Adsorption–Degradation Integrated Approaches to Mycotoxin Removal from Food Matrices: A Comprehensive Review
Abstract
1. Introduction
2. Targeted Adsorbents
2.1. Metal–Organic Frameworks (MOFs)
2.2. Covalent Organic Frameworks (COFs)
2.3. Molecularly Imprinted Polymers (MIPs)
3. Adsorption–Photocatalysis Coupled Systems
3.1. Purely Photon-Driven Systems
3.1.1. Ultraviolet-Light-Activated Systems
3.1.2. Visible-Light-Activated Systems
3.2. Photothermal-Assisted Catalysis Systems
4. Adsorption–Biocatalysis Coupled Systems
4.1. Enzyme for Mycotoxins Removal
4.2. Adsorption–Enzymatic Catalysis Systems
4.3. Adsorption–Chemoenzymatic Catalysis Coupled Systems

5. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adeyeye, S.A. Fungal mycotoxins in foods: A review. Cogent Food Agric. 2016, 2, 1213127. [Google Scholar] [CrossRef]
- Jallow, A.; Xie, H.; Tang, X.; Qi, Z.; Li, P. Worldwide aflatoxin contamination of agricultural products and foods: From occurrence to control. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2332–2381. [Google Scholar] [CrossRef]
- Liu, M.; Zhao, L.; Gong, G.; Zhang, L.; Shi, L.; Dai, J.; Han, Y.; Wu, Y.; Khalil, M.M.; Sun, L. Invited review: Remediation strategies for mycotoxin control in feed. J. Anim. Sci. Biotechnol. 2022, 13, 19. [Google Scholar] [CrossRef]
- Azam, M.S.; Ahmed, S.; Islam, M.N.; Maitra, P.; Islam, M.M.; Yu, D. Critical Assessment of Mycotoxins in Beverages and Their Control Measures. Toxins 2021, 13, 323. [Google Scholar] [CrossRef]
- Afsah-Hejri, L.; Hajeb, P.; Ehsani, R.J. Application of ozone for degradation of mycotoxins in food: A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1777–1808. [Google Scholar] [CrossRef] [PubMed]
- Nan, M.; Xue, H.; Bi, Y. Contamination, Detection and Control of Mycotoxins in Fruits and Vegetables. Toxins 2022, 14, 309. [Google Scholar] [CrossRef] [PubMed]
- Munirah, A.; Norfarizan-Hanoon, N. Interrelated of food safety, food security and sustainable food production. Food Res. 2022, 6, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef]
- Shahbazi, F.; Shahbazi, S.; Nadimi, M.; Paliwal, J. Losses in agricultural produce: A review of causes and solutions, with a specific focus on grain crops. J. Stored Prod. Res. 2025, 111, 102547. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, Y.; Bai, X.; Ran, Y. Recent Development of Methods and Techniques in the Detection of Mycotoxins in Agricultural Products. J. Agric. Food Chem. 2025, 73, 20530–20546. [Google Scholar] [CrossRef]
- Lemée, P.; Fessard, V.; Habauzit, D. Prioritization of mycotoxins based on mutagenicity and carcinogenicity evaluation using combined in silico QSAR methods. Environ. Pollut. 2023, 323, 121284. [Google Scholar] [CrossRef]
- Awuchi, C.G.; Ondari, E.N.; Nwozo, S.; Odongo, G.A.; Eseoghene, I.J.; Twinomuhwezi, H.; Ogbonna, C.U.; Upadhyay, A.K.; Adeleye, A.O.; Okpala, C.O.R. Mycotoxins’ toxicological mechanisms involving humans, livestock and their associated health concerns: A review. Toxins 2022, 14, 167. [Google Scholar] [CrossRef]
- Gurikar, C.; Shivaprasad, D.; Sabillón, L.; Gowda, N.N.; Siliveru, K. Impact of mycotoxins and their metabolites associated with food grains. Grain Oil Sci. Technol. 2023, 6, 1–9. [Google Scholar] [CrossRef]
- Sebastià, A.; Calleja-Gómez, M.; Pallarés, N.; Castagnini, J.M.; Ferrer, E.; Berrada, H. Combination of pulsed electric fields and ultrasounds technologies for mycotoxins mitigation in grape juice. Appl. Food Res. 2025, 5, 100963. [Google Scholar] [CrossRef]
- Liu, Y.; Li, M.; Liu, Y.; Bian, K. Structures of Reaction Products and Degradation Pathways of Aflatoxin B1 by Ultrasound Treatment. Toxins 2019, 11, 526. [Google Scholar] [CrossRef] [PubMed]
- Tanwar, N.; Bhavana, B.K.; Mudliar, S.N.; Bhatt, P.; Vasu, P.; Debnath, S. Comparative efficacy of cold plasma and ozone treatments in mitigating Aspergillus flavus and Aflatoxin B1 in Byadagi chili. Food Control 2025, 177, 111408. [Google Scholar] [CrossRef]
- da Luz, S.R.; Pazdiora, P.C.; Dallagnol, L.J.; Dors, G.C.; Chaves, F.C. Mycotoxin and fungicide residues in wheat grains from fungicide-treated plants measured by a validated LC-MS method. Food Chem. 2017, 220, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, S.; Han, Y.; Hou, M.; Gao, Z. Novel strategies for efficiently detoxifying mycotoxins in plant-derived foods inspired by non-thermal technologies and biological resources: A review. Crit. Rev. Food Sci. Nutr. 2025, 65, 5929–5955. [Google Scholar] [CrossRef]
