Establishing Reference Genes for Accurate Gene Expression Profiling in Toxigenic Bacillus cereus
Abstract
:1. Introduction
2. Results
2.1. Candidate Reference Genes for RT-qPCR Studies in Eubacteria
2.2. Distinct Toxin Gene Expression Pattern in Emetic and Enteropathogenic B. cereus
3. Discussion
3.1. Identification of Candidate Reference Genes for RT-qPCR Studies in Eubacteria
3.2. Distinct Toxin Gene Expression Pattern in Emetic and Enteropathogenic B. cereus
4. Materials and Methods
4.1. Bacterial Cultivation and RNA Isolation
4.2. Primer Design and Efficiency Testing
4.3. RNA Quantification by RT-qPCR
4.4. Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agata, N.; Ohta, M.; Yokoyama, K. Production of Bacillus cereus Emetic Toxin (Cereulide) in Various Foods. Int. J. Food Microbiol. 2002, 73, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Ehling-Schulz, M.; Fricker, M.; Scherer, S. Bacillus cereus, the Causative Agent of an Emetic Type of Food-Borne Illness. Mol. Nutr. Food Res. 2004, 48, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Messelhäußer, U.; Ehling-Schulz, M. Bacillus cereus—A Multifaceted Opportunistic Pathogen. Curr. Clin. Micro Rpt. 2018, 5, 120–125. [Google Scholar] [CrossRef]
- Jovanovic, J.; Ornelis, V.F.M.; Madder, A.; Rajkovic, A. Bacillus cereus Food Intoxication and Toxicoinfection. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3719–3761. [Google Scholar] [CrossRef]
- Foxcroft, N.; Masaka, E.; Oosthuizen, J. Prevalence Trends of Foodborne Pathogens Bacillus cereus, Non-STEC Escherichia coli and Staphylococcus aureus in Ready-to-Eat Foods Sourced from Restaurants, Cafés, Catering and Takeaway Food Premises. Int. J. Environ. Res. Public Health 2024, 21, 1426. [Google Scholar] [CrossRef]
- Dietrich, R.; Jessberger, N.; Ehling-Schulz, M.; Märtlbauer, E.; Granum, P.E. The Food Poisoning Toxins of Bacillus cereus. Toxins 2021, 13, 98. [Google Scholar] [CrossRef]
- Cormontagne, D.; Rigourd, V.; Vidic, J.; Rizzotto, F.; Bille, E.; Ramarao, N. Bacillus cereus Induces Severe Infections in Preterm Neonates: Implication at the Hospital and Human Milk Bank Level. Toxins 2021, 13, 123. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, C.; Hu, L.; Wang, L.; Xu, F. Late-Onset Sepsis in Newborns Caused by Bacillus cereus: A Case Report and Literature Review. Ann. Clin. Microbiol. Antimicrob. 2024, 23, 66. [Google Scholar] [CrossRef]
- Bottone, E.J. Bacillus cereus, a Volatile Human Pathogen. Clin. Microbiol. Rev. 2010, 23, 382–398. [Google Scholar] [CrossRef]
- Glasset, B.; Herbin, S.; Granier, S.A.; Cavalié, L.; Lafeuille, E.; Guérin, C.; Ruimy, R.; Casagrande-Magne, F.; Levast, M.; Chautemps, N.; et al. Bacillus cereus, a Serious Cause of Nosocomial Infections: Epidemiologic and Genetic Survey. PLoS ONE 2018, 13, e0194346. [Google Scholar] [CrossRef]
- Little, J.S.; Coughlin, C.; Hsieh, C.; Lanza, M.; Huang, W.Y.; Kumar, A.; Dandawate, T.; Tucker, R.; Gable, P.; Vazquez Deida, A.A.; et al. Neuroinvasive Bacillus cereus Infection in Immunocompromised Hosts: Epidemiologic Investigation of 5 Patients with Acute Myeloid Leukemia. Open Forum Infect. Dis. 2024, 11, ofae048. [Google Scholar] [CrossRef]
