Mycotoxins and the Intestinal Epithelium: From Barrier Injury to Stem Cell Dysfunction
Abstract
1. Introduction
2. Cell Type-Specific Mechanisms of Mycotoxin Toxicity in the Intestine
2.1. Mycotoxin-Induced Alterations in Intestinal Epithelial Cells
2.2. Mycotoxin-Induced Alterations in Intestinal Intraepithelial Lymphocytes (IELs) and Immune Signaling
3. Mycotoxin-Induced Intestinal Barrier Injury
4. ISCs: Mycotoxin Impact and Nutritional Protection
4.1. ISCs in Homeostasis and Response to Mycotoxin
4.2. Nutritional Interventions Enhancing ISC Function During Mycotoxin Exposure
5. Advantages of Organoids and Dynamic 3D Systems over Conventional 2D Cultures in Modeling Mycotoxin Toxicity
| Model Type | Species | Mycotoxin(s) | Key Insight | Reference |
|---|---|---|---|---|
| 3D organoids & microphysiological systems | Human/Animal | Multiple | 3D systems replicate epithelial complexity and the ISC niche, providing more relevant toxicity outcomes. | [66] |
| 3D spheroids vs. 2D monolayers | Human | Sterigmatocystin, Ochratoxin A, Patulin | 3D spheroids show higher sensitivity and more physiologically relevant cytotoxic responses than 2D. | [75] |
| Apical-out intestinal organoids | Bovine | DON | Captures luminal DON exposure and supports probiotic detoxification, unlike standard 2D. | [70] |
| Organoid-derived monolayers | Porcine | DON, T-2 | Reveals DON/T-2-driven bacterial translocation, difficult to replicate in 2D. | [71] |
| Organoid-derived cell monolayers | Pig jejunum | DON | Butyrate supplementation mitigates DON-induced barrier dysfunction more effectively in organoid-derived models. | [54] |
| 3D spheroids | Human (tumor & healthy) | Sterigmatocystin, Ochratoxin A, Patulin | Co-exposure to multiple mycotoxins induces stronger cytotoxicity in 3D vs. 2D. | [67] |
| Microfluidic 3D culture system | Human | Ochratoxin A, Patulin | Microfluidics allows dynamic exposure mimicking physiological flow, outperforming static 2D assays. | [68] |
| Intestinal organoids | Sheep | DON | First ovine organoid system showing DON toxicity, advancing livestock-specific toxicology. | [72] |
| Intestinal organoids | Chicken | DON | Captures DON-induced barrier dysfunction in poultry, not feasible with simple 2D. | [73] |
| Gut-on-a-chip with flow | Human | DON | Demonstrates dose- and route-dependent DON toxicity under flow, beyond static 2D limitations. | [74] |
| High-throughput gut-on-chip | Human | Enterotoxins (applicable to mycotoxins) | High-throughput, physiologically dynamic toxin assessment superior to flat monolayers. | [76] |
6. Mycotoxins and Intestinal Health: Physiological Relevance, Co-Exposure, and Regeneration
6.1. Physiological Relevance of Experimental Concentrations
6.2. Mycotoxin Co-Exposure and Combined Toxicity
6.3. Microbiome- and SCFA-Mediated Modulation of Epithelial Barrier and Intestinal Stem Cells
7. Gaps in Knowledge and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhat, R.; Rai, R.V.; Karim, A.A. Mycotoxins in Food and Feed: Present Status and Future Concerns. Compr. Rev. Food Sci. Food Saf. 2010, 9, 57–81. [Google Scholar] [CrossRef]
- Magnoli, A.P.; Poloni, V.L.; Cavaglieri, L. Impact of mycotoxin contamination in the animal feed industry. Curr. Opin. Food Sci. 2019, 29, 99–108. [Google Scholar] [CrossRef]
- Omotayo, O.P.; Omotayo, A.O.; Mwanza, M.; Babalola, O.O. Prevalence of Mycotoxins and Their Consequences on Human Health. Toxicol. Res Ger. 2019, 35, 1–7. [Google Scholar] [CrossRef]
- Gajecki, M.T.; Gajecka, M.; Zielonka, L. The Presence of Mycotoxins in Feed and Their Influence on Animal Health. Toxins 2020, 12, 663. [Google Scholar] [CrossRef] [PubMed]
- Akbari, P.; Braber, S.; Varasteh, S.; Alizadeh, A.; Garssen, J.; Fink-Gremmels, J. The intestinal barrier as an emerging target in the toxicological assessment of mycotoxins. Arch. Toxicol. 2017, 91, 1007–1029. [Google Scholar] [CrossRef] [PubMed]
- Jia, R.; Liu, W.B.; Zhao, L.H.; Cao, L.R.; Shen, Z.Y. Low doses of individual and combined deoxynivalenol and zearalenone in naturally moldy diets impair intestinal functions via inducing inflammation and disrupting epithelial barrier in the intestine of piglets. Toxicol. Lett. 2020, 333, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Adesso, S.; Autore, G.; Quaroni, A.; Popolo, A.; Severino, L.; Marzocco, S. The Food Contaminants Nivalenol and Deoxynivalenol Induce Inflammation in Intestinal Epithelial Cells by Regulating Reactive Oxygen Species Release. Nutrients 2017, 9, 1343. [Google Scholar] [CrossRef]
- Liu, M.; Gao, R.; Meng, Q.W.; Zhang, Y.Y.; Bi, C.P.; Shan, A.S. Toxic Effects of Maternal Zearalenone Exposure on Intestinal Oxidative Stress, Barrier Function, Immunological and Morphological Changes in Rats. PLoS ONE 2014, 9, e106412. [Google Scholar] [CrossRef]
- Beumer, J.; Clevers, H. Regulation and plasticity of intestinal stem cells during homeostasis and regeneration. Development 2016, 143, 3639–3649. [Google Scholar] [CrossRef]
- Bankaitis, E.D.; Ha, A.; Kuo, C.J.; Magness, S.T. Reserve Stem Cells in Intestinal Homeostasis and Injury. Gastroenterology 2018, 155, 1348–1361. [Google Scholar] [CrossRef]