- Zhang, H.; Cui, L.; Xie, Y.; Li, X.; Zhao, R.; Yang, Y.; Sun, S.; Li, Q.; Ma, W.; Jia, H. Characterization, Mechanism, and Application of Dipeptidyl Peptidase III: An Aflatoxin B1-Degrading Enzyme from Aspergillus terreus HNGD-TM15. J. Agric. Food Chem. 2024, 72, 15998–16009. [Google Scholar] [CrossRef]
- Murtaza, B.; Guo, L.-l.; Wang, L.; Li, X.; Zeb, L.; Jin, B.; Li, J.-b.; Xu, Y. Innovative probiotic fermentation approach for zearalenone detoxification in dried distiller’s grains. Front. Microbiol. 2025, 16, 1533515. [Google Scholar] [CrossRef]
- Acosta, E.R.; Lima da Silva, J.; Lopes de Moura da Costa, Y.; Roberto Sant’Anna Cadaval Júnior, T.; Garda-Buffon, J. Adsorption techniques for mycotoxin mitigation in food: A review. Food Addit. Contam. Part A 2025, 42, 1091–1120. [Google Scholar] [CrossRef]
- Fang, J.; Sheng, L.; Ye, Y.; Ji, J.; Sun, J.; Zhang, Y.; Sun, X. Recent advances in biosynthesis of mycotoxin-degrading enzymes and their applications in food and feed. Crit. Rev. Food Sci. Nutr. 2025, 65, 1465–1481. [Google Scholar] [CrossRef]
- Song, C.; Yang, J.; Wang, Y.; Ding, G.; Guo, L.; Qin, J. Mechanisms and transformed products of aflatoxin B1 degradation under multiple treatments: A review. Crit. Rev. Food Sci. Nutr. 2024, 64, 2263–2275. [Google Scholar] [CrossRef]
- Cui, X.; Sun, Y.; Song, C.; Hu, Y.; Man, Y.; Li, J.; Zhao, R.; He, L. Removal of Mycotoxins in Food by Emerging Porous Materials: Advances, Mechanisms and Prospects. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70182. [Google Scholar] [CrossRef]
- Hu, G.; Wang, X.; Zhuang, Y.; Yu, P.; Gao, S.; Hao, J. Advances in the application of porous organic framework materials for adsorption and detection of mycotoxins and marine biotoxins. Talanta 2026, 298, 128966. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, W.; Huang, J.; Tao, X.; Xu, H. Porous framework materials for mycotoxin detection: From synthesis to application. TrAC Trends Anal. Chem. 2025, 189, 118249. [Google Scholar] [CrossRef]
- Song, C.; Qin, J. High-performance fabricated nano-adsorbents as emerging approach for removal of mycotoxins: A review. Int. J. Food Sci. Technol. 2022, 57, 5781–5789. [Google Scholar] [CrossRef]
- Ahmadou, A.; Napoli, A.; Durand, N.; Montet, D. High physical properties of cashew nut shell biochars in the adsorbtion of mycotoxins. Int. J. Food Res. 2019, 6, 18–28. [Google Scholar]
- Li, P.; Wang, S.; Lv, B.; Zhang, M.; Xing, C.; Sun, X.; Fang, Y. Magnetic rice husk-based biochar for removal of aflatoxin B1 from peanut oil. Food Control 2023, 152, 109883. [Google Scholar] [CrossRef]
- Fang, J.; Li, D.; Li, J.; Wang, Q.; Wang, J.; Gao, Y.; He, Y.; Wang, C. High efficient adsorption of aflatoxins in peanuts by novel covalent organic framework through multiple interactions. Food Chem. 2025, 481, 143919. [Google Scholar] [CrossRef]
- Lin, J.; Li, G.; Hu, Y.; Zhong, Q. Host-guest mediated recognition and rapid extraction of Fusarium mycotoxins in cereals by nickel ferrite magnetic calix [4] arene-derived covalent organic framework fabricated in room-temperature. Food Chem. 2025, 464, 141887. [Google Scholar] [CrossRef] [PubMed]
- Villa, C.C.; Sánchez, L.T.; Valencia, G.A.; Ahmed, S.; Gutiérrez, T.J. Molecularly imprinted polymers for food applications: A review. Trends Food Sci. Technol. 2021, 111, 642–669. [Google Scholar] [CrossRef]
- Hua, Y.; Ahmadi, Y.; Sonne, C.; Kim, K.-H. Progress and challenges in sensing of mycotoxins using molecularly imprinted polymers. Environ. Pollut. 2022, 305, 119218. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, A.; Yu, B.; Sun, X. Recent Advances in Non-Contact Food Decontamination Technologies for Removing Mycotoxins and Fungal Contaminants. Foods 2024, 13, 2244. [Google Scholar] [CrossRef]
- Mirza Alizadeh, A.; Hashempour-Baltork, F.; Mousavi Khaneghah, A.; Hosseini, H. New perspective approaches in controlling fungi and mycotoxins in food using emerging and green technologies. Curr. Opin. Food Sci. 2021, 39, 7–15. [Google Scholar] [CrossRef]