- Rouzeau-Szynalski, K.; Stollewerk, K.; Messelhäusser, U.; Ehling-Schulz, M. Why Be Serious about Emetic Bacillus cereus: Cereulide Production and Industrial Challenges. Food Microbiol. 2020, 85, 103279. [Google Scholar] [CrossRef] [PubMed]
- Tschiedel, E.; Rath, P.-M.; Steinmann, J.; Becker, H.; Dietrich, R.; Paul, A.; Felderhoff-Müser, U.; Dohna-Schwake, C. Lifesaving Liver Transplantation for Multi-Organ Failure Caused by Bacillus cereus Food Poisoning. Pediatr. Transplant. 2015, 19, E11–E14. [Google Scholar] [CrossRef] [PubMed]
- Mahler, H.; Pasi, A.; Kramer, J.M.; Schulte, P.; Scoging, A.C.; Bär, W.; Krähenbühl, S. Fulminant Liver Failure in Association with the Emetic Toxin of Bacillus cereus. N. Engl. J. Med. 1997, 336, 1142–1148. [Google Scholar] [CrossRef] [PubMed]
- Thery, M.; Cousin, V.L.; Tissieres, P.; Enault, M.; Morin, L. Multi-Organ Failure Caused by Lasagnas: A Case Report of Bacillus cereus Food Poisoning. Front. Pediatr. 2022, 10, 978250. [Google Scholar] [CrossRef]
- Jessberger, N.; Kranzler, M.; Da Riol, C.; Schwenk, V.; Buchacher, T.; Dietrich, R.; Ehling-Schulz, M.; Märtlbauer, E. Assessing the Toxic Potential of Enteropathogenic Bacillus cereus. Food Microbiol. 2019, 84, 103276. [Google Scholar] [CrossRef]
- Ehling-Schulz, M.; Lereclus, D.; Koehler, T.M. The Bacillus cereus Group: Bacillus Species with Pathogenic Potential. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
- Stenfors Arnesen, L.P.; Fagerlund, A.; Granum, P.E. From Soil to Gut: Bacillus cereus and Its Food Poisoning Toxins. FEMS Microbiol. Rev. 2008, 32, 579–606. [Google Scholar] [CrossRef]
- Ehling-Schulz, M.; Fricker, M.; Grallert, H.; Rieck, P.; Wagner, M.; Scherer, S. Cereulide Synthetase Gene Cluster from Emetic Bacillus cereus: Structure and Location on a Mega Virulence Plasmid Related to Bacillus anthracis Toxin Plasmid pXO1. BMC Microbiol. 2006, 6, 20. [Google Scholar] [CrossRef]
- Ehling-Schulz, M.; Vukov, N.; Schulz, A.; Shaheen, R.; Andersson, M.; Märtlbauer, E.; Scherer, S. Identification and Partial Characterization of the Nonribosomal Peptide Synthetase Gene Responsible for Cereulide Production in Emetic Bacillus cereus. Appl. Environ. Microbiol. 2005, 71, 105–113. [Google Scholar] [CrossRef]
- Dommel, M.K.; Lücking, G.; Scherer, S.; Ehling-Schulz, M. Transcriptional Kinetic Analyses of Cereulide Synthetase Genes with Respect to Growth, Sporulation and Emetic Toxin Production in Bacillus cereus. Food Microbiol. 2011, 28, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Häggblom, M.M.; Apetroaie, C.; Andersson, M.A.; Salkinoja-Salonen, M.S. Quantitative Analysis of Cereulide, the Emetic Toxin of Bacillus cereus, Produced under Various Conditions. Appl. Environ. Microbiol. 2002, 68, 2479–2483. [Google Scholar] [CrossRef] [PubMed]
- Apetroaie-Constantin, C.; Shaheen, R.; Andrup, L.; Smidt, L.; Rita, H.; Salkinoja-Salonen, M. Environment Driven Cereulide Production by Emetic Strains of Bacillus cereus. Int. J. Food Microbiol. 2008, 127, 60–67. [Google Scholar] [CrossRef]