- Kim, C.K.; Yang, V.W.; Bialkowska, A.B. The Role of Intestinal Stem Cells in Epithelial Regeneration Following Radiation-Induced Gut Injury. Curr. Stem Cell Rep. 2017, 3, 320–332. [Google Scholar] [CrossRef]
- Van de Walle, J.; Sergent, T.; Piront, N.; Toussaint, O.; Schneider, Y.J.; Larondelle, Y. Deoxynivalenol affects in vitro intestinal epithelial cell barrier integrity through inhibition of protein synthesis. Toxicol. Appl. Pharm. 2010, 245, 291–298. [Google Scholar] [CrossRef]
- Li, E.K.; Ajuwon, K.M. Mechanism of endocytic regulation of intestinal tight junction remodeling during nutrient starvation in jejunal IPEC-J2 cells. FASEB J. 2021, 35, e21356. [Google Scholar] [CrossRef]
- Li, E.; Zang, R.; Kawagishi, T.; Zhang, W.; Iyer, K.; Hou, G.; Zeng, Q.; Meganck, R.M.; Ross, S.R.; Wang, X.; et al. Fatty acid 2-hydroxylase facilitates rotavirus uncoating and endosomal escape. Proc. Natl. Acad. Sci. USA 2025, 122, e2511911122. [Google Scholar] [CrossRef]
- Lahjouji, T.; Bertaccini, A.; Neves, M.; Puel, S.; Oswald, I.P.; Soler, L. Acute Exposure to Zearalenone Disturbs Intestinal Homeostasis by Modulating the Wnt/beta-Catenin Signaling Pathway. Toxins 2020, 12, 113. [Google Scholar] [CrossRef] [PubMed]
- Pinton, P.; Graziani, F.; Pujol, A.; Nicoletti, C.; Paris, O.; Ernouf, P.; Di Pasquale, E.; Perrier, J.; Oswald, I.P.; Maresca, M. Deoxynivalenol inhibits the expression by goblet cells of intestinal mucins through a PKR and MAP kinase dependent repression of the resistin-like molecule beta. Mol. Nutr. Food Res. 2015, 59, 1076–1087. [Google Scholar] [CrossRef] [PubMed]
- Graziani, F.; Pinton, P.; Olleik, H.; Pujol, A.; Nicoletti, C.; Sicre, M.; Quinson, N.; Ajandouz, E.H.; Perrier, J.; Pasquale, E.D.; et al. Deoxynivalenol inhibits the expression of trefoil factors (TFF) by intestinal human and porcine goblet cells. Arch. Toxicol. 2019, 93, 1039–1049. [Google Scholar] [CrossRef]
- Robert, H.; Payros, D.; Pinton, P.; Théodorou, V.; Mercier-Bonin, M.; Oswald, I.P. Impact of mycotoxins on the intestine: Are mucus and microbiota new targets? J. Toxicol. Environ. Health Part B 2017, 20, 249–275. [Google Scholar] [CrossRef]
- Cui, C.; Wang, X.; Zheng, Y.; Li, L.; Wang, F.; Wei, H.; Peng, J. Paneth cells protect intestinal stem cell niche to alleviate deoxynivalenol-induced intestinal injury. Ecotoxicol. Environ. Saf. 2023, 264, 115457. [Google Scholar] [CrossRef] [PubMed]
- Flannery, B.M.; Clark, E.S.; Pestka, J.J. Anorexia Induction by the Trichothecene Deoxynivalenol (Vomitoxin) Is Mediated by the Release of the Gut Satiety Hormone Peptide YY. Toxicol. Sci. 2012, 130, 289–297. [Google Scholar] [CrossRef]
- Zhou, H.R.; Pestka, J.J. Deoxynivalenol (Vomitoxin)-Induced Cholecystokinin and Glucagon-Like Peptide-1 Release in the STC-1 Enteroendocrine Cell Model Is Mediated by Calcium-Sensing Receptor and Transient Receptor Potential Ankyrin-1 Channel. Toxicol. Sci. 2015, 145, 407–417. [Google Scholar] [CrossRef]
- Dou, C.X.; Qu, H.Z.; Qin, Y.C.; Wang, X.F.; Yan, H.C.; Li, R.S.; Zhao, Y.G.; Zhou, J.Y.; Wang, X.Q. TSC2/mTORC1 integrates deoxynivalenol signals recognized by membrane receptors IR and EGFR to restrict intestinal stem cell function. J. Hazard. Mater. 2025, 494, 138769. [Google Scholar] [CrossRef]
- Hu, T.C.; Dou, C.X.; Huang, Q.; Wang, X.F.; Yan, H.C.; Zhou, J.Y.; Li, R.S.; Zhao, Y.G.; Wang, X.Q. IPR-dependent Ca signaling in the endoplasmic reticulum is required for deoxynivalenol-induced intestinal stem cell injury. Biochem. Pharmacol. 2025, 242, 117228. [Google Scholar] [CrossRef] [PubMed]
- Li, E.K.; Feng, N.G.; Zeng, Q.R.; Sanchez-Tacuba, L.; Kawagishi, T.; Branham, G.; Hou, G.P.; Wang, Z.M.; Greenberg, H.B.; Ding, S.Y. Rhesus rotavirus NSP1 mediates extra-intestinal infection and is a contributing factor for biliary obstruction. PLoS Pathog. 2024, 20, e1012609. [Google Scholar] [CrossRef] [PubMed]
- Levkut, M.; Revajova, V.; Slaminkova, Z.; Levkutova, M.; Borutova, R.; Gresakova, L.; Leng, L. Lymphocyte subpopulations in blood and duodenal epithelium of broilers fed diets contaminated with deoxynivalenol and zearalenone. Anim. Feed. Sci. Tech. 2011, 165, 210–217. [Google Scholar] [CrossRef]
- Girish, C.K.; Smith, T.K.; Boermans, H.J.; Kumar, P.A.; Girgis, G.N. Effects of dietary mycotoxins on intestinal lymphocyte subset populations, cell proliferation and histological changes in avian lymphoid organs. Food Chem. Toxicol. 2010, 48, 3000–3007. [Google Scholar] [CrossRef]
- Wojtacha, P.; Trybowski, W.; Podlasz, P.; Zmigrodzka, M.; Tyburski, J.; Polak-Sliwinska, M.; Jakimiuk, E.; Bakula, T.; Baranowski, M.; Zuk-Golaszewska, K.; et al. Effects of a Low Dose of T-2 Toxin on the Percentage of T and B Lymphocytes and Cytokine Secretion in the Porcine Ileal Wall. Toxins 2021, 13, 277. [Google Scholar] [CrossRef]
- Solcan, C.; Pavel, G.; Floristean, V.C.; Beschea Chiriac, S.I.; Slencu, B.G.; Solcan, G. Effect of Ochratoxin a on the Intestinal Mucosa and Mucosa-Associated Lymphoid Tissues in Broiler Chickens. Acta Vet. Hung. 2015, 63, 30–48. [Google Scholar] [CrossRef]
