zearalenone in the Zhejiang Province, China. Toxins 2024, 17, 9. [Google Scholar] [CrossRef]
- Fleck, S.C.; Churchwell, M.I.; Doerge, D.R.; Teeguarden, J.G. Urine and Serum Biomonitoring of Exposure to Environmental Estrogens II: Soy Isoflavones and Zearalenone in Pregnant Women. Food Chem. Toxicol. 2016, 95, 19–27. [Google Scholar] [CrossRef] [PubMed]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Chemical Agents and Related Occupations. IARC Monogr. Eval. Carcinog. Risks Hum. 2012, 100, 9. [Google Scholar]
- Ladeira, C.; Frazzoli, C.; Orisakwe, O.E. Engaging One Health for Non-Communicable Diseases in Africa: Perspective for Mycotoxins. Front. Public Health 2017, 5, 266. [Google Scholar] [CrossRef] [PubMed]
- Coppa, C.F.S.C.; Cirelli, A.C.; Gonçalves, B.L.; Barnabé, E.M.B.; Petta, T.; Franco, L.T.; Javanmardi, F.; Khaneghah, A.M.; Lee, S.H.I.; Corassin, C.H.; et al. Mycotoxin Occurrence in Breast Milk and Exposure Estimation of Lactating Mothers Using Urinary Biomarkers in São Paulo, Brazil. Environ. Pollut. 2021, 279, 116938. [Google Scholar] [CrossRef]
- Hardy, A.; Benford, D.; Halldorsson, T.; Jeger, M.J.; Knutsen, H.K.; More, S.; Naegeli, H.; Noteborn, H.; Ockleford, C.; Ricci, A.; et al. Guidance on the Risk Assessment of Substances Present in Food Intended for Infants below 16 Weeks of Age. EFSA J. 2017, 15, e04849. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Scientific Opinion on the Risks for Public Health Related to the Presence of Zearalenone in Food. EFSA J. 2011, 9, 2197. [Google Scholar] [CrossRef]
- Martins, C.; Vidal, A.; De Boevre, M.; De Saeger, S.; Nunes, C.; Torres, D.; Goios, A.; Lopes, C.; Assunção, R.; Alvito, P. Exposure Assessment of Portuguese Population to Multiple Mycotoxins: The Human Biomonitoring Approach. J. Hyg. Environ. Health 2019, 222, 913–925. [Google Scholar] [CrossRef]
- Al-Jaal, B.A.; Jaganjac, M.; Barcaru, A.; Horvatovich, P.; Latiff, A. Aflatoxin, Fumonisin, Ochratoxin, Zearalenone and Deoxynivalenol Biomarkers in Human Biological Fluids: A Systematic Literature Review, 2001–2018. Food Chem. Toxicol. 2019, 129, 211–228. [Google Scholar] [CrossRef]
- Duarte, S.C.; Pena, A.; Lino, C.M. Human Ochratoxin A Biomarkers-from Exposure to Effect. Crit. Rev. Toxicol. 2011, 41, 187–212. [Google Scholar] [CrossRef]
- Pena, A.; Duarte, S.; Pereira, A.M.P.T.; Silva, L.J.G.; Laranjeiro, C.S.M.; Oliveira, M.; Lino, C.; Morais, S. Human Biomonitoring of Selected Hazardous Compounds in Portugal: Part II—Lessons Learned on Mycotoxins. Molecules 2021, 27, 130. [Google Scholar] [CrossRef]
- Warth, B.; Sulyok, M.; Berthiller, F.; Schuhmacher, R.; Krska, R. New Insights into the Human Metabolism of the Fusarium Mycotoxins Deoxynivalenol and Zearalenone. Toxicol. Lett. 2013, 220, 88–94. [Google Scholar] [CrossRef]
- Gambacorta, S.; Solfrizzo, H.; Visconti, A.; Powers, S.; Cossalter, A.M.; Pinton, P.; Oswald, I.P. Validation Study on Urinary Biomarkers of Exposure for Aflatoxin B1, Ochratoxin A, Fumonisin B1, Deoxynivalenol and Zearalenone in Piglets. World Mycotoxin J. 2013, 6, 299–308. [Google Scholar] [CrossRef]
- Solfrizzo, M.; Gambacorta, L.; Visconti, A. Assessment of Multi-Mycotoxin Exposure in Southern Italy by Urinary Multi-Biomarker Determination. Toxins 2014, 6, 523–538. [Google Scholar] [CrossRef]