- Sun, Q.; Li, Z.; Li, J.; Liu, N.; Zhang, M.; Le, T. Advances in photocatalysis for mycotoxins elimination: Engineering strategies in photocatalyst designing, practical applications and future prospects. J. Alloys Compd. 2023, 955, 170234. [Google Scholar] [CrossRef]
- Murugesan, P.; Brunda, D.K.; Moses, J.A.; Anandharamakrishnan, C. Photolytic and photocatalytic detoxification of mycotoxins in foods. Food Control 2021, 123, 107748. [Google Scholar] [CrossRef]
- Sun, Z.; Xu, J.; Wang, G.; Song, A.; Li, C.; Zheng, S. Hydrothermal fabrication of rectorite based biocomposite modified by chitosan derived carbon nanoparticles as efficient mycotoxins adsorbents. Appl. Clay Sci. 2020, 184, 105373. [Google Scholar] [CrossRef]
- Ji, J.; Xie, W. Detoxification of Aflatoxin B1 by magnetic graphene composite adsorbents from contaminated oils. J. Hazard. Mater. 2020, 381, 120915. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Huang, L.; Wang, B.; Han, Y.; Shi, H.; Wei, L.; Guo, X.; Zhang, Y. Recent progress of separation and sensing applications of metal-organic framework-based membranes. Chem. Eng. J. 2025, 506, 160371. [Google Scholar] [CrossRef]
- Iqbal, S.Z. Mycotoxins in food, recent development in food analysis and future challenges: A review. Curr. Opin. Food Sci. 2021, 42, 237–247. [Google Scholar] [CrossRef]
- Moreda-Piñeiro, J.; Moreda-Piñeiro, A. Recent advances in coupled green assisted extraction techniques for foodstuff analysis. TrAC Trends Anal. Chem. 2023, 169, 117411. [Google Scholar] [CrossRef]
- Jia, Y.; Zhou, G.; Liu, P.; Li, Z.; Yu, B. Recent Development of Aptamer Sensors for the Quantification of Aflatoxin B1. Appl. Sci. 2019, 9, 2364. [Google Scholar] [CrossRef]
- Khalid, N.; Kalsoom, U.; Ahsan, Z.; Bilal, M. Non-magnetic and magnetically responsive support materials immobilized peroxidases for biocatalytic degradation of emerging dye pollutants—A review. Int. J. Biol. Macromol. 2022, 207, 387–401. [Google Scholar] [CrossRef]
- Gao, C.; Lyu, F.; Yin, Y. Encapsulated metal nanoparticles for catalysis. Chem. Rev. 2020, 121, 834–881. [Google Scholar] [CrossRef]
- Garcia-Toral, D.; Báez, R.M.; Sánchez, S.J.I.; Flores-Riveros, A.; Cocoletzi, G.H.; Rivas-Silva, J. Encapsulation of pollutant gaseous molecules by adsorption on boron nitride nanotubes: A quantum chemistry study. ACS Omega 2021, 6, 14824–14837. [Google Scholar] [CrossRef]
- Pragya; Sharma, K.K.; Kumar, A.; Singh, D.; Kumar, V.; Singh, B. Immobilized phytases: An overview of different strategies, support material, and their applications in improving food and feed nutrition. Crit. Rev. Food Sci. Nutr. 2023, 63, 5465–5487. [Google Scholar] [CrossRef]
- Liu, D.-M.; Chen, J.; Shi, Y.-P. Advances on methods and easy separated support materials for enzymes immobilization. TrAC Trends Anal. Chem. 2018, 102, 332–342. [Google Scholar] [CrossRef]
- Meng, Q.; Zhao, Y.; Yang, D.; Rao, L.; Liao, X. Bacterial spore surface display system for enzyme stabilization in food industry: Principles, applications and efficiency optimization strategies. Trends Food Sci. Technol. 2025, 164, 105276. [Google Scholar] [CrossRef]
- Zdarta, J.; Meyer, A.S.; Jesionowski, T.; Pinelo, M. Developments in support materials for immobilization of oxidoreductases: A comprehensive review. Adv. Colloid Interface Sci. 2018, 258, 1–20. [Google Scholar] [CrossRef]
- Liu, X.; Qiu, M.; Zhang, Y.; Pan, J.; Zhang, W.; Guo, L.; Zhang, X.; Jiang, Y. Enzyme immobilization based on reticular framework materials: Strategy, food applications, and prospect. Adv. Colloid Interface Sci. 2025, 344, 103589. [Google Scholar] [CrossRef]
- Fu, C.; Lu, T.; Dai, X.; Ding, P.; Xiong, Y.; Ge, J.; Li, X. Co-immobilization of enzymes and metals on the covalent-organic framework for the efficient removal of mycotoxins. ACS Appl. Mater. Interfaces 2023, 15, 6859–6867. [Google Scholar] [CrossRef]
- Sun, Z.; Song, A.; Wang, B.; Wang, G.; Zheng, S. Adsorption behaviors of aflatoxin B1 and zearalenone by organo-rectorite modified with quaternary ammonium salts. J. Mol. Liq. 2018, 264, 645–651. [Google Scholar] [CrossRef]
- Huang, Y.; Feng, D.; Li, X.; Li, W.; Ren, J.; Zhong, H. Covalent organic frameworks assisted for food safety analysis. Crit. Rev. Food Sci. Nutr. 2024, 64, 11006–11025. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhang, Z.; Zhang, Q.; Li, P. Mycotoxin determination in foods using advanced sensors based on antibodies or aptamers. Toxins 2016, 8, 239. [Google Scholar] [CrossRef]