- Jiang, M.; Peng, X.; Fang, J.; Cui, H.M.; Yu, Z.Q.; Chen, Z.L. Effects of Aflatoxin B on T-Cell Subsets and mRNA Expression of Cytokines in the Intestine of Broilers. Int. J. Mol. Sci. 2015, 16, 6945–6959. [Google Scholar] [CrossRef]
- Islam, M.R.; Roh, Y.S.; Kim, J.; Lim, C.W.; Kim, B. Differential immune modulation by deoxynivalenol (vomitoxin) in mice. Toxicol. Lett. 2013, 221, 152–163. [Google Scholar] [CrossRef]
- Islam, M.R.; Kim, J.W.; Roh, Y.S.; Kim, J.H.; Han, K.M.; Kwon, H.J.; Lim, C.W.; Kim, B. Evaluation of immunomodulatory effects of zearalenone in mice. J. Immunotoxicol. 2017, 14, 241. [Google Scholar] [CrossRef]
- Girgis, G.N.; Barta, J.R.; Brash, M.; Smith, T.K. Morphologic Changes in the Intestine of Broiler Breeder Pullets Fed Diets Naturally Contaminated with Mycotoxins With or Without Coccidial Challenge. Avian Dis. 2010, 54, 67–73. [Google Scholar] [CrossRef]
- Antonissen, G.; Martel, A.; Pasmans, F.; Ducatelle, R.; Verbrugghe, E.; Vandenbroucke, V.; Li, S.J.; Haesebrouck, F.; Van Immerseel, F.; Croubels, S. The Impact of Mycotoxins on Human and Animal Host Susceptibility to Infectious Diseases. Toxins 2014, 6, 430–452. [Google Scholar] [CrossRef] [PubMed]
- Li, E.; Li, C.; Horn, N.; Ajuwon, K.M. Quercetin attenuates deoxynivalenol-induced intestinal barrier dysfunction by activation of Nrf2 signaling pathway in IPEC-J2 cells and weaned piglets. Curr. Res. Toxicol. 2023, 5, 100122. [Google Scholar] [CrossRef] [PubMed]
- Xue, D.F.; Yang, P.; Yang, Y.Y.; Wang, Y.A.; Wu, K.T.; Qi, D.S.; Wang, S. Deoxynivalenol triggers porcine intestinal tight junction disorder through hijacking SLC5A1 and PGC1α-mediated mitochondrial function. Food Chem. Toxicol. 2022, 163, 112921. [Google Scholar] [CrossRef]
- He, W.H.; Wang, J.H.; Han, M.Y.; Wang, L.H.; Li, L.; Zhang, J.H.; Chen, S.Q.; Guo, J.Y.; Zhai, X.H.; Yang, J.H. Potential Toxicity and Mechanisms of T-2 and HT-2 Individually or in Combination on the Intestinal Barrier Function of Porcine Small Intestinal Epithelial Cells. Toxins 2023, 15, 682. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Q.H.; Wang, J.; Sun, J.; Xiang, Y.Q.; Jin, X. Aflatoxin B1 disrupts the intestinal barrier integrity by reducing junction protein and promoting apoptosis in pigs and mice. Ecotox Environ. Safe 2022, 247, 114250. [Google Scholar] [CrossRef]
- Kumar, L.K.; Verma, S.K.; Chandel, R.; Thumar, M.; Singh, D.; Onteru, S.K. Aflatoxin M1 decreases the expression of genes encoding tight junction proteins and influences the intestinal epithelial integrity. Mycotoxin Res. 2023, 39, 453–467. [Google Scholar] [CrossRef]
- McLaughlin, J.; Padfield, P.J.; Burt, J.P.H.; O’Neill, C.A. Ochratoxin A increases permeability through tight junctions by removal of specific claudin isoforms. Am. J. Physiol. Cell Physiol. 2004, 287, C1412–C1417. [Google Scholar] [CrossRef] [PubMed]
- Chanez-Paredes, S.D.; Abtahi, S.; Zha, J.M.; Li, E.K.; Marsischky, G.; Zuo, L.; Grey, M.J.; He, W.Q.; Turner, J.R. Mechanisms underlying distinct subcellular localization and regulation of epithelial long myosin light-chain kinase splice variants. J. Biol. Chem. 2024, 300, 105643. [Google Scholar] [CrossRef]
- Li, E.K.; Horn, N.; Ajuwon, K.M. Mechanisms of deoxynivalenol-induced endocytosis and degradation of tight junction proteins in jejunal IPEC-J2 cells involve selective activation of the MAPK pathways. Arch. Toxicol. 2021, 95, 2065–2079. [Google Scholar] [CrossRef]
- Akbari, P.; Braber, S.; Alizadeh, A.; Verheijden, K.A.T.; Schoterman, M.H.C.; Kraneveld, A.D.; Garssen, J.; Fink-Gremmels, J. Galacto-oligosaccharides Protect the Intestinal Barrier by Maintaining the Tight Junction Network and Modulating the Inflammatory Responses after a Challenge with the Mycotoxin Deoxynivalenol in Human Caco-2 Cell Mono layers and B6C3F Mice. J. Nutr. 2015, 145, 1604–1613. [Google Scholar] [CrossRef]
- Jin, L.H.; Wang, W.; Degroote, J.; Van Noten, N.; Yan, H.L.; Majdeddin, M.; Van Poucke, M.; Peelman, L.; Goderis, A.; Van de Mierop, K.; et al. Mycotoxin binder improves growth rate in piglets associated with reduction of toll-like receptor-4 and increase of tight junction protein gene expression in gut mucosa. J. Anim. Sci. Biotechnol. 2017, 8, 80. [Google Scholar] [CrossRef]
- Li, E.K.; Horn, N.; Ajuwon, K.M. EPA and DHA inhibit endocytosis of claudin-4 and protect against deoxynivalenol-induced intestinal barrier dysfunction through PPARγ dependent and independent pathways in jejunal IPEC-J2 cells. Food Res. Int. 2022, 157, 111420. [Google Scholar] [CrossRef]
- Li, E.K.; Li, C.; Horn, N.; Ajuwon, K.M. PPARγ activation inhibits endocytosis of claudin-4 and protects against deoxynivalenol-induced intestinal barrier dysfunction in IPEC-J2 cells and weaned piglets. Toxicol. Lett. 2023, 375, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.J.; Li, L.; Zhang, G.Y. A proteomic study on the protective effect of kaempferol pretreatment against deoxynivalenol-induced intestinal barrier dysfunction in a Caco-2 cell model. Food Funct. 2020, 11, 7266–7279. [Google Scholar] [CrossRef]