- Degen, G.H.; Partosch, F.; Muñoz, K.; Gundert-Remy, U. Daily Uptake of Mycotoxins—TDI Might Not Be Protective for Nursed Infants. Toxicol. Lett. 2017, 277, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Gratz, S.W.; Currie, V.; Duncan, G.; Jackson, D. Multimycotoxin Exposure Assessment in UK Children Using Urinary Biomarkers—A Pilot Survey. J. Agric. Food Chem. 2020, 68, 351–357. [Google Scholar] [CrossRef]
- Heyndrickx, E.; Sioen, I.; Huybrechts, B.; Callebaut, A.; De Henauw, S.; De Saeger, S. Human Biomonitoring of Multiple Mycotoxins in the Belgian Population: Results of the BIOMYCO Study. Environ. Int. 2015, 84, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Ayeni, K.I.; Jamnik, T.; Fareed, Y.; Flasch, M.; Braun, D.; Uhl, M.; Hartmann, C.; Warth, B. The Austrian Children’s Biomonitoring Survey 2020 Part B: Mycotoxins, Phytotoxins, Phytoestrogens and Food Processing Contaminants. Food Chem. Toxicol. 2023, 182, 114173. [Google Scholar] [CrossRef]
- Carballo, D.; Pallarés, N.; Ferrer, E.; Barba, F.J.; Berrada, H. Assessment of Human Exposure to Deoxynivalenol, Ochratoxin A, Zearalenone and Their Metabolites Biomarker in Urine Samples Using LC-ESI-QTOF. Toxins 2021, 13, 530. [Google Scholar] [CrossRef]
- Shephard, G.S.; Burger, H.-M.; Gambacorta, L.; Gong, Y.Y.; Krska, R.; Rheeder, J.P.; Solfrizzo, M.; Srey, C.; Sulyok, M.; Visconti, A.; et al. Multiple Mycotoxin Exposure Determined by Urinary Biomarkers in Rural Subsistence Farmers in the Former Transkei, South Africa. Food Chem. Toxicol. 2013, 62, 217–225. [Google Scholar] [CrossRef]
- Ezekiel, C.N.; Warth, B.; Ogara, I.M.; Abia, W.A.; Ezekiel, V.C.; Atehnkeng, J.; Sulyok, M.; Turner, P.C.; Tayo, G.O.; Krska, R.; et al. Mycotoxin Exposure in Rural Residents in Northern Nigeria: A Pilot Study Using Multi-Urinary Biomarkers. Environ. Int. 2014, 66, 138–145. [Google Scholar] [CrossRef]
- Gerding, J.; Ali, N.; Schwartzbord, J.; Cramer, B.; Brown, D.L.; Degen, G.H.; Humpf, H.-U. A Comparative Study of the Human Urinary Mycotoxin Excretion Patterns in Bangladesh, Germany, and Haiti Using a Rapid and Sensitive LC-MS/MS Approach. Mycotoxin Res. 2015, 31, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Wallin, S.; Gambacorta, L.; Kotova, N.; Warensjö Lemming, E.; Nälsén, C.; Solfrizzo, M.; Olsen, M. Biomonitoring of Concurrent Mycotoxin Exposure among Adults in Sweden through Urinary Multi-Biomarker Analysis. Food Chem. Toxicol. 2015, 83, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Föllmann, W.; Ali, N.; Blaszkewicz, M.; Degen, G.H. Biomonitoring of Mycotoxins in Urine: Pilot Study in Mill Workers. J. Toxicol. Environ. Health A 2016, 79, 1015–1025. [Google Scholar] [CrossRef]
- Belhassen, H.; Jiménez-Díaz, I.; Ghali, R.; Ghorbel, H.; Molina-Molina, J.M.; Olea, N.; Hedili, A. Validation of a UHPLC–MS/MS Method for Quantification of Zearalenone, α-Zearalenol, β-Zearalenol, α-Zearalanol, β-Zearalanol and Zearalanone in Human Urine. J. Chromatogr. B 2014, 962, 68–74. [Google Scholar] [CrossRef]