- Conrad, M.; DeRosa, M.C. Assay formats and target recognition strategies in lateral flow assays for the detection of mycotoxins. TrAC Trends Anal. Chem. 2025, 190, 118273. [Google Scholar] [CrossRef]
- Maghraby, Y.R.; El-Shabasy, R.M.; Ibrahim, A.H.; Azzazy, H.M.E.-S. Enzyme Immobilization Technologies and Industrial Applications. ACS Omega 2023, 8, 5184–5196. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.-J.; Wu, C.; Fang, M.; Ding, B.; Liu, P.-P.; Zhou, M.-X.; Gong, Z.-Y.; Ma, D.-L.; Leung, C.-H. Application of metal–organic framework for the adsorption and detection of food contamination. TrAC Trends Anal. Chem. 2021, 143, 116384. [Google Scholar] [CrossRef]
- Guo, X.; Wang, L.; Wang, L.; Huang, Q.; Bu, L.; Wang, Q. Metal-organic frameworks for food contaminant adsorption and detection. Front. Chem. 2023, 11, 1116524. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Xu, Z.; Wang, R.; Zhao, Y.; Jia, Q. Research advances of porous organic framework materials on enrichment and detection of mycotoxins. Chin. J. Chromatogr. 2023, 41, 891–900. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, T.; Gao, Y.; Cai, Y.; Liu, J.; Ramachandraiah, K.; Mao, J.; Ke, F. Functional modification engineering of metal–organic frameworks for the contaminants detection in food. Coord. Chem. Rev. 2024, 516, 215990. [Google Scholar] [CrossRef]
- Han, D.; Liu, X.; Wu, S. Metal organic framework-based antibacterial agents and their underlying mechanisms. Chem. Soc. Rev. 2022, 51, 7138–7169. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Q.; Song, C.G.; Ding, G.; Yang, J.; Wu, J.R.; Wu, G.; Zhang, M.Z.; Song, C.; Guo, L.P.; Qin, J.C. High-performance functional Fe-MOF for removing aflatoxin B1 and other organic pollutants. Adv. Mater. Interfaces 2022, 9, 2102480. [Google Scholar] [CrossRef]
- Ma, F.; Cai, X.; Mao, J.; Yu, L.; Li, P. Adsorptive removal of aflatoxin B1 from vegetable oils via novel adsorbents derived from a metal-organic framework. J. Hazard. Mater. 2021, 412, 125170. [Google Scholar] [CrossRef]
- Du, Q.; Zhang, W.; Xu, N.; Jiang, X.; Cheng, J.; Wang, R.; Wang, P. Efficient and simultaneous removal of aflatoxin B1, B2, G1, G2, and zearalenone from vegetable oil by use of a metal–organic framework absorbent. Food Chem. 2023, 418, 135881. [Google Scholar] [CrossRef]
- Liu, M.; Wang, J.; Yang, Q.; Hu, N.; Zhang, W.; Zhu, W.; Wang, R.; Suo, Y.; Wang, J. Patulin removal from apple juice using a novel cysteine-functionalized metal-organic framework adsorbent. Food Chem. 2019, 270, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mohebbi, A.; Nemati, M.; Afshar Mogaddam, M.R.; Farajzadeh, M.A.; Lotfipour, F. Dispersive micro–solid–phase extraction of aflatoxins from commercial soy milk samples using a green vitamin–based metal–organic framework as an efficient sorbent followed by high performance liquid chromatography–tandem mass spectrometry determination. J. Chromatogr. A 2022, 1673, 463099. [Google Scholar] [CrossRef]
- Song, Y.; Sun, Q.; Aguila, B.; Ma, S. Opportunities of Covalent Organic Frameworks for Advanced Applications. Adv. Sci. 2019, 6, 1801410. [Google Scholar] [CrossRef]
- Qiao, S.; Jin, H.; Zuo, A.; Chen, Y. Integration of Enzyme and Covalent Organic Frameworks: From Rational Design to Applications. Acc. Chem. Res. 2023, 57, 93–105. [Google Scholar] [CrossRef]
- Chen, Z.; Li, X.; Yang, C.; Cheng, K.; Tan, T.; Lv, Y.; Liu, Y. Hybrid Porous Crystalline Materials from Metal Organic Frameworks and Covalent Organic Frameworks. Adv. Sci. 2021, 8, 2101883. [Google Scholar] [CrossRef]
- Yusran, Y.; Li, H.; Guan, X.; Fang, Q.; Qiu, S. Covalent Organic Frameworks for Catalysis. EnergyChem 2020, 2, 100035. [Google Scholar] [CrossRef]
- Tan, K.T.; Ghosh, S.; Wang, Z.; Wen, F.; Rodríguez-San-Miguel, D.; Feng, J.; Huang, N.; Wang, W.; Zamora, F.; Feng, X.; et al. Covalent organic frameworks. Nat. Rev. Methods Primers 2023, 3, 1. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, Y.; Zhang, J.; He, P.; Fan, Z.; He, N.; Li, X.; Li, Y.; Ma, L. Cooperative Steric Modulation of Flexibility, Disorder, and Pore Size in Two-Dimensional Covalent Organic Framework Membranes for Enhanced Selective Ion Sieving. J. Am. Chem. Soc. 2025, 147, 32580–32590. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Li, H.; Ji, J.; Chen, F.; Wang, Y.; Suo, J.; Song, J.; Zhao, D.; Valtchev, V.; Qiu, S.; et al. Topological Derivative Strategy for Large-Pore Three-Dimensional Covalent Organic Frameworks. J. Am. Chem. Soc. 2025, 147, 39223–39231. [Google Scholar] [CrossRef]