- Fox, D.; Mathur, A.; Xue, Y.; Liu, Y.; Tan, W.H.; Feng, S.; Pandey, A.; Ngo, C.; Hayward, J.A.; Atmosukarto, I.I.; et al. Bacillus cereus Non-Haemolytic Enterotoxin Activates the NLRP3 Inflammasome. Nat. Commun. 2020, 11, 760. [Google Scholar] [CrossRef]
- Lindbäck, T.; Fagerlund, A.; Rødland, M.S.; Granum, P.E. Characterization of the Bacillus cereus Nhe Enterotoxin. Microbiology 2004, 150, 3959–3967. [Google Scholar] [CrossRef]
- Lindbäck, T.; Hardy, S.P.; Dietrich, R.; Sødring, M.; Didier, A.; Moravek, M.; Fagerlund, A.; Bock, S.; Nielsen, C.; Casteel, M.; et al. Cytotoxicity of the Bacillus cereus Nhe Enterotoxin Requires Specific Binding Order of Its Three Exoprotein Components. Infect. Immun. 2010, 78, 3813–3821. [Google Scholar] [CrossRef]
- Lund, T.; Granum, P.E. Characterisation of a Non-Haemolytic Enterotoxin Complex from Bacillus cereus Isolated after a Foodborne Outbreak. FEMS Microbiol. Lett. 1996, 141, 151–156. [Google Scholar] [CrossRef]
- Doll, V.M.; Ehling-Schulz, M.; Vogelmann, R. Concerted Action of Sphingomyelinase and Non-Hemolytic Enterotoxin in Pathogenic Bacillus cereus. PLoS ONE 2013, 8, e61404. [Google Scholar] [CrossRef]
- Beecher, D.J.; Wong, A.C.L. Cooperative, Synergistic and Antagonistic Haemolytic Interactions between Haemolysin BL, Phosphatidylcholine Phospholipase C and Sphingomyelinase from Bacillus cereus. Microbiology 2000, 146 Pt 12, 3033–3039. [Google Scholar] [CrossRef]
- Oda, M.; Fujita, A.; Okui, K.; Miyamoto, K.; Shibutani, M.; Takagishi, T.; Nagahama, M. Bacillus cereus Sphingomyelinase Recognizes Ganglioside GM3. Biochem. Biophys. Res. Commun. 2013, 431, 164–168. [Google Scholar] [CrossRef]
- Oda, M.; Hashimoto, M.; Takahashi, M.; Ohmae, Y.; Seike, S.; Kato, R.; Fujita, A.; Tsuge, H.; Nagahama, M.; Ochi, S.; et al. Role of Sphingomyelinase in Infectious Diseases Caused by Bacillus cereus. PLoS ONE 2012, 7, e38054. [Google Scholar] [CrossRef] [PubMed]
- Flores-Díaz, M.; Monturiol-Gross, L.; Naylor, C.; Alape-Girón, A.; Flieger, A. Bacterial Sphingomyelinases and Phospholipases as Virulence Factors. Microbiol. Mol. Biol. Rev. 2016, 80, 597–628. [Google Scholar] [CrossRef] [PubMed]
- Mursalin, M.H.; Coburn, P.S.; Livingston, E.; Miller, F.C.; Astley, R.; Fouet, A.; Callegan, M.C. S-Layer Impacts the Virulence of Bacillus in Endophthalmitis. Invest. Ophthalmol. Vis. Sci. 2019, 60, 3727–3739. [Google Scholar] [CrossRef]
- Mei, F.; Lin, J.; Liu, M.; Yang, Y.; Lin, X.; Duan, F. Posttraumatic Bacillus cereus Endophthalmitis: Clinical Characteristics and Antibiotic Susceptibilities. J. Ophthalmol. 2021, 2021, 6634179. [Google Scholar] [CrossRef] [PubMed]
- Gohar, M.; Faegri, K.; Perchat, S.; Ravnum, S.; Økstad, O.A.; Gominet, M.; Kolstø, A.-B.; Lereclus, D. The PlcR Virulence Regulon of Bacillus cereus. PLoS ONE 2008, 3, e2793. [Google Scholar] [CrossRef]
- Declerck, N.; Bouillaut, L.; Chaix, D.; Rugani, N.; Slamti, L.; Hoh, F.; Lereclus, D.; Arold, S.T. Structure of PlcR: Insights into Virulence Regulation and Evolution of Quorum Sensing in Gram-Positive Bacteria. Proc. Natl. Acad. Sci. USA 2007, 104, 18490–18495. [Google Scholar] [CrossRef]