- Mally, A.; Solfrizzo, M.; Degen, G.H. Biomonitoring of the Mycotoxin Zearalenone: Current State-of-the Art and Application to Human Exposure Assessment. Arch. Toxicol. 2016, 90, 1281–1292. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Deng, C.; Zhou, S.; Zhao, Y.; Wang, D.; Wang, X.; Gong, Y.Y.; Wu, Y. High-Throughput and Sensitive Determination of Urinary Zearalenone and Metabolites by UPLC-MS/MS and Its Application to a Human Exposure Study. Anal. Bioanal. Chem. 2018, 410, 5301–5312. [Google Scholar] [CrossRef]
- Asci, A. Urinary Zearalenone Levels in Girls with Premature Thelarche and Idiopathic Central Precocious Puberty. Minerva Pediatr. 2014, 66, 571–578. [Google Scholar]
- Bandera, E.V.; Chandran, U.; Buckley, B.; Lin, Y.; Isukapalli, S.; Marshall, I.; King, M.; Zarbl, H. Urinary Mycoestrogens, Body Size and Breast Development in New Jersey Girls. Sci. Total Environ. 2011, 409, 5221–5227. [Google Scholar] [CrossRef]
- Zhang, K.; Wong, J.W.; Jia, Z.; Vaclavikova, M.; Trucksess, M.W.; Begley, T.H. Screening Multimycotoxins in Food-Grade Gums by Stable Isotope Dilution and Liquid Chromatography/Tandem Mass Spectrometry. J. AOAC Int. 2014, 97, 889–895. [Google Scholar] [CrossRef]
- Sabillón, L.; Bianchini, A. From Field to Table: A Review on the Microbiological Quality and Safety of Wheat-Based Products. Cereal Chem. 2016, 93, 105–115. [Google Scholar] [CrossRef]
- Flores-Flores, M.E.; Lizarraga, E.; López de Cerain, A.; González-Peñas, E. Presence of Mycotoxins in Animal Milk: A Review. Food Control 2015, 53, 163–176. [Google Scholar] [CrossRef]
- Huang, L.C.; Zheng, N.; Zheng, B.Q.; Wen, F.; Cheng, J.B.; Han, R.W.; Xu, X.M.; Li, S.L.; Wang, J.Q. Simultaneous Determination of Aflatoxin M1, Ochratoxin A, Zearalenone and α-Zearalenol in Milk by UHPLC–MS/MS. Food Chem. 2014, 146, 242–249. [Google Scholar] [CrossRef]
- Charusalaipong, P.; Gordon, M.-J.; Cantlay, L.; De Souza, N.; Horgan, G.W.; Bates, R.; Gratz, S.W. Frequent Dietary Multi-Mycotoxin Exposure in UK Children and Its Association with Dietary Intake. Toxins 2024, 16, 251. [Google Scholar] [CrossRef]
- Ali, N.; Degen, G.H. Urinary Biomarkers of Exposure to the Mycoestrogen Zearalenone and Its Modified Forms in German Adults. Arch. Toxicol. 2018, 92, 2691–2700. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhou, S.; Gong, Y.Y.; Zhao, Y.; Wu, Y. Human Dietary and Internal Exposure to Zearalenone Based on a 24-Hour Duplicate Diet and Following Morning Urine Study. Environ. Int. 2020, 142, 105852. [Google Scholar] [CrossRef]
- Rubert, J.; León, N.; Sáez, C.; Martins, C.P.B.; Godula, M.; Yusà, V.; Mañes, J.; Soriano, J.M.; Soler, C. Evaluation of Mycotoxins and Their Metabolites in Human Breast Milk Using Liquid Chromatography Coupled to High Resolution Mass Spectrometry. Anal. Chim. Acta 2014, 820, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Massart, F.; Micillo, F.; Rivezzi, G.; Perrone, L.; Baggiani, A.; Miccoli, M.; Meucci, V. Zearalenone Screening of Human Breast Milk from the Naples Area. Toxicol. Environ. Chem. 2016, 98, 128–136. [Google Scholar] [CrossRef]
- The European Commission. Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006. Off. J. Eur. Union 2023, L119, 103–157. [Google Scholar]
- RASFF Window Search. Available online: https://webgate.ec.europa.eu/rasff-window/screen/search (accessed on 22 February 2025).