- Wang, Y.; He, L.; Wei, W.; Liu, Y.; Chen, S.; Li, M.; Li, J.; Gao, Z. Advances in the application of covalent organic frameworks as solid phase microextraction coating materials for environmental organic pollutant detection. Chem. Eng. Sci. 2025, 313, 121758. [Google Scholar] [CrossRef]
- Xie, Z.; Lin, J.; Hu, Y.; Li, G.; Zhong, Q. Rapid construction of double macrocycles, hierarchical covalent organic framework with size-sieving and host-guest recognition for selective adsorption and targeted analysis of mycotoxins in cereals. Chem. Eng. J. 2024, 493, 152464. [Google Scholar] [CrossRef]
- Li, S.; Qin, K.; Fu, Y.; He, D.; Han, D.; Li, S.; Wang, Y.; Ren, S.; Peng, Y.; Gao, Z. Highly efficient removal of Aflatoxin B1 employing a flower-like covalent organic framework-based fiber membrane. J. Environ. Chem. Eng. 2023, 11, 111382. [Google Scholar] [CrossRef]
- Li, J.; Xu, X.; Guo, W.; Zhang, Y.; Feng, X.; Zhang, F. Synthesis of a magnetic covalent organic framework as sorbents for solid-phase extraction of aflatoxins in food prior to quantification by liquid chromatography-mass spectrometry. Food Chem. 2022, 387, 132821. [Google Scholar] [CrossRef]
- Kaya, S.I.; Cetinkaya, A.; Ozkan, S.A. Molecularly imprinted polymers as highly selective sorbents in sample preparation techniques and their applications in environmental water analysis. Trends Environ. Anal. Chem. 2023, 37, e00193. [Google Scholar] [CrossRef]
- Xie, D.; Kuang, Y.; Yuan, B.; Zhang, Y.; Ye, C.; Guo, Y.; Qiu, H.; Ren, J.; Alshammari, S.O.; Alshammari, Q.A.; et al. Convenient and highly efficient adsorption of diosmetin from lemon peel by magnetic surface molecularly imprinted polymers. J. Mater. Sci. Technol. 2025, 211, 159–170. [Google Scholar] [CrossRef]
- Liang, Y.; He, J.; Huang, Z.; Li, H.; Zhang, Y.; Wang, H.; Rui, C.; Li, Y.; You, L.; Li, K.; et al. An amino-functionalized zirconium-based metal-organic framework of type UiO-66-NH2 covered with a molecularly imprinted polymer as a sorbent for the extraction of aflatoxins AFB1, AFB2, AFG1 and AFG2 from grain. Microchim. Acta 2019, 187, 32. [Google Scholar] [CrossRef] [PubMed]
- Su, L.-H.; Qian, H.-L.; Yang, C.; Wang, C.; Wang, Z.; Yan, X.-P. Integrating molecular imprinting into flexible covalent organic frameworks for selective recognition and efficient extraction of aflatoxins. J. Hazard. Mater. 2024, 467, 133755. [Google Scholar] [CrossRef]
- Anene, A.; Kalfat, R.; Chevalier, Y.; Hbaieb, S. Molecularly imprinted polymer-based materials as thin films on silica supports for efficient adsorption of Patulin. Colloids Surf. A Physicochem. Eng. Asp. 2016, 497, 293–303. [Google Scholar] [CrossRef]
- Pavel, M.; Anastasescu, C.; State, R.-N.; Vasile, A.; Papa, F.; Balint, I. Photocatalytic degradation of organic and inorganic pollutants to harmless end products: Assessment of practical application potential for water and air cleaning. Catalysts 2023, 13, 380. [Google Scholar] [CrossRef]
- Al-Nuaim, M.A.; Alwasiti, A.A.; Shnain, Z.Y. The photocatalytic process in the treatment of polluted water. Chem. Pap. 2023, 77, 677–701. [Google Scholar] [CrossRef]
- Jing, G.; Wang, Y.; Wu, M.; Liu, W.; Xiong, S.; Yu, J.; Li, W.; Liu, W.; Jiang, Y. Photocatalytic Degradation and Pathway from Mycotoxins in Food: A Review. Food Rev. Int. 2024, 40, 276–292. [Google Scholar] [CrossRef]
- Raesi, S.; Mohammadi, R.; Khammar, Z.; Paimard, G.; Abdalbeygi, S.; Sarlak, Z.; Rouhi, M. Photocatalytic detoxification of aflatoxin B1 in an aqueous solution and soymilk using nano metal oxides under UV light: Kinetic and isotherm models. LWT 2022, 154, 112638. [Google Scholar] [CrossRef]
- Huang, Q.-Q.; Li, N.; Han, M.-S.; Liu, J.; Lan, Y.-Q. Conductive Knitting of Covalent Organic Framework Manipulates Spin Density, Orbital Reorganization, and Charge Mobility for Outstanding Photoreactivity. Angew. Chem. Int. Ed. 2025, 64, e202513848. [Google Scholar] [CrossRef]
- Balapure, A.; Dutta, J.R.; Ganesan, R. Recent advances in semiconductor heterojunctions: A detailed review of the fundamentals of photocatalysis, charge transfer mechanism and materials. RSC Appl. Interfaces 2024, 1, 43–69. [Google Scholar] [CrossRef]