- Pomerantsev, A.P.; Kalnin, K.V.; Osorio, M.; Leppla, S.H. Phosphatidylcholine-Specific Phospholipase C and Sphingomyelinase Activities in Bacteria of the Bacillus cereus Group. Infect. Immun. 2003, 71, 6591–6606. [Google Scholar] [CrossRef]
- Agaisse, H.; Gominet, M.; Okstad, O.A.; Kolstø, A.B.; Lereclus, D. PlcR Is a Pleiotropic Regulator of Extracellular Virulence Factor Gene Expression in Bacillus thuringiensis. Mol. Microbiol. 1999, 32, 1043–1053. [Google Scholar] [CrossRef]
- Slamti, L.; Lereclus, D. A Cell–Cell Signaling Peptide Activates the PlcR Virulence Regulon in Bacteria of the Bacillus cereus Group. EMBO J. 2002, 21, 4550–4559. [Google Scholar] [CrossRef]
- Wloch-Salamon, D.M.; Gerla, D.; Hoekstra, R.F.; de Visser, J.A.G.M. Effect of Dispersal and Nutrient Availability on the Competitive Ability of Toxin-Producing Yeast. Proc. Biol. Sci. 2008, 275, 535–541. [Google Scholar] [CrossRef]
- Konečná, K.; Klimentová, J.; Benada, O.; Němečková, I.; Janďourek, O.; Jílek, P.; Vejsová, M. A Comparative Analysis of Protein Virulence Factors Released via Extracellular Vesicles in Two Candida albicans Strains Cultivated in a Nutrient-Limited Medium. Microb. Pathog. 2019, 136, 103666. [Google Scholar] [CrossRef]
- Jugert, C.-S.; Didier, A.; Jessberger, N. Lactoferrin-Based Food Supplements Trigger Toxin Production of Enteropathogenic Bacillus cereus. Front. Microbiol. 2023, 14, 1284473. [Google Scholar] [CrossRef] [PubMed]
- Kranzler, M.; Frenzel, E.; Walser, V.; Hofmann, T.F.; Stark, T.D.; Ehling-Schulz, M. Impact of Phytochemicals on Viability and Cereulide Toxin Synthesis in Bacillus cereus Revealed by a Novel High-Throughput Method, Coupling an AlamarBlue-Based Assay with UPLC-MS/MS. Toxins 2021, 13, 672. [Google Scholar] [CrossRef] [PubMed]
- Glatz, B.A.; Goepfert, J.M. Production of Bacillus cereus Enterotoxin in Defined Media in Fermenter-Grown Cultures. J. Food Prot. 1977, 40, 472–474. [Google Scholar] [CrossRef]
- Rosenfeld, E.; Duport, C.; Zigha, A.; Schmitt, P. Characterization of Aerobic and Anaerobic Vegetative Growth of the Food-Borne Pathogen Bacillus cereus F4430/73 Strain. Can. J. Microbiol. 2005, 51, 149–158. [Google Scholar] [CrossRef]
- Miller, J.H. Experiments in Molecular Genetics; Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, USA, 1972; ISBN 978-0-87969-106-6. [Google Scholar]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of Stable Housekeeping Genes, Differentially Regulated Target Genes and Sample Integrity: BestKeeper—Excel-Based Tool Using Pair-Wise Correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef]
- Grätz, C.; Bui, M.L.U.; Thaqi, G.; Kirchner, B.; Loewe, R.P.; Pfaffl, M.W. Obtaining Reliable RT-qPCR Results in Molecular Diagnostics—MIQE Goals and Pitfalls for Transcriptional Biomarker Discovery. Life 2022, 12, 386. [Google Scholar] [CrossRef]
- Dheda, K.; Huggett, J.F.; Chang, J.S.; Kim, L.U.; Bustin, S.A.; Johnson, M.A.; Rook, G.a.W.; Zumla, A. The Implications of Using an Inappropriate Reference Gene for Real-Time Reverse Transcription PCR Data Normalization. Anal. Biochem. 2005, 344, 141–143. [Google Scholar] [CrossRef]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef]