- Fu, Y.C.; Li, E.K.; Casey, T.M.; Johnson, T.A.; Adeola, O.; Ajuwon, K.M. Impact of maternal live yeast supplementation to sows on intestinal inflammatory cytokine expression and tight junction proteins in suckling and weanling piglets. J. Anim. Sci. 2024, 102, skae008. [Google Scholar] [CrossRef]
- Lyu, Z.Q.; Li, Y.K.; Liu, H.; Li, E.K.; Li, P.L.; Zhang, S.; Wang, F.L.; Lai, C. Net energy content of rice bran, defatted rice bran, corn gluten feed, and corn germ meal fed to growing pigs using indirect calorimetry. J. Anim. Sci. 2018, 96, 1877–1888. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.P.; Li, J.Y.; Kang, W.L.; Li, Y.; Ge, L.; Liu, D.D.; Liu, Y.H.; Huang, K.H. Aflatoxin B1 Induces Intestinal Barrier Dysfunction by Regulating the FXR-Mediated MLCK Signaling Pathway in Mice and in IPEC-J2 Cells. J. Agric. Food Chem. 2022, 71, 867–876. [Google Scholar] [CrossRef]
- Mileto, S.J.; Jarde, T.; Childress, K.O.; Jensen, J.L.; Rogers, A.P.; Kerr, G.; Hutton, M.L.; Sheedlo, M.J.; Bloch, S.C.; Shupe, J.A.; et al. Clostridioides difficile infection damages colonic stem cells via TcdB, impairing epithelial repair and recovery from disease. Proc. Natl. Acad. Sci. USA 2020, 117, 8064–8073. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.Y.; Huang, D.G.; Gao, C.Q.; Yan, H.C.; Zou, S.G.; Wang, X.Q. Heat-stable enterotoxin inhibits intestinal stem cell expansion to disrupt the intestinal integrity by downregulating the Wnt/beta-catenin pathway. Stem Cells 2021, 39, 482–496. [Google Scholar] [CrossRef]
- Liang, S.J.; Wang, X.Q. Deoxynivalenol induces intestinal injury: Insights from oxidative stress and intestinal stem cells. Environ. Sci. Pollut. Res. Int. 2023, 30, 48676–48685. [Google Scholar] [CrossRef]
- Zhou, J.Y.; Zan, G.X.; Zhu, Q.J.; Gao, C.Q.; Yan, H.C.; Wang, X.Q. Recombinant Porcine R-Spondin 1 Facilitates Intestinal Stem Cell Expansion along the Crypt-Villus Axis through Potentiating Wnt/beta-Catenin Signaling in Homeostasis and Deoxynivalenol Injury. J. Agric. Food Chem. 2022, 70, 10644–10653. [Google Scholar] [CrossRef] [PubMed]
- Alberge, J.; Mussard, E.; Al-Ayoubi, C.; Lencina, C.; Marrauld, C.; Cauquil, L.; Achard, C.S.; Mateos, I.; Alassane-Kpembi, I.; Oswald, I.P.; et al. Butyrate reduces epithelial barrier dysfunction induced by the foodborne mycotoxin deoxynivalenol in cell monolayers derived from pig jejunum organoids. Gut Microbes 2024, 16, 2430424. [Google Scholar] [CrossRef]
- Zhao, J.B.; Liu, P.; Huang, C.F.; Liu, L.; Li, E.K.; Zhang, G.; Zhang, S. Effect of wheat bran on apparent total tract digestibility, growth performance, fecal microbiota and their metabolites in growing pigs. Anim. Feed. Sci. Tech. 2018, 239, 14–26. [Google Scholar] [CrossRef]
- Li, E.K.; Zhu, T.; Dong, W.X.; Huang, C.F. Effects of brown rice particle size on energy and nutrient digestibility in diets for young pigs and adult sows. Anim. Sci. J. 2019, 90, 108–116. [Google Scholar] [CrossRef]
- Zhou, J.Y.; Wang, Z.; Zhang, S.W.; Lin, H.L.; Gao, C.Q.; Zhao, J.C.; Yang, C.; Wang, X.Q. Methionine and Its Hydroxyl Analogues Improve Stem Cell Activity To Eliminate Deoxynivalenol-Induced Intestinal Injury by Reactivating Wnt/beta-Catenin Signaling. J. Agric. Food Chem. 2019, 67, 11464–11473. [Google Scholar] [CrossRef]
- Zhou, J.Y.; Lin, H.L.; Wang, Z.; Zhang, S.W.; Huang, D.G.; Gao, C.Q.; Yan, H.C.; Wang, X.Q. Zinc L-Aspartate enhances intestinal stem cell activity to protect the integrity of the intestinal mucosa against deoxynivalenol through activation of the Wnt/beta-catenin signaling pathway. Environ. Pollut. 2020, 262, 114290. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.Y.; Zhang, S.W.; Lin, H.L.; Gao, C.Q.; Yan, H.C.; Wang, X.Q. Hydrolyzed wheat gluten alleviates deoxynivalenol-induced intestinal injury by promoting intestinal stem cell proliferation and differentiation via upregulation of Wnt/beta-catenin signaling in mice. Food Chem. Toxicol. 2019, 131, 110579. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.T.; Wang, H.; Qiu, Y.T.; Bai, Z.Y.; Yang, Z.Z.; Li, E.K.; Ma, X.K.; Xiao, D.F. Alternative Uses of Fermented Wheat Bran: A Mini Review. Fermentation 2024, 10, 611. [Google Scholar] [CrossRef]
- Oladele, P.; Li, E.; Lu, H.; Cozannet, P.; Nakatsu, C.; Johnson, T.; Adeola, O.; Ajuwon, K.M. Effect of a carbohydrase admixture in growing pigs fed wheat-based diets in thermoneutral and heat stress conditions. J. Anim. Sci. 2021, 99, skab254. [Google Scholar] [CrossRef]
- Liu, Z.H.; Xie, W.W.; Zan, G.X.; Gao, C.Q.; Yan, H.C.; Zhou, J.Y.; Wang, X.Q. Lauric acid alleviates deoxynivalenol-induced intestinal stem cell damage by potentiating the Akt/mTORC1/S6K1 signaling axis. Chem. Biol. Interact. 2021, 348, 109640. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.Y.; Lin, H.L.; Qin, Y.C.; Li, X.G.; Gao, C.Q.; Yan, H.C.; Wang, X.Q. l-Carnosine Protects Against Deoxynivalenol-Induced Oxidative Stress in Intestinal Stem Cells by Regulating the Keap1/Nrf2 Signaling Pathway. Mol. Nutr. Food Res. 2021, 65, e2100406. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.H.; Chen, Y.F.; Wang, J.; Lv, Z.Q.; Li, E.K.; Zhao, J.B.; Liu, L.; Wang, F.L.; Liu, H. Effects of Reduced Dietary Protein at High Temperature in Summer on Growth Performance and Carcass Quality of Finishing Pigs. Animals 2022, 12, 599. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.J.; Tang, L.Z.; Wang, Y.C.; Xing, Y.Y.; Chen, G.W.; Jiang, Q.; Wang, J.; Li, E.K.; Tan, B.; Ma, X.K. Effects of Enzymatic Hydrolysate of Cottonseed Protein on Growth Performance, Nutrient Digestibility, Blood Indexes and Fecal Volatile Fatty Acids of Weaned Piglets. J. Anim. Physiol. Anim. Nutr. 2025, 109, 1062–1071. [Google Scholar] [CrossRef]