- The European Commission. Commission Recommendation of 17 August 2006 on the Presence of Deoxynivalenol, Zearalenone, Ochratoxin A, T-2 and HT-2 and Fumonisins in Products Intended for Animal Feeding. Off. J. Eur. Union 2006, L229, 7–9. [Google Scholar]
- Morgavi, D.P.; Riley, R.T. An Historical Overview of Field Disease Outbreaks Known or Suspected to Be Caused by Consumption of Feeds Contaminated with Fusarium Toxins. Anim. Feed. Sci. Technol. 2007, 137, 201–212. [Google Scholar] [CrossRef]
Variable | ZEA-Positive Urine Samples | |||
---|---|---|---|---|
n (%) | Mean ± SD (µg/L) | Range (µg/L) | ||
Father’s education level | Elementary education | 4 (12.5) | 0.09 ± 0.03 | (0.08; 0.28) |
High school | 21 (65.63) | 0.14 ± 0.11 | (0.06; 1.28) | |
Higher education | 7 (21.88) | 0.16 ± 0.15 | (0.07; 0.47) | |
Elementary education | 1 (3.13) | 0.28 | (0.28) | |
Mother’s education level | High school | 14 (43.75) | 0.16 ± 0.14 | (0.07; 0.47) |
Higher education | 17 (53.13) | 0.20 ± 0.30 | (0.06; 1.28) | |
Gender | Boy | 20 (62.5) | 0.20 ± 0.29 | (0.06; 1.28) |
Girl | 12 (37.5) | 0.17 ± 0.11 | (0.07; 0.46) | |
Age (years) | 5–8 | 8 (25) | 0.29 ± 0.42 | (0.07; 1.28) |
9–10 | 15 (46.88) | 0.16 ± 0.15 | (0.06; 0.55) | |
11–12 | 9 (28.13) | 0.14 ± 0.08 | (0.07; 0.27) | |
Body weight (kg) | 18–29 | 7 (21.88) | 0.32 ± 0.44 | (0.66; 1.28) |
30–39 | 15 (46.88) | 0.15 ± 0.11 | (0.66; 0.47) | |
40–61 | 10 (31.25) | 0.15 ± 0.15 | (0.06; 0.55) | |
Homemade products/local products | 0% | 4 (12.5) | 0.09 ± 0.03 | (0.07; 0.12) |
<25% | 11 (34.38) | 0.15 ± 0.09 | (0.06; 0.47) | |
50% | 12 (37.5) | 0.17 ± 0.18 | (0.07; 0.55) | |
>75% | 5 (15.63) | 0.36 ± 0.52 | (0.06; 1.28) | |
Products purchased in supermarkets | <25% | 4 (12.5) | 0.41 ± 0.58 | (0.06; 1.28) |
50% | 7 (21.88) | 0.16 ± 0.17 | (0.08; 0.55) | |
75% | 14 (43.75) | 0.17 ± 0.14 | (0.06; 0.47) | |
100% | 7 (21.88) | 0.12 ± 0.07 | (0.07; 0.28) |
Age (Mean Weight) | Scenario | ZEA Level (µg/L) | Exposure and Risk Assessment | Excretion Rate (%) | |
---|---|---|---|---|---|
9.4 [21] | 36.8 [22,23] | ||||
5–8 years (23.08 kg) | Best case | minimum level = 0.07 µg/L | PDI (µg/kg bw/day) | 0.03 | 0.01 |
HQ | 0.13 | 0.03 | |||
Average | average level = 0.29 µg/L | PDI (µg/kg bw/day) | 0.13 | 0.03 | |
HQ | 0.53 | 0.14 | |||
Worst case | maximum level = 1.28 µg/L | PDI (µg/kg bw/day) | 0.59 | 0.15 | |
HQ | 2.36 | 0.60 | |||
9–10 years (39.67 kg) | Best case | minimum level = 0.06 µg/L | PDI (µg/kg bw/day) | 0.01 | 0.01 |
HQ | 0.06 | 0.02 | |||
Average | average level = 0.16 µg/L | PDI (µg/kg bw/day) | 0.04 | 0.01 | |
HQ | 0.17 | 0.04 | |||
Worst case | maximum level = 0.55 µg/L | PDI (µg/kg bw/day) | 0.15 | 0.04 | |