- Bustin, S.A. Improving the Quality of Quantitative Polymerase Chain Reaction Experiments: 15 Years of MIQE. Mol. Aspects Med. 2024, 96, 101249. [Google Scholar] [CrossRef]
- Curis, E.; Nepost, C.; Grillault Laroche, D.; Courtin, C.; Laplanche, J.-L.; Etain, B.; Marie-Claire, C. Selecting Reference Genes in RT-qPCR Based on Equivalence Tests: A Network Based Approach. Sci. Rep. 2019, 9, 16231. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.L.; Jensen, J.L.; Ørntoft, T.F. Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef] [PubMed]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate Normalization of Real-Time Quantitative RT-PCR Data by Geometric Averaging of Multiple Internal Control Genes. Genome Biol. 2002, 3, RESEARCH0034. [Google Scholar] [CrossRef] [PubMed]
- Silver, N.; Best, S.; Jiang, J.; Thein, S.L. Selection of Housekeeping Genes for Gene Expression Studies in Human Reticulocytes Using Real-Time PCR. BMC Mol. Biol. 2006, 7, 33. [Google Scholar] [CrossRef]
- Xie, F.; Wang, J.; Zhang, B. RefFinder: A Web-Based Tool for Comprehensively Analyzing and Identifying Reference Genes. Funct. Integr. Genomics 2023, 23, 125. [Google Scholar] [CrossRef]
- Reiter, L.; Kolstø, A.-B.; Piehler, A.P. Reference Genes for Quantitative, Reverse-Transcription PCR in Bacillus cereus Group Strains throughout the Bacterial Life Cycle. J. Microbiol. Methods 2011, 86, 210–217. [Google Scholar] [CrossRef]
- Gomes, A.É.I.; Stuchi, L.P.; Siqueira, N.M.G.; Henrique, J.B.; Vicentini, R.; Ribeiro, M.L.; Darrieux, M.; Ferraz, L.F.C. Selection and Validation of Reference Genes for Gene Expression Studies in Klebsiella pneumoniae Using Reverse Transcription Quantitative Real-Time PCR. Sci. Rep. 2018, 8, 9001. [Google Scholar] [CrossRef]
- Theis, T.; Skurray, R.A.; Brown, M.H. Identification of Suitable Internal Controls to Study Expression of a Staphylococcus aureus Multidrug Resistance System by Quantitative Real-Time PCR. J. Microbiol. Methods 2007, 70, 355–362. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING Database in 2023: Protein-Protein Association Networks and Functional Enrichment Analyses for Any Sequenced Genome of Interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef]
- Lücking, G.; Dommel, M.K.; Scherer, S.; Fouet, A.; Ehling-Schulz, M. Cereulide Synthesis in Emetic Bacillus cereus Is Controlled by the Transition State Regulator AbrB, but Not by the Virulence Regulator PlcR. Microbiology 2009, 155, 922–931. [Google Scholar] [CrossRef]
- de Oliveira, P.A.A.; Baboghlian, J.; Ramos, C.O.A.; Mançano, A.S.F.; Porcari, A.d.M.; Girardello, R.; Ferraz, L.F.C. Selection and Validation of Reference Genes Suitable for Gene Expression Analysis by Reverse Transcription Quantitative Real-Time PCR in Acinetobacter baumannii. Sci. Rep. 2024, 14, 3830. [Google Scholar] [CrossRef]
- Williams, M.L.; Ghanem, M. Evaluation of Candidate Reference Genes Stability for Gene Expression Analysis by Reverse Transcription qPCR in Clostridium perfringens. Sci. Rep. 2022, 12, 19434. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, A.P.; França, Â.; Pereira, M.O.; Cerca, N. RNA-Based qPCR as a Tool to Quantify and to Characterize Dual-Species Biofilms. Sci. Rep. 2019, 9, 13639. [Google Scholar] [CrossRef] [PubMed]