- Huang, X.; Xie, W.; Xu, T.; Weng, W.; Zhou, T.; Guo, J. Enantioselective Immobilization of Nonprecious Metal Complexes on Chiral Covalent Organic Frameworks for Improved Single-Site Photocatalytic Hydrogen Evolution. Angew. Chem. Int. Ed. 2025, 64, e202509095. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Lu, L.; Zhang, Y.; Yuan, Z.; Yang, L.; Wang, L.; Rao, Y. A bioinspired cercosporin/polymethylmethacrylate photocatalyst with high efficiency for decontamination of pharmaceuticals and pathogens. J. Hazard. Mater. 2021, 419, 126555. [Google Scholar] [CrossRef] [PubMed]
- Umair, M.; Sultana, T.; Xun, S.; Jabbar, S.; Riaz Rajoka, M.S.; Albahi, A.; Abid, M.; Ranjha, M.M.A.N.; El-Seedi, H.R.; Xie, F.; et al. Advances in the application of functional nanomaterial and cold plasma for the fresh-keeping active packaging of meat. Food Sci. Nutr. 2023, 11, 5753–5772. [Google Scholar] [CrossRef]
- Zhu, X.; Wei, J.; Xu, S.; Zhu, Y.; Shen, W.; Wu, L. Metal-organic framework incorporated fungal mycelium membrane for synergistic mycotoxin degradation via adsorption, oxidation, and photocatalysis. Food Chem. 2025, 480, 143861. [Google Scholar] [CrossRef] [PubMed]
- Del Sole, R.; Lo Porto, C.; Lotito, S.; Ingrosso, C.; Comparelli, R.; Curri, M.L.; Barucca, G.; Fracassi, F.; Palumbo, F.; Milella, A. Atmospheric Pressure Plasma Deposition of Hybrid Nanocomposite Coatings Containing TiO2 and Carbon-Based Nanomaterials. Molecules 2023, 28, 5131. [Google Scholar] [CrossRef]
- Junnan, Q.; Huimin, L.; Guihong, L.; Yao, C. Innovation of TiO2-x Nanomaterials in the Biomedical Field: Synthesis, Properties, and Application Prospects. Chem. Eng. J. 2024, 491, 151773. [Google Scholar] [CrossRef]
- Xu, J.; Su, S.; Song, X.; Luo, S.; Ye, S.; Situ, W. A simple nanocomposite photocatalyst HT-rGO/TiO2 for deoxynivalenol degradation in liquid food. Food Chem. 2023, 408, 135228. [Google Scholar] [CrossRef]
- Zhang, H.; Luo, Y.-H.; Chen, F.-Y.; Geng, W.-Y.; Lu, X.-X.; Zhang, D.-E. Enhancing the spatial separation of photogenerated charges on Fe-based MOFs via structural regulation for highly-efficient photocatalytic Cr (VI) reduction. J. Hazard. Mater. 2023, 441, 129875. [Google Scholar] [CrossRef]
- Samuel, M.S.; Mohanraj, K.; Chandrasekar, N.; Balaji, R.; Selvarajan, E. Synthesis of recyclable GO/Cu3(BTC)2/Fe3O4 hybrid nanocomposites with enhanced photocatalytic degradation of aflatoxin B1. Chemosphere 2022, 291, 132684. [Google Scholar] [CrossRef]
- Van Dorst, B.; Mehta, J.; Bekaert, K.; Rouah-Martin, E.; De Coen, W.; Dubruel, P.; Blust, R.; Robbens, J. Recent advances in recognition elements of food and environmental biosensors: A review. Biosens. Bioelectron. 2010, 26, 1178–1194. [Google Scholar] [CrossRef]
- Ku, M.; Li, J.; Zhang, W.; Sun, S.; Zhang, Y.; Xie, Y. Degradation of AFB1 in edible oil by aptamer-modified TiO2 composite photocatalytic materials: Selective efficiency, degradation mechanism and toxicity. Food Chem. 2025, 470, 142674. [Google Scholar] [CrossRef]
- Nisa, M.U.; Bilhod, W.; Insin, N. Selective photodegradation of aflatoxin B1 in chili oil using titania-silica-iron oxide nanocomposites with molecularly imprinted technology. Inorg. Chem. Commun. 2025, 173, 113883. [Google Scholar] [CrossRef]
- Cortés, V.; Blasco, J.; Aleixos, N.; Cubero, S.; Talens, P. Monitoring strategies for quality control of agricultural products using visible and near-infrared spectroscopy: A review. Trends Food Sci. Technol. 2019, 85, 138–148. [Google Scholar] [CrossRef]
- Kumar, D.P.; Nollen, L.-M.; Rangappa, A.P.; Kim, T.K. Effective dye degradation by an environment-friendly porous few-layered carbon nitride photocatalyst developed using sequential molecule self-assembly. Environ. Res. 2022, 204, 112362. [Google Scholar] [CrossRef]
- Bariki, R.; Pradhan, S.K.; Panda, S.; Nayak, S.K.; Pati, A.R.; Mishra, B.G. Hierarchical UiO-66(−NH2)/CuInS2 S-Scheme Photocatalyst with Controlled Topology for Enhanced Photocatalytic N2 Fixation and H2O2 Production. Langmuir 2023, 39, 7707–7722. [Google Scholar] [CrossRef]
- Hu, C.; Yang, C.; Li, B.; Peng, B. Removal of ochratoxin A from wine by adsorption-photocatalytic synergy of tubular TiO2/SiO2/g-C3N4: Mechanistic insights and degradation pathways. Food Chem. 2025, 471, 142758. [Google Scholar] [CrossRef]