- Zingales, V.; Esposito, M.R.; Torriero, N.; Taroncher, M.; Cimetta, E.; Ruiz, M.J. The Growing Importance of Three-Dimensional Models and Microphysiological Systems in the Assessment of Mycotoxin Toxicity. Toxins 2023, 15, 422. [Google Scholar] [CrossRef]
- Zingales, V.; Esposito, M.R.; Quagliata, M.; Cimetta, E.; Ruiz, M.J. Cytotoxic effects induced by combined exposure to the mycotoxins sterigmatocystin, ochratoxin A and patulin on human tumour and healthy 3D spheroids. Food Chem. Toxicol. 2024, 192, 114951. [Google Scholar] [CrossRef]
- Zingales, V.; Piunti, C.; Micheli, S.; Cimetta, E.; Ruiz, M.J. Development of an Easy-To-Use Microfluidic System to Assess Dynamic Exposure to Mycotoxins in 3D Culture Models: Evaluation of Ochratoxin A and Patulin Cytotoxicity. Foods 2024, 13, 4167. [Google Scholar] [CrossRef]
- Yang, C.; Lu, H.; Li, E.K.; Oladele, P.; Ajuwon, K.M. Inulin supplementation induces expression of hypothalamic antioxidant defence genes in weaned piglets. J. Anim. Physiol. Anim. Nutr. 2023, 107, 157–164. [Google Scholar] [CrossRef]
- Lee, M.G.; Lee, B.R.; Lee, P.; Choi, S.; Kim, J.H.; Oh, M.H.; Yoo, J.G. Apical-out intestinal organoids as an alternative model for evaluating deoxynivalenol toxicity and detoxification in bovine. Sci. Rep. 2024, 14, 31373. [Google Scholar] [CrossRef]
- Guan, X.N.; Martinez, A.R.; Fernandez, M.; Molist, F.; Wells, J.M.; Santos, R.R. The Mycotoxins T-2 and Deoxynivalenol Facilitate the Translocation of across Porcine Ileal Organoid Monolayers. Toxins 2024, 16, 382. [Google Scholar] [CrossRef]
- Wang, H.Y.; He, X.G.; Zhang, M.M.; Fan, N.; Yang, Z.X.; Shen, T.; Guo, J.J.; Song, Y.L.; Cao, G.F.; Liu, Y.B.; et al. Development of Sheep Intestinal Organoids for Studying Deoxynivalenol-Induced Toxicity. Int. J. Mol. Sci. 2025, 26, 955. [Google Scholar] [CrossRef]
- Kang, T.H.; Lee, S.I. Establishment of a chicken intestinal organoid culture system to assess deoxynivalenol-induced damage of the intestinal barrier function. J. Anim. Sci. Biotechnol. 2024, 15, 30. [Google Scholar] [CrossRef]
- Pöschl, F.; Höher, T.; Pirklbauer, S.; Wolinski, H.; Lienhart, L.; Ressler, M.; Riederer, M. Dose and route dependent effects of the mycotoxin deoxynivalenol in a 3D gut-on-a-chip model with flow. Toxicol. In Vitro 2023, 88, 105563. [Google Scholar] [CrossRef]
- Zingales, V.; Esposito, M.R.; Quagliata, M.; Cimetta, E.; Ruiz, M.J. Comparative Study of Spheroids (3D) and Monolayer Cultures (2D) for the In Vitro Assessment of Cytotoxicity Induced by the Mycotoxins Sterigmatocystin, Ochratoxin A and Patulin. Foods 2024, 13, 564. [Google Scholar] [CrossRef]
- Morelli, M.; Rodriguez, M.C.; den Breems, N.; Queiroz, K. A high-throughput gut-on-chip platform to study the epithelial responses to enterotoxins. Toxicol. Lett. 2024, 399, S112. [Google Scholar] [CrossRef]
- Li, E.K.; Liu, H.; Li, Y.K.; Liu, L.; Wang, F.L.; Li, D.F.; Zhang, S. Determination of net energy content of dietary lipids fed to growing pigs using indirect calorimetry. J. Anim. Sci. 2018, 96, 2184–2194. [Google Scholar] [CrossRef]
- Su, M.; Tang, T.; Tang, W.; Long, Y.; Wang, L.; Liu, M. Astragalus improves intestinal barrier function and immunity by acting on intestinal microbiota to treat T2DM: A research review. Front. Immunol. 2023, 14, 1243834. [Google Scholar] [CrossRef]
- Li, E.K.; Lv, Z.Q.; Liu, H.; Liu, L.; Li, Y.K.; Li, Z.C.; Wang, F.L.; Li, D.F.; Zhang, S. Determination of net energy content of soybean oil fed to growing pigs using indirect calorimetry. Anim. Sci. J. 2018, 89, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Kuang, M.; Tao, Y.; Wang, J.; Luo, Y.; Fu, Y.; Chen, Z.; Liu, Y.; Li, Z.; Wu, W.; et al. Nynrin preserves hematopoietic stem cell function by inhibiting the mitochondrial permeability transition pore opening. Cell Stem Cell 2024, 31, 1359–1375. [Google Scholar] [CrossRef] [PubMed]
- Li, E.K.; Zhao, J.B.; Liu, L.; Zhang, S. Digestible energy and metabolizable energy contents of konjac flour residues and ramie in growing pigs. Anim. Nutr. 2018, 4, 228–233. [Google Scholar] [CrossRef]
- Huo, W.Y.; Qiao, Y.Y.; Li, E.K.; Li, M.Y.; Che, L. Interplay between nutrition, microbiota, and immunity in rotavirus infection: Insights from human and animal models. Front. Vet. Sci. 2025, 12, 1680448. [Google Scholar] [CrossRef]
- Wu, S.; Fang, X.; Zhao, J.; Liu, G.; Liao, P. Nutrient regulation targeting macrophage-controlled intestinal mucosal healing: A promising strategy against intestinal mucositis induced by deoxynivalenol. Toxicon 2025, 264, 108434. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Jia, S.; Rajput, S.A.; Qi, D.; Wang, S. Transcriptional Stages of Conidia Germination and Associated Genes in Aspergillus flavus: An Essential Role for Redox Genes. Toxins 2022, 14, 560. [Google Scholar] [CrossRef]