- Crawford, E.C.; Singh, A.; Metcalf, D.; Gibson, T.W.G.; Weese, S.J. Identification of Appropriate Reference Genes for qPCR Studies in Staphylococcus pseudintermedius and Preliminary Assessment of icaA Gene Expression in Biofilm-Embedded Bacteria. BMC Res. Notes 2014, 7, 451. [Google Scholar] [CrossRef]
- Bidnenko, V.; Nicolas, P.; Grylak-Mielnicka, A.; Delumeau, O.; Auger, S.; Aucouturier, A.; Guerin, C.; Repoila, F.; Bardowski, J.; Aymerich, S.; et al. Termination Factor Rho: From the Control of Pervasive Transcription to Cell Fate Determination in Bacillus subtilis. PLoS Genet. 2017, 13, e1006909. [Google Scholar] [CrossRef]
- Del Val, E.; Nasser, W.; Abaibou, H.; Reverchon, S. Design and Comparative Characterization of RecA Variants. Sci. Rep. 2021, 11, 21106. [Google Scholar] [CrossRef]
- Price, C.W.; Doi, R.H. Genetic Mapping of rpoD Implicates the Major Sigma Factor of Bacillus subtilis RNA Polymerase in Sporulation Initiation. Mol. Gen. Genet. 1985, 201, 88–95. [Google Scholar] [CrossRef]
- Gacek-Matthews, A.; Chromiková, Z.; Sulyok, M.; Lücking, G.; Barák, I.; Ehling-Schulz, M. Beyond Toxin Transport: Novel Role of ABC Transporter for Enzymatic Machinery of Cereulide NRPS Assembly Line. mBio 2020, 11, 01577-20. [Google Scholar] [CrossRef]
- Ehling-Schulz, M.; Svensson, B.; Guinebretiere, M.-H.; Lindbäck, T.; Andersson, M.; Schulz, A.; Fricker, M.; Christiansson, A.; Granum, P.E.; Märtlbauer, E.; et al. Emetic Toxin Formation of Bacillus cereus Is Restricted to a Single Evolutionary Lineage of Closely Related Strains. Microbiology 2005, 151, 183–197. [Google Scholar] [CrossRef]
- Frenzel, E.; Doll, V.; Pauthner, M.; Lücking, G.; Scherer, S.; Ehling-Schulz, M. CodY Orchestrates the Expression of Virulence Determinants in Emetic Bacillus cereus by Impacting Key Regulatory Circuits. Mol. Microbiol. 2012, 85, 67–88. [Google Scholar] [CrossRef]
- Johler, S.; Kalbhenn, E.M.; Heini, N.; Brodmann, P.; Gautsch, S.; Bağcioğlu, M.; Contzen, M.; Stephan, R.; Ehling-Schulz, M. Enterotoxin Production of Bacillus thuringiensis Isolates from Biopesticides, Foods, and Outbreaks. Front. Microbiol. 2018, 9, 1915. [Google Scholar] [CrossRef] [PubMed]
- Buchacher, T.; Digruber, A.; Kanzler, M.; Del Favero, G.; Ehling-Schulz, M. Bacillus cereus Extracellular Vesicles Act as Shuttles for Biologically Active Multicomponent Enterotoxins. Cell Commun. Signal. 2023, 21, 112. [Google Scholar] [CrossRef] [PubMed]
- Bouillaut, L.; Perchat, S.; Arold, S.; Zorrilla, S.; Slamti, L.; Henry, C.; Gohar, M.; Declerck, N.; Lereclus, D. Molecular Basis for Group-Specific Activation of the Virulence Regulator PlcR by PapR Heptapeptides. Nucleic Acids Res. 2008, 36, 3791–3801. [Google Scholar] [CrossRef] [PubMed]
- Pomerantsev, A.P.; Pomerantseva, O.M.; Leppla, S.H. A Spontaneous Translational Fusion of Bacillus cereus PlcR and PapR Activates Transcription of PlcR-Dependent Genes in Bacillus anthracis via Binding with a Specific Palindromic Sequence. Infect. Immun. 2004, 72, 5814–5823. [Google Scholar] [CrossRef]
