Botulinum Toxin Treatment in Hereditary Spastic Paraplegia—A Comprehensive Review and Update
Abstract
1. Introduction
2. Research Design
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Panza, E.; Meyyazhagan, A.; Orlacchio, A. Hereditary Spastic Paraplegia: Genetic Heterogeneity and Common Pathways. Exp. Neurol. 2022, 357, 114203. [Google Scholar] [CrossRef]
- de Souza, P.V.S.; de Rezende Pinto, W.B.V.; de Rezende Batistella, G.N.; Bortholin, T.; Oliveira, A.S.B. Hereditary Spastic Paraplegia: Clinical and Genetic Hallmarks. Cerebellum 2017, 16, 525–551. [Google Scholar] [CrossRef]
- Klebe, S.; Stevanin, G.; Depienne, C. Clinical and Genetic Heterogeneity in Hereditary Spastic Paraplegias: From SPG1 to SPG72 and Still Counting. Rev. Neurol. 2015, 171, 505–530. [Google Scholar] [CrossRef]
- Murala, S.; Nagarajan, E.; Bollu, P.C. Hereditary Spastic Paraplegia. Neurol. Sci. 2021, 42, 883–894. [Google Scholar] [CrossRef]
- Fink, J.K. Hereditary Spastic Paraplegia: Clinico-Pathologic Features and Emerging Molecular Mechanisms. Acta Neuropathol. 2013, 126, 307–328. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.; Huang, H.; Wu, X.; Meng, M. What doesn’t kill us makes us stronger: Insights from neuroscience studies and molecular genetics. Curr. Opin. Behav. Sci. 2024, 59, 101431. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, J.; Zhang, Y.; Lang, J.; Xiang, J.; Bai, X.; Yan, N.; Tian, G.; Zhang, H.; Yang, J. Naigo: An improved method to alighn PPI networks based on genre ontology and graphlets. Front. Bioeng. Biotechnol. 2020, 8, 547. [Google Scholar] [CrossRef] [PubMed]
- Servelhere, K.R.; Faber, I.; Saute, J.A.; Moscovich, M.; D’Abreu, A.; Jardim, L.B.; Teive, H.A.; Lopes-Cendes, I.; Franca, M.C., Jr. Non-motor symptoms in patients with hereditary spastic paraplegia caused by SPG4 mutations. Eur. J. Neurol. 2016, 23, 408–411. [Google Scholar] [CrossRef] [PubMed]
- Rattay, T.W.; Boldt, A.; Völker, M.; Wiethoff, S.; Hengel, H.; Schüle, R.; Schöls, L. Non-motor symptoms are relevant and possibly treatable in hereditary spastic paraplegia type 4 (SPG4). J. Neurol. 2020, 267, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Pirazzini, M.; Rossetto, O.; Eleopra, R.; Montecucco, C. Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology. Pharmacol. Rev. 2017, 69, 200–235. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dimitrova, R.; Kim, H.; Meilahn, J.; Chambers, H.G.; Racette, B.A.; Bonikowski, M.; Park, E.S.; McCusker, E.; Liu, C.; Brin, M.F. Efficacy and safety of onabotulinumtoxinA with standardized physiotherapy for the treatment of pediatric lower limb spasticity: A randomized, placebo-controlled, phase III clinical trial. NeuroRehabilitation 2022, 50, 33–46. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wein, T.; Esquenazi, A.; Jost, W.H.; Ward, A.B.; Pan, G.; Dimitrova, R. OnabotulinumtoxinA for the Treatment of Poststroke Distal Lower Limb Spasticity: A Randomized Trial. PM&R 2018, 10, 693–703. [Google Scholar] [CrossRef] [PubMed]
- Brashear, A.; Gordon, M.F.; Elovic, E.; Kassicieh, V.D.; Marciniak, C.; Do, M.; Lee, C.H.; Jenkins, S.; Turkel, C.; Botox Post-Stroke Spasticity Study Group. Intramuscular injection of botulinum toxin for the treatment of wrist and finger spasticity after a stroke. N. Engl. J. Med. 2002, 347, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Bavikatte, G.; Francisco, G.E.; Jost, W.H.; Baricich, A.; Duarte, E.; Tang, S.F.T.; Schwartz, M.; Nelson, M.; Musacchio, T.; Esquenazi, A. Pain, disability, and quality of life in participants after concurrent onabotulinumtoxinA treatment of upper and lower limb spasticity: Observational results from the ASPIRE study. PM&R 2024, 16, 1176–1190. [Google Scholar] [CrossRef]