HQ | 0.59 | 0.15 | |||
11–12 years (37.55 kg) | Best case | minimum level = 0.07 µg/L | PDI (µg/kg bw/day) | 0.02 | 0.02 |
HQ | 0.08 | 0.02 | |||
Average | average level = 0.14 µg/L | PDI (µg/kg bw/day) | 0.04 | 0.01 | |
HQ | 0.16 | 0.04 | |||
Worst case | maximum level = 0.27 µg/L | PDI (µg/kg bw/day) | 0.08 | 0.02 | |
HQ | 0.31 | 0.08 |
Variable | ZEA-Positive Breastmilk Samples | |||
---|---|---|---|---|
n (% of Positives) | Mean ± SD (ng/L) | Range (ng/L) | ||
Mother’s age | 26–29 years | 3 (14.29%) | 155.21 ± 77.27 | 62.1–304.57 |
30–33 years | 9 (42.86%) | 180.92 ± 84.79 | 70.76–341.42 | |
34–37 years | 5 (23.81%) | 117.22 ± 79.61 | 77.34–171.01 | |
38–42 years | 4 (19.05%) | 160.86 ± 72.25 | 86.08–245.22 | |
Education level | Elementary school | 2 (9.52%) | 81.71 ± 76.90 | 77.34–86.08 |
High school | 5 (23.81%) | 159.28 ± 105.49 | 70.76–304.57 | |
University | 9 (42.86%) | 162.77 ± 77.47 | 62.1–341.42 | |
MSc/PhD | 5 (23.81%) | 179.75 ± 55.69 | 128.37–235.85 | |
Season of collection | Spring | 4 (19.05%) | 143.49 ± 77.81 | 62.1–235.85 |
Summer | 6 (28.57%) | 198.91 ± 79.07 | 98.96–341.42 | |
Fall | 2 (9.52%) | 143.36 ± 62.22 | 90.41–196.31 | |
Winter | 9 (42.86%) | 141.04 ± 84.09 | 70.76–304.57 | |
Baby’s weight at collection (x− = 7.53 ± 2.05 ng/L) | 3.2–5 kg | 5 (23.81%) | 91.31 ± 75.67 | 62.1–118.98 |
5.1–7 kg | 6 (28.57%) | 204.43 ± 86.46 | 77.34–341.42 | |
7.1–9 kg | 5 (23.81%) | 160.21 ± 65.71 | 70.76–245.22 | |
9.1–11.35 kg | 4 (19.05%) | 171.05 ± 81.02 | 80.26–304.57 | |
No response | 1 (4.76%) | 155.1 | n.a. | |
Infant’s age (x− = 5.58 ± 4.38 ng/L) | 1–3 months | 9 (42.86%) | 114.30 ± 83.47 | 62.1–196.31 |
4–6 months | 6 (28.57%) | 77.34 ± 92.46 | 77.34–341.42 | |
7–10 months | 4 (19.05%) | 182.0 ± 77.25 | 70.76–304.57 | |
≥11 months | 2 (9.52%) | 163.1 ± 70.37 | 155.1–171.01 | |
Number of children (x− = 1.44 ± 0.55 ng/L) | 1 | 9 (42.86%) | 188.75 ± 86.36 | 98.96–341.42 |
2 | 12 (57.14%) | 135.39 ± 76.64 | 62.1–245.22 | |
3 | 0 | 0 | 0 | |
Homemade products/local products | 0 | 3 (14.29%) | 170.76 ± 70.88 | 70.76–245.22 |
≤25% | 8 (38.10%) | 136.14 ± 81.73 | 62.1–235.85 | |
50% | 6 (28.57%) | 175.91 ± 87.99 | 90.41–341.42 | |
75% | 4 (19.05%) | 166.65 ± 106.18 | 80.26–304.57 | |
100% | 0 | 0 | 0 | |
Products purchased in supermarkets | 0 | 0 | 0 | 0 |
≤25% | 3 (14.29%) | 120.67 ± 65.02 | 80.26–195.68 | |
50% | 6 (28.57%) | 175.91 ± 84.06 | 90.41–341.42 | |
75% | 9 (42.86%) | 154.86 ± 95.86 | 62.1–304.57 | |
100% | 3 (14.29%) | 170.76 ± 70.88 | 70.76–245.22 |
Variable | Scenario | ZEA Level | Exposure and Risk Assessment | ||
---|---|---|---|---|---|