- Yao, L.; Sun, C.; Lin, H.; Li, G.; Lian, Z.; Song, R.; Zhuang, S.; Zhang, D. Enhancement of AFB1 Removal Efficiency via Adsorption/Photocatalysis Synergy Using Surface-Modified Electrospun PCL-g-C3N4/CQDs Membranes. Biomolecules 2023, 13, 550. [Google Scholar] [CrossRef] [PubMed]
- Alnaser-Almusa, O.; Mahmoud, M.; Ilyas, M.; Adwan, R.; Rub, F.A.; Alnaser-Almusa, N.; Mustafa, F.; Ahmed, S.; Alzhrani, A.; Mir, T.A. Recent advances in aptamer-based biosensing technology for isolation and detection of extracellular vesicles. Front. Cell Dev. Biol. 2025, 13, 1555687. [Google Scholar] [CrossRef] [PubMed]
- Duan, M.; Ding, M.; Wu, K.; Wang, Z.; Wu, S.; Duan, N. Spatially confined multivalent aptamers in the cavity of a DNA nanocage against bacterial superantigens infection. Nano Today 2026, 66, 102899. [Google Scholar] [CrossRef]
- Hayat, M.; Bukhari, S.A.R.; Raza, M.; Rafia; Aslam, A.; Liu, Z. Nanostructured aptasensors for ricin detection and tumor therapy: Exploring aptamer-protein interactions and conformational stability in biological complexities. Int. J. Biol. Macromol. 2025, 310, 143282. [Google Scholar] [CrossRef]
- Nguyen, N.T.T.; Nguyen, L.M.; Nguyen, T.T.T.; Nguyen, N.H.; Nguyen, D.H.; Nguyen, D.T.C.; Tran, T.V. Green synthesis of ZnFe2O4@ZnO nanocomposites using Chrysanthemum spp. floral waste for photocatalytic dye degradation. J. Environ. Manag. 2023, 326, 116746. [Google Scholar] [CrossRef]
- Qiu, Y.; Yan, J.; Liu, X.; Pang, Y.; Ding, Y.; Lyu, F. A novel g-C3N4-SH@konjac glucomannan composite aerogel for patulin removal from apple juice and its photocatalytic regeneration. Food Chem. 2024, 451, 139421. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Liu, J.; Gong, C.; Tian, L.; Peng, T.; Zan, L. Two Different Roles of Metallic Ag on Ag/AgX/BiOX (X = Cl, Br) Visible Light Photocatalysts: Surface Plasmon Resonance and Z-Scheme Bridge. ACS Catal. 2012, 2, 1677–1683. [Google Scholar] [CrossRef]
- Chen, Y.-T.; Xia, W.-X.; Zhou, Y.; Zhang, Q.-R.; Chen, X.-B.; Ma, L.; Ding, S.-J. Efficient photothermal conversion and Z-scheme charge transfer in narrow-gap semiconductor heterojunction for photothermal-assisted photocatalysis. J. Environ. Chem. Eng. 2025, 13, 115147. [Google Scholar] [CrossRef]
- Cui, X.; Ruan, Q.; Zhuo, X.; Xia, X.; Hu, J.; Fu, R.; Li, Y.; Wang, J.; Xu, H. Photothermal nanomaterials: A powerful light-to-heat converter. Chem. Rev. 2023, 123, 6891–6952. [Google Scholar] [CrossRef]
- Kuang, L.; Chen, Z.; Yan, Y.; Guo, F.; Shi, W. Research progress of g–C3N4–based materials for photothermal-assisted photocatalysis. Int. J. Hydrogen Energy 2024, 87, 20–49. [Google Scholar] [CrossRef]
- Xu, L.; Li, Y.; Li, Z.; Yin, Z.; Wang, Y.; Gao, S.; Yang, Z.; Qiu, J.; Song, Z. Synergizing piezoelectric field and photothermal effect modulated charge migration behavior in Bi4O5Br2/Bi2S3 S-scheme heterojunction for enhanced near-infrared-light-driven photocatalytic activity. Chem. Eng. J. 2025, 519, 165096. [Google Scholar] [CrossRef]
- Lu, J.; Shan, P.; Chen, F.; Lu, C.; Su, N.; Xiong, B.; Hou, J.; Liu, Z.; Sun, Y.; Shi, W. Construction of a recyclable foam photocatalyst for boosted photothermal-assisted photocatalytic H2 production. J. Alloys Compd. 2025, 1014, 178819. [Google Scholar] [CrossRef]
- Luo, M.; Tian, J.; Liu, S.; Zhang, W. An integrated photothermal-photocatalytic materials for efficient photocatalytic performance boosting by synergistic photothermally. Appl. Surf. Sci. 2022, 593, 153382. [Google Scholar] [CrossRef]
- Sun, D.; Mao, J.; Wei, H.; Zhang, Q.; Cheng, L.; Yang, X.; Li, P. Efficient Prevention of Aspergillus flavus Spores Spread in Air Using Plasmonic Ag-AgCl/α-Fe2O3 under Visible Light Irradiation. ACS Appl. Mater. Interfaces 2022, 14, 28021–28032. [Google Scholar] [CrossRef]
- Cao, Y.; Li, X.; Ge, J. Enzyme Catalyst Engineering toward the Integration of Biocatalysis and Chemocatalysis. Trends Biotechnol. 2021, 39, 1173–1183. [Google Scholar] [CrossRef]
- Loi, M.; Fanelli, F.; Liuzzi, V.C.; Logrieco, A.F.; Mulè, G. Mycotoxin Biotransformation by Native and Commercial Enzymes: Present and Future Perspectives. Toxins 2017, 9, 111. [Google Scholar] [CrossRef] [PubMed]