- Cai, X.; Lin, Y.; Li, Y.; Wang, R.; Ke, C. Set point regulation control for KdVB equation. In Proceedings of the 37th Chinese Control and Decision Conference 2025, Xiamen, China, 16–19 May 2025; pp. 5716–5720. [Google Scholar] [CrossRef]
- Cai, X.; Lin, Y.; Li, Y.; Zhang, L.; Ke, C. Inverse optimal adaptive boundary control for heat PDE. In Proceedings of the 37th Chinese Control and Decision Conference 2025, Xiamen, China, 16–19 May 2025; pp. 1825–1828. [Google Scholar] [CrossRef]
- Wang, L.Q.; Wu, K.T.; Yang, P.; Hou, F.; Rajput, S.A.; Qi, D.S.; Wang, S. Transcriptomics Reveals the Effect of Thymol on the Growth and Toxin Production of Fusarium graminearum. Toxins 2022, 14, 142. [Google Scholar] [CrossRef]
- Li, Y. Physics-informed neural networks for enhanced interface preservation in lattice Boltzmann multiphase simulations. In Proceedings of the 2025 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA 2025), Antalya, Türkiye, 7–9 August 2025. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y. Selective layer fine-tuning for federated healthcare NLP: A cost-efficient approach. In Proceedings of the 2025 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA 2025), Antalya, Turkiye, 7–9 August 2025. [Google Scholar] [CrossRef]
- Wang, S.; Wu, K.; Xue, D.; Zhang, C.; Rajput, S.A.; Qi, D. Mechanism of deoxynivalenol mediated gastrointestinal toxicity: Insights from mitochondrial dysfunction. Food Chem. Toxicol. 2021, 153, 112214. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, L. Selective attention federated learning: Improving privacy and efficiency for clinical text classification. In Proceedings of the 2025 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA 2025), Antalya, Türkiye, 7–9 August 2025. [Google Scholar] [CrossRef]
- Li, Y. LBM-GNN: Graph neural network enhanced lattice Boltzmann method. In Proceedings of the 2025 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA 2025), Antalya, Türkiye, 7–9 August 2025. [Google Scholar] [CrossRef]
- Wang, S.; Zeng, X.F.; Wang, Q.W.; Zhu, J.L.; Peng, Q.; Hou, C.L.; Thacker, P.; Qiao, S.Y. The antimicrobial peptide sublancin ameliorates necrotic enteritis induced by Clostridium perfringens in broilers. J. Anim. Sci. 2015, 93, 4750–4760. [Google Scholar] [CrossRef]
- Cai, X.; Li, Y.; Wang, P.; Lin, Y.; Zhang, L.; Liu, L. Adaptive inverse optimal control for unstable reaction–diffusion PDE system. Kybernetika 2025, 61, 537–553. [Google Scholar] [CrossRef]
- Wang, S.; Su, S.; Cai, F.; Li, H.; Hou, P.; Teng, T.; Du, M.; Li, Y.; Li, H.; Jiang, X. Mechanical degradation characteristics and permeability evolution law of coal under liquid nitrogen freeze–thaw cycles. Phys. Fluids 2025, 37, 027134. [Google Scholar] [CrossRef]
- Li, Y.; Yang, C.; Zeng, H.; Dong, Z.; An, Z.; Xu, Y.; Tian, Y.; Wu, H. Frequency-aligned knowledge distillation for lightweight spatiotemporal forecasting. arXiv 2025, arXiv:2507.02939. [Google Scholar] [CrossRef]
- Tong, R.; Xu, T.; Ju, X.; Wang, L. Progress in medical AI: Reviewing large language models and multimodal systems for diagnosis. AI Med. 2025, 1, 165–186. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, C.; Wang, X.; Yang, J.; Wu, K.; Zhang, J.; Zhang, B.; Yang, A.; Qi, D. Deoxynivalenol Inhibits Porcine Intestinal Trefoil Factors Expression in Weanling Piglets and IPEC-J2 Cells. Toxins 2019, 11, 670. [Google Scholar] [CrossRef]
- Liu, J.; Tong, R.; Shen, A.; Li, S.; Yang, C.; Xu, L. MemeBLIP2: A novel lightweight multimodal system to detect harmful memes. In Proceedings of the IJCAI 2025: The First Workshop on Multimodal Knowledge and Language Modeling 2025, Palais des congrès, Montreal, QC, Canada, 16 August 2025. [Google Scholar] [CrossRef]
- Tong, R.; Wei, S.; Liu, J.; Wang, L. Rainbow Noise: Stress-testing multimodal harmful-meme detectors on LGBTQ content. In Proceedings of the NeurIPS 2025: Queer in AI Workshop 2025, San Diego, CA, USA, 2 December 2025. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, C.; Yang, J.; Wang, X.; Wu, K.; Zhang, B.; Zhang, J.; Yang, A.; Rajput, S.A.; Qi, D. Sodium Butyrate Protects the Intestinal Barrier by Modulating Intestinal Host Defense Peptide Expression and Gut Microbiota after a Challenge with Deoxynivalenol in Weaned Piglets. J. Agric. Food Chem. 2020, 68, 4515–4527. [Google Scholar] [CrossRef]
- Tong, R.; Wang, L.; Wang, T.; Yan, W. Predicting Parkinson’s disease progression using statistical and neural mixed effects models: A comparative study on longitudinal biomarkers. arXiv 2025, arXiv:2507.20058. [Google Scholar] [CrossRef]
- Wu, K.; Jia, S.; Xue, D.; Rajput, S.A.; Liu, M.; Qi, D.; Wang, S. Dual effects of zearalenone on aflatoxin B1-induced liver and mammary gland toxicity in pregnant and lactating rats. Ecotoxicol. Environ. Saf. 2022, 245, 114115. [Google Scholar] [CrossRef]
- Tong, R.; Liu, J.; Liu, S.; Xu, J.; Wang, L.; Wang, T. Does bigger mean better? Comparative analysis of CNNs and biomedical vision-language models in medical diagnosis. arXiv 2025, arXiv:2510.00411. [Google Scholar] [CrossRef]