Age | 1–3 months (i.e., younger than 16 weeks) n = 9 positives x− = 6.01 kg | Best-case scenario | Minimum ZEA level (62.1 ng/L) | EDI (ng/kg bw/day) | 16.15 |
HQ | 0.19 | ||||
Average scenario | Average ZEA level (114.30 ng/L) | EDI (ng/kg bw/day) | 29.72 | ||
HQ | 0.36 | ||||
Worst-case scenario | Maximum ZEA level (196.31 ng/L) | EDI (ng/kg bw/day) | 51.04 | ||
HQ | 0.61 | ||||
≥4 months (i.e., older than 16 weeks) n = 12 positives x−= 7.83 kg | Best-case scenario | Minimum ZEA level (70.76 ng/L) | EDI (ng/kg bw/day) | 9.04 | |
HQ | 0.04 | ||||
Average scenario | Average ZEA level (191.23 ng/L) | EDI (ng/kg bw/day) | 24.42 | ||
HQ | 0.10 | ||||
Worst-case scenario | Maximum ZEA level (341.42 ng/L) | EDI (ng/kg bw/day) | 43.60 | ||
HQ | 0.17 | ||||
Weight | Breastfed < 7 kg (n = 11 positives) x− = 5.24 kg | Best-case scenario | Minimum ZEA level (62.1 ng/L) | EDI (ng/kg bw/day) | 9.32 |
HQ | 0.04 | ||||
Average scenario | Average ZEA level (153.01 ng/L) | EDI (ng/kg bw/day) | 22.95 | ||
HQ | 0.09 | ||||
Worst-case scenario | Maximum ZEA level (341.42 ng/L) | EDI (ng/kg bw/day) | 51.21 | ||
HQ | 0.20 | ||||
Breastfed ≥ 7 kg (n = 9 positives) * x− = 8.78 kg | Best-case scenario | Minimum ZEA level (70.76 ng/L) | EDI (ng/kg bw/day) | 8.06 | |
HQ | 0.03 | ||||
Average scenario | Average ZEA level (165.03 ng/L) | EDI (ng/kg bw/day) | 8.06 | ||
HQ | 0.03 | ||||
Worst-case scenario | Maximum ZEA level (304.57 ng/L) | EDI (ng/kg bw/day) | 8.06 | ||
HQ | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duarte, S.; Duarte, I.; Duarte, M.; Paiva, A.; Cabeças, R.; Silva, L.J.G.; Pereira, A.M.P.T.; Lino, C.; Pena, A. Biomonitoring Pilot Surveys of Zearalenone in Breastmilk and the Urine of Children in Central Portugal. Toxins 2025, 17, 162. https://doi.org/10.3390/toxins17040162
Duarte S, Duarte I, Duarte M, Paiva A, Cabeças R, Silva LJG, Pereira AMPT, Lino C, Pena A. Biomonitoring Pilot Surveys of Zearalenone in Breastmilk and the Urine of Children in Central Portugal. Toxins. 2025; 17(4):162. https://doi.org/10.3390/toxins17040162
Chicago/Turabian StyleDuarte, Sofia, Inês Duarte, Myrella Duarte, Ana Paiva, Ricardo Cabeças, Liliana J. G. Silva, André M. P. T. Pereira, Celeste Lino, and Angelina Pena. 2025. "Biomonitoring Pilot Surveys of Zearalenone in Breastmilk and the Urine of Children in Central Portugal" Toxins 17, no. 4: 162. https://doi.org/10.3390/toxins17040162
APA StyleDuarte, S., Duarte, I., Duarte, M., Paiva, A., Cabeças, R., Silva, L. J. G., Pereira, A. M. P. T., Lino, C., & Pena, A. (2025). Biomonitoring Pilot Surveys of Zearalenone in Breastmilk and the Urine of Children in Central Portugal. Toxins, 17(4), 162. https://doi.org/10.3390/toxins17040162