- Slamti, L.; Lereclus, D. Specificity and Polymorphism of the PlcR-PapR Quorum-Sensing System in the Bacillus cereus Group. J. Bacteriol. 2005, 187, 1182–1187. [Google Scholar] [CrossRef]
- Slamti, L.; Perchat, S.; Gominet, M.; Vilas-Bôas, G.; Fouet, A.; Mock, M.; Sanchis, V.; Chaufaux, J.; Gohar, M.; Lereclus, D. Distinct Mutations in PlcR Explain Why Some Strains of the Bacillus cereus Group Are Nonhemolytic. J. Bacteriol. 2004, 186, 3531–3538. [Google Scholar] [CrossRef]
- Jeßberger, N.; Rademacher, C.; Krey, V.M.; Dietrich, R.; Mohr, A.-K.; Böhm, M.-E.; Scherer, S.; Ehling-Schulz, M.; Märtlbauer, E. Simulating Intestinal Growth Conditions Enhances Toxin Production of Enteropathogenic Bacillus cereus. Front. Microbiol. 2017, 8, 627. [Google Scholar] [CrossRef]
- Böhm, M.-E.; Krey, V.M.; Jeßberger, N.; Frenzel, E.; Scherer, S. Comparative Bioinformatics and Experimental Analysis of the Intergenic Regulatory Regions of Bacillus cereus Hbl and Nhe Enterotoxin Operons and the Impact of CodY on Virulence Heterogeneity. Front. Microbiol. 2016, 7, 768. [Google Scholar] [CrossRef]
- Kalbhenn, E.M.; Kranzler, M.; Gacek-Matthews, A.; Grass, G.; Stark, T.D.; Frenzel, E.; Ehling-Schulz, M. Impact of a Novel PagR-like Transcriptional Regulator on Cereulide Toxin Synthesis in Emetic Bacillus cereus. Int. J. Mol. Sci. 2022, 23, 11479. [Google Scholar] [CrossRef]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New Capabilities and Interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef]
- Koressaar, T.; Remm, M. Enhancements and Modifications of Primer Design Program Primer3. Bioinformatics 2007, 23, 1289–1291. [Google Scholar] [CrossRef] [PubMed]
- Kõressaar, T.; Lepamets, M.; Kaplinski, L.; Raime, K.; Andreson, R.; Remm, M. Primer3_masker: Integrating Masking of Template Sequence with Primer Design Software. Bioinformatics 2018, 34, 1937–1938. [Google Scholar] [CrossRef] [PubMed]
- Turnbull, P.C.; Kramer, J.M.; Jørgensen, K.; Gilbert, R.J.; Melling, J. Properties and Production Characteristics of Vomiting, Diarrheal, and Necrotizing Toxins of Bacillus cereus. Am. J. Clin. Nutr. 1979, 32, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Freier, S.M.; Kierzek, R.; Jaeger, J.A.; Sugimoto, N.; Caruthers, M.H.; Neilson, T.; Turner, D.H. Improved Free-Energy Parameters for Predictions of RNA Duplex Stability. Proc. Natl. Acad. Sci. USA 1986, 83, 9373–9377. [Google Scholar] [CrossRef] [PubMed]
- Breslauer, K.J.; Frank, R.; Blöcker, H.; Marky, L.A. Predicting DNA Duplex Stability from the Base Sequence. Proc. Natl. Acad. Sci. USA 1986, 83, 3746–3750. [Google Scholar] [CrossRef]
- Rychlik, W.; Spencer, W.J.; Rhoads, R.E. Optimization of the Annealing Temperature for DNA Amplification in Vitro. Nucleic Acids Res. 1990, 18, 6409–6412. [Google Scholar] [CrossRef]
- Sihto, H.-M.; Tasara, T.; Stephan, R.; Johler, S. Validation of Reference Genes for Normalization of qPCR mRNA Expression Levels in Staphylococcus aureus Exposed to Osmotic and Lactic Acid Stress Conditions Encountered during Food Production and Preservation. FEMS Microbiol. Lett. 2014, 356, 134–140. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Gene Name | Product Name | Primer Sequences (5′–3′) | Nucleotide Position | Product Size (bp) | E (%) | R2 |