- Tong, R.; Liu, J.; Liu, S.; Hu, X.; Wang, L. Renaissance of RNNs in streaming clinical time series: Compact recurrence remains competitive with transformers. arXiv 2025, arXiv:2510.16677. [Google Scholar] [CrossRef]
- Wu, K.; Ren, C.; Gong, Y.; Gao, X.; Rajput, S.A.; Qi, D.; Wang, S. The insensitive mechanism of poultry to zearalenone: A review. Anim. Nutr. 2021, 7, 587–594. [Google Scholar] [CrossRef]
- Liu, J.; Wang, T.; Liu, S.; Hu, X.; Tong, R.; Wang, L.; Xu, J. Lightweight baselines for medical abstract classification: DistilBERT with cross-entropy as a strong default. In Proceedings of the 2025 8th International Conference on Machine Learning and Natural Language Processing (MLNLP 2025), Shaoxing, China, 7–9 November 2025. [Google Scholar] [CrossRef]
- Xue, D.; Cheng, Y.; Pang, T.; Kuai, Y.; An, Y.; Wu, K.; Li, Y.; Lai, M.; Wang, B.; Wang, S. Sodium butyrate alleviates deoxynivalenol-induced porcine intestinal barrier disruption by promoting mitochondrial homeostasis via PCK2 signaling. J. Hazard Mater. 2023, 459, 132013. [Google Scholar] [CrossRef]
- Liu, B.; Jiang, X.; Cai, L.; Zhao, X.; Dai, Z.; Wu, G.; Li, X. Putrescine mitigates intestinal atrophy through suppressing inflammatory response in weanling piglets. J. Anim. Sci. Biotechnol. 2019, 10, 69. [Google Scholar] [CrossRef]
- Wang, S.; Su, S.; Cai, F.; Zhou, C.; Du, M.; Li, Y.; Jiang, X. Characteristics analysis of nitrogen gas fracturing in coal treated by liquid nitrogen freeze–thaw based on numerical model. J. Braz. Soc. Mech. Sci. Eng. 2025, 47, 96. [Google Scholar] [CrossRef]
- Liu, B.; Duan, L.; Liu, X.; Bazer, F.W.; Wang, X. Uterine histotroph and conceptus development. IV. Metabolomic analyses of uterine luminal fluid reveals regulatory landscapes during the peri-implantation period of pregnancy in pigsdagger. Biol. Reprod. 2025, ioaf192. [Google Scholar] [CrossRef]
- Liu, B.; Paudel, S.; Flowers, W.L.; Piedrahita, J.A.; Wang, X. Uterine histotroph and conceptus development: III. Adrenomedullin stimulates proliferation, migration and adhesion of porcine trophectoderm cells via AKT-TSC2-MTOR cell signaling pathway. Amino Acids 2023, 55, 743–756. [Google Scholar] [CrossRef]
- Paudel, S.; Liu, B.; Cummings, M.J.; Quinn, K.E.; Bazer, F.W.; Caron, K.M.; Wang, X. Temporal and spatial expression of adrenomedullin and its receptors in the porcine uterus and peri-implantation conceptuses. Biol. Reprod. 2021, 105, 876–891. [Google Scholar] [CrossRef]
| Cell Type | Mycotoxin(s) | Mechanisms/Pathways | Outcome on Epithelial Integrity and Regeneration | References |
|---|---|---|---|---|
| Enterocytes | DON, ZEA | DON: Inhibition of protein synthesis; endocytosis and degradation of tight junction proteins. ZEA: Modulation of Wnt/β-catenin signaling | Barrier dysfunction, increased susceptibility to microbial translocation | [12,13,15] |
| Goblet cells | DON, ZEA | PKR- and MAP kinase-dependent repression of resistin-like molecule β (DON); possible modulation of goblet cell differentiation (ZEA) | Compromised mucus barrier, reduced protection against pathogens, decreased epithelial defense | [15,16,17,18] |
| Paneth cells | DON | Secretion of niche factors supporting ISC survival; mitigation of oxidative stress | Enhanced ISC survival and regenerative potential, mitigation of mycotoxin-induced epithelial injury | [19] |
| Enteroendocrine cells | DON | Calcium-sensing receptor and TRPA1 channel-mediated release of peptide YY, cholecystokinin, GLP-1 | Disrupted satiety signaling, altered gut motility, indirect effects on nutrient absorption, and epithelial health | [20,21] |
| ISCs | DON, ZEA | DON: IP3R-dependent ER Ca2+ signaling; TSC2/mTORC1 pathways downstream of IR and EGFR receptors. ZEA: Dysregulation of Wnt/β-catenin signaling affecting ISC proliferation | Impaired epithelial regeneration, delayed recovery from injury, compromised crypt–villus integrity | [15,19,22,23] |
| Mycotoxin | Model | IEL/Lymphocyte Effects | Cytokine/Functional Effects | Reference |
|---|---|---|---|---|
| DON | Broilers | Reduced CD3+ and CD8+ IELs in duodenal epithelium; altered blood lymphocyte distribution | Not directly measured | [25] |
| Mice | Biphasic response: low dose → enhanced Th1 cytokines; high dose → suppressed T-cell proliferation, shifted IEL balance | Increased IL-2, IFN-γ (low dose); suppressed at high dose | [30] | |
| ZEA | Broilers | Reduced CD3+ and CD8+ IELs (with DON, above) | Not directly measured | [25] |
| Mice | Reduced T-helper and cytotoxic IEL populations; immune suppression | Altered cytokine expression; estrogenic immune modulation | [31] | |
| T-2 toxin | Pigs | Decreased CD4+ and CD8+ T-cells; reduced B-cell proportions in the ileal wall | Lower IL-2 and IFN-γ secretion | [27] |
| Fusarium mycotoxin mixtures (DON, ZEA, FB1, T-2) | Chickens | Reduced intestinal lymphocyte proliferation; altered IEL subset distribution; reduced IEL density with coccidial challenge | Impaired local immune surveillance | [26,32] |
| Multiple | Reduced IEL-mediated barrier defense; increased susceptibility to pathogens | Synergistic immunosuppression with infections | [33] | |