- Esquenazi, A.; Jost, W.H.; Turkel, C.C.; Wein, T.; Dimitrova, R. Treatment of adult spasticity with Botox (onabotulinumtoxinA): Development, insights, and impact. Medicine 2023, 102, e32376. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kaji, R.; Osako, Y.; Suyama, K.; Maeda, T.; Uechi, Y.; Iwasaki, M.; GSK1358820 Spasticity Study Group. Botulinum toxin type A in post-stroke lower limb spasticity: A multicenter, double-blind, placebo-controlled trial. J. Neurol. 2010, 257, 1330–1337. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Faccioli, S.; Cavalagli, A.; Falocci, N.; Mangano, G.; Sanfilippo, I.; Sassi, S. Gait analysis patterns and rehabilitative interventions to improve gait in persons with hereditary spastic paraplegia: A systematic review and meta-analysis. Front. Neurol. 2023, 14, 1256392. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bellofatto, M.; De Michele, G.; Iovino, A.; Filla, A.; Santorelli, F.M. Management of Hereditary Spastic Paraplegia: A Systematic Review of the Literature. Front. Neurol. 2019, 10, 3. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rousseaux, M.; Launay, M.J.; Kozlowski, O.; Daveluy, W. Botulinum toxin injection in patients with hereditary spastic paraparesis. Eur. J. Neurol. 2007, 14, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Hecht, M.J.; Stolze, H.; Auf dem Brinke, M.; Giess, R.; Treig, T.; Winterholler, M.; Wissel, J.; German Spasticity Education Group. Botulinum neurotoxin type A injections reduce spasticity in mild to moderate hereditary spastic paraplegia--report of 19 cases. Mov. Disord. 2008, 23, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Geva-Dayan, K.; Domenievitz, D.; Zahalka, R.; Fattal-Valevski, A. Botulinum toxin injections for pediatric patients with hereditary spastic paraparesis. J. Child Neurol. 2010, 25, 969–975. [Google Scholar] [CrossRef] [PubMed]
- de Niet, M.; de Bot, S.T.; van de Warrenburg, B.P.; Weerdesteyn, V.; Geurts, A.C. Functional effects of botulinum toxin type-A treatment and subsequent stretching of spastic calf muscles: A study in patients with hereditary spastic paraplegia. J. Rehabil. Med. 2015, 47, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Riccardo, M.; Angela, L.; Angela, D.; Vita, P.; Giulio, L.; Pietroq, F.; Giancarlo, I.; Marisa, M. Combined Treatment Fkt-Botulinum Toxin Type A (Btx-A) in Patients with Strumpell-Lorrain Disease. Curr. Pharm. Des. 2016, 22, 758–763. [Google Scholar] [CrossRef] [PubMed]
- Servelhere, K.R.; Faber, I.; Martinez, A.; Nickel, R.; Moro, A.; Germiniani, F.M.B.; Moscovich, M.; Blume, T.R.; Munhoz, R.P.; Teive, H.A.G.; et al. Botulinum toxin for hereditary spastic paraplegia: Effects on motor and non-motor manifestations. Arq. Neuro-Psiquiatr. 2018, 76, 183–188. [Google Scholar] [CrossRef] [PubMed]
- van Lith, B.J.H.; den Boer, J.; van de Warrenburg, B.P.C.; Weerdesteyn, V.; Geurts, A.C. Functional effects of botulinum toxin type A in the hip adductors and subsequent stretching in patients with hereditary spastic paraplegia. J. Rehabil. Med. 2019, 51, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Paparella, G.; Vavla, M.; Bernardi, L.; Girardi, G.; Stefan, C.; Martinuzzi, A. Efficacy of a Combined Treatment of Botulinum Toxin and Intensive Physiotherapy in Hereditary Spastic Paraplegia. Front. Neurosci. 2020, 14, 111. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Diniz de Lima, F.; Faber, I.; Servelhere, K.R.; Bittar, M.F.R.; Martinez, A.R.M.; Piovesana, L.G.; Martins, M.P.; Martins, C.R., Jr