---|---|---|---|---|---|---|
cesB | cereulide synthetase B | TTAGATGGTATTCTTCACTTGGC | 20,181–20,203 | 308 | 114.24 | 0.9961 |
TTGATACAAATCGCATTCTTATAACC | 20,463–20,488 | |||||
nheB | non-hemolytic enterotoxin NHE subunit B | CTTTAGTTGCTGCGGTAGATGC | 1,859,686–1,859,707 | 168 | 91.02 | 0.9961 |
CATCACCCTTGAAGTTTTGCGT | 1,859,832–1,859,853 | |||||
sph | sphingomyelinase C | ATTGGGGACAAAGTCAGCGT | 762,343–762,362 | 116 | 95.29 | 0.9927 |
TCCTAAAAGGCGATCTGAAGCA | 762,437–762,458 | |||||
plc | phospholipase C | GAACGGTATTTATGCTGCTGACT | 761,515–761,537 | 125 | 102.78 | 0.9933 |
CAGTTTCTTTTGCCTGCTTTGC | 761,618–761,639 | |||||
gatB_ Yqey | gatB/Yqey domain- containing protein | GTCATTCGTATGGTTAAGGCTGC | 4,115,261–4,115,283 | 223 | 103.84 | 0.9969 |
GCTCTTCTTCCGTTAATTGCTCC | 4,115,061–4,115,083 | |||||
gyrA | DNA Gyrase subunit A | AAGAGGTTACCAGCTTCCACGT | 8148–8169 | 72 | 93.54 | 0.997 |
ATTTGTCCCCATTCCTTGCAC | 8199–8219 | |||||
proC | Pyrroline-5-carboxylate reductase | GATCGCTGCTGGTAAAAGTATTGA | 2,802,477–2,802,500 | 136 | 113.93 | 0.9467 |
TGTCACCATTTCATTCGGGC | 2,802,593–2,802,612 | |||||
recA | recombinase A | CACCACCATTCCGTGTTGC | 3,578,587–3,578,605 | 151 | 88.98 | 0.988 |
CGACCTTGTCCTAAGCGTTCT | 3,578,455–3,578,475 | |||||
rho | transcription termination factor Rho | ACGACCTCCGAAAGAAAATGAAC | 5,093,968–5,093,990 | 125 | 94.6 | 0.9917 |
TGGCGATCTGGGTATAATGGTG | 5,093,862–5,093,883 | |||||
rpoD | RNA polymerase sigma factor RpoD | CACAGGAGCCAGTTTCTCTTGA | 4,101,300–4,101,321 | 91 | 102.88 | 0.9921 |
GGCGATGTTGCTTCTTGGTC | 4,101,231–4,101,250 | |||||
rpsU | 30S ribosomal protein S21 | AGATCGGTTTCTAAAACTGGTACAC | 4,115,460–4,115,484 | 111 | 99.93 | 0.9958 |
GAATTTACGCTTTCTTGCCGC | 4,115,374–4,115,394 | |||||
rrn | 16S rRNA | TTTCCGCCCTTTAGTGCTGA | 250 | 120.31 | 0.9975 | |
CCCAACATCTCACGACACGA | ||||||
wecB | UDP-N-acetylglucosamine 2-epimerase | GCAGGACTTCGTACATGGGAT | 4,946,363–4,946,383 | 79 | 101.39 | 0.9962 |
TCGTTGCTGATTTTGCTGTAGG | 4,946,272–4,946,293 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edelbacher, T.V.; Laimer-Digruber, A.; Pfaffl, M.W.; Ehling-Schulz, M. Establishing Reference Genes for Accurate Gene Expression Profiling in Toxigenic Bacillus cereus. Toxins 2025, 17, 58. https://doi.org/10.3390/toxins17020058
Edelbacher TV, Laimer-Digruber A, Pfaffl MW, Ehling-Schulz M. Establishing Reference Genes for Accurate Gene Expression Profiling in Toxigenic Bacillus cereus. Toxins. 2025; 17(2):58. https://doi.org/10.3390/toxins17020058
Chicago/Turabian StyleEdelbacher, Tanja V., Astrid Laimer-Digruber, Michael W. Pfaffl, and Monika Ehling-Schulz. 2025. "Establishing Reference Genes for Accurate Gene Expression Profiling in Toxigenic Bacillus cereus" Toxins 17, no. 2: 58. https://doi.org/10.3390/toxins17020058
APA StyleEdelbacher, T. V., Laimer-Digruber, A., Pfaffl, M. W., & Ehling-Schulz, M. (2025). Establishing Reference Genes for Accurate Gene Expression Profiling in Toxigenic Bacillus cereus. Toxins, 17(2), 58. https://doi.org/10.3390/toxins17020058