| Ochratoxin A (OTA) | Chickens | Apoptosis of IELs; reduced T- and B-cell populations in mucosa-associated lymphoid tissues | Impaired mucosal defense | [28] |
| Aflatoxin B1 (AFB1) | Broilers | Reduced CD3+, CD4+, and CD8+ T-cells in intestinal mucosa | Downregulated IL-2, IFN-γ, IL-10 mRNA | [29] |
| Mycotoxin | Cell Type/Animal Model | Targeted TJ/Epithelial Cells | Mechanism of Disruption | Reference |
|---|---|---|---|---|
| DON | IPEC-J2 cells, Caco-2 cells, weaned piglets | Claudins, Occludin, ZO-1, goblet cells, Paneth cells | Inhibits protein synthesis; induces endocytosis/degradation of TJ proteins via MAPK; mitochondrial dysfunction; PGC1α hijacking; represses mucins/TFFs; IP3R-dependent Ca2+ signaling | [12,13,16,19,22,23,35,46] |
| ZEA | Rats, IPEC-J2 cells | TJ proteins, goblet cells | Modulates Wnt/β-catenin; oxidative stress; alters epithelial homeostasis | [15] |
| T-2/HT-2 toxins | Porcine small intestinal epithelial cells | TJ proteins | Direct cytotoxicity; oxidative stress; inflammation | [36] |
| AFB1 | Pigs, mice, IPEC-J2 cells | Claudins, Occludin, intestinal epithelium | Reduces TJ gene expression; induces apoptosis; FXR-mediated MLCK signaling | [37,49] |
| AFM1 | IPEC-J2 cells | TJ protein-encoding genes | Decreases TJ gene expression; compromises epithelial integrity | [38] |
| OTA | Caco-2 cells | Claudins (specific isoforms) | Selective removal of claudin isoforms; increases permeability | [39] |
| Nutritional Intervention | Mycotoxin | Mechanisms/Pathways | Outcome on ISCs and Intestinal Regeneration | References |
|---|---|---|---|---|
| Recombinant porcine R-Spondin 1 | DON | Potentiates Wnt/β-catenin signaling | Expands ISC population along crypt–villus axis; restores proliferation and crypt architecture | [53] |
| Butyrate | DON | Enhances ISC survival; supports barrier function | Reduces epithelial barrier dysfunction; indirectly promotes ISC-mediated regeneration | [54] |
| Hydrolyzed Wheat Gluten | DON | Upregulates Wnt/β-catenin signaling | Promotes ISC proliferation and differentiation; alleviates intestinal injury | [59] |
| Zinc L-Aspartate | DON | Activates Wnt/β-catenin signaling | Enhances ISC activity; protects mucosal integrity | [58] |
| Lauric Acid | DON | Potentiates Akt/mTORC1/S6K1 signaling | Mitigates ISC damage; supports proliferation and epithelial regeneration | [62] |
| Methionine & Hydroxyl Analogues | DON | Reactivates Wnt/β-catenin signaling | Improves ISC activity; facilitates repair of DON-induced injury | [57] |
| L-Carnosine | DON | Regulates Keap1/Nrf2 signaling; reduces oxidative stress | Protects ISCs from ROS-mediated damage; maintains stem cell function | [63] |
| Mycotoxin | In Vitro Concentrations (µM) | In Vivo Doses (mg/kg Diet or mg/kg b.w.) | Sensitive Species/Relative Tolerance | Approximate Human Exposure | Regulatory Benchmarks | References |
|---|---|---|---|---|---|---|
| DON | 0.1–10 µM (barrier and ISC injury ≥ 1 µM) | 0.5–5 mg/kg diet; LOAEL ≈ 0.1 mg/kg b.w./day | Pigs ≈ Humans > Poultry > Ruminants (rumen detoxification) | 0.01–0.1 µg/kg b.w./day (dietary intake) | TDI: 1 µg/kg b.w./day (EFSA, 2022); feed limit: ≤0.9 mg/kg (EU) | [5,6,7,12,22,35,51] |
| ZEA | 1–50 µM (estrogenic and epithelial effects ≥ 10 µM) | 0.1–5 mg/kg diet; LOAEL ≈ 0.1 mg/kg b.w./day | Pigs (highly sensitive) > Poultry > Ruminants | 0.01–0.05 µg/kg b.w./day | TDI: 0.25 µg/kg b.w./day (EFSA); feed limit: ≤0.1 mg/kg (EU) | [15,25,31,36] |
| AFB1 | 0.1–5 µM (apoptosis, TJ loss ≥ 1 µM) | 0.05–1 mg/kg diet; LOAEL ≈ 0.03 mg/kg b.w./day | Poultry ≈ Pigs > Humans (due to dietary detoxification) | <0.001 µg/kg b.w./day | No safe threshold; limit: ≤2 µg/kg food (EU, FDA) | [29,37,48] |
| OTA | 0.5–10 µM (permeability, ROS ≥ 2 µM) | 0.1–2 mg/kg diet; chronic LOAEL ≈ 0.05 mg/kg b.w./day | Pigs > Poultry > Ruminants | 0.001–0.01 µg/kg b.w./day | TDI: 0.02 µg/kg b.w./day (EFSA); limit: ≤5 µg/kg (EU) | [28,39,66] |
| T-2 | 0.01–1 µM (nanomolar cytotoxicity) | 0.1–0.5 mg/kg diet; LOAEL ≈ 0.05 mg/kg b.w./day | Poultry > Pigs > Ruminants | <0.001 µg/kg b.w./day | Indicative TDI: 0.02 µg/kg b.w./day (EFSA) | [27,36,65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huo, W.; Qiao, Y.; He, X.; Wang, C.; Li, R.; Che, L.; Li, E. Mycotoxins and the Intestinal Epithelium: From Barrier Injury to Stem Cell Dysfunction. Toxins 2025, 17, 534. https://doi.org/10.3390/toxins17110534
Huo W, Qiao Y, He X, Wang C, Li R, Che L, Li E. Mycotoxins and the Intestinal Epithelium: From Barrier Injury to Stem Cell Dysfunction. Toxins. 2025; 17(11):534. https://doi.org/10.3390/toxins17110534
Chicago/Turabian StyleHuo, Wenying, Yingying Qiao, Xiangru He, Cailing Wang, Ruiqing Li, Long Che, and Enkai Li. 2025. "Mycotoxins and the Intestinal Epithelium: From Barrier Injury to Stem Cell Dysfunction" Toxins 17, no. 11: 534. https://doi.org/10.3390/toxins17110534
APA StyleHuo, W., Qiao, Y., He, X., Wang, C., Li, R., Che, L., & Li, E. (2025). Mycotoxins and the Intestinal Epithelium: From Barrier Injury to Stem Cell Dysfunction. Toxins, 17(11), 534. https://doi.org/10.3390/toxins17110534