- Yushkova, E.D.; Nazarova, E.A.; Matyuhina, A.V.; Noskova, A.O.; Shavronskaya, D.O.; Vinogradov, V.V.; Skvortsova, N.N.; Krivoshapkina, E.F. Application of Immobilized Enzymes in Food Industry. J. Agric. Food Chem. 2019, 67, 11553–11567. [Google Scholar] [CrossRef]
- Sha, M.; Xu, W.; Fang, Q.; Wu, Y.; Gu, W.; Zhu, C.; Guo, S. Metal-organic-framework-involved nanobiocatalysis for biomedical applications. Chem. Catal. 2022, 2, 2552–2589. [Google Scholar] [CrossRef]
- Mao, S.; Jiang, J.; Xiong, K.; Chen, Y.; Yao, Y.; Liu, L.; Liu, H.; Li, X. Enzyme engineering: Performance optimization, novel sources, and applications in the food industry. Foods 2024, 13, 3846. [Google Scholar] [CrossRef]
- Wu, W.; Lu, S.; Jiang, S.; Chen, J.; Zheng, Z.; Jiang, S.; Yang, P. Immobilization of recombinant Trametes versicolor aflatoxin B1-degrading enzyme (TV-AFB1D) with montmorillonite for absorption and in situ degradation of aflatoxin B1. Mycotoxin Res. 2024, 40, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Ran, L.; Lu, Y.; Chen, L.; He, M.; Deng, Z. Design, Synthesis, and Application of Immobilized Enzymes on Artificial Porous Materials. Adv. Sci. 2025, 12, 2500345. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Dong, X.; Zhao, Q.; Du, G.; Guo, Q.; Yuan, Y.; Yue, T. Continuous flow removal of patulin by cysteine and porcine pancreatic lipase-modified hierarchical mesoporous zirconium metal–organic framework aerogel for apple juice treatment. Chem. Eng. J. 2023, 475, 146472. [Google Scholar] [CrossRef]
- Wang, S.; Guo, T.; Mei, X.; Zhong, X.; Gao, L.; Cai, R.; Yue, T.; Yuan, Y.; Gao, Z.; Wang, Z. Immobilization of pancreatin based on ultrasound-assisted polydopamine functionalized magnetic porous chitosan for the detoxification of ochratoxin A in wine. Food Chem. 2024, 451, 139496. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Zhao, Q.; Gurusamy, S.; Lu, Y.; Chen, X.; Yang, Q.; Zeng, K.; Li, Y.; Liu, X.; et al. Immobilization of aldo-keto reductase on dopamine/polyethyleneimine functionalized magnetic cellulose nanocrystals to enhance the detoxification of patulin in fresh pear juice. Int. J. Biol. Macromol. 2024, 278, 134689. [Google Scholar] [CrossRef]
- Lu, T.; Fu, C.; Xiong, Y.; Zeng, Z.; Fan, Y.; Dai, X.; Huang, X.; Ge, J.; Li, X. Biodegradation of Aflatoxin B1 in Peanut Oil by an Amphipathic Laccase–Inorganic Hybrid Nanoflower. J. Agric. Food Chem. 2023, 71, 3876–3884. [Google Scholar] [CrossRef]
- Zhou, C.; He, N.; Lin, X.; Liu, H.; Lu, Z.; Zhang, G. Site-directed display of zearalenone lactonase on spilt-intein functionalized nanocarrier for green and efficient detoxification of zearalenone. Food Chem. 2024, 446, 138804. [Google Scholar] [CrossRef] [PubMed]
- Júnior, A.A.; Ladeira, Y.F.; França, A.D.; Souza, R.O.; Moraes, A.H.; Wojcieszak, R.; Itabaiana, I.; Miranda, A.S. Multicatalytic Hybrid Materials for Biocatalytic and Chemoenzymatic Cascades—Strategies for Multicatalyst (Enzyme) Co-Immobilization. Catalysts 2021, 11, 936. [Google Scholar] [CrossRef]
- Chen, T.; Lu, Y.; Xiong, X.; Xu, Z. Co-immobilization of enzymes and chemocatalysts for one-pot chemoenzymatic cascades: Scaffold engineering toward more efficient catalysis. Chem. Catal. 2024, 4, 100894. [Google Scholar] [CrossRef]
- Fu, C.; Hou, L.; Chen, D.; Huang, T.; Yin, S.; Ding, P.; Liao, Q.; Huang, X.; Xiong, Y.; Ge, J.; et al. Targeted Detoxification of Aflatoxin B1 in Edible Oil by an Enzyme–Metal Nanoreactor. J. Agric. Food Chem. 2024, 72, 5966–5974. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Yao, M.; Liao, W.; Li, X. Adsorption–Degradation Integrated Approaches to Mycotoxin Removal from Food Matrices: A Comprehensive Review. Toxins 2025, 17, 556. https://doi.org/10.3390/toxins17110556
Yang X, Yao M, Liao W, Li X. Adsorption–Degradation Integrated Approaches to Mycotoxin Removal from Food Matrices: A Comprehensive Review. Toxins. 2025; 17(11):556. https://doi.org/10.3390/toxins17110556
Chicago/Turabian StyleYang, Xiyu, Mingjian Yao, Wenchao Liao, and Xiaoyang Li. 2025. "Adsorption–Degradation Integrated Approaches to Mycotoxin Removal from Food Matrices: A Comprehensive Review" Toxins 17, no. 11: 556. https://doi.org/10.3390/toxins17110556
APA StyleYang, X., Yao, M., Liao, W., & Li, X. (2025). Adsorption–Degradation Integrated Approaches to Mycotoxin Removal from Food Matrices: A Comprehensive Review. Toxins, 17(11), 556. https://doi.org/10.3390/toxins17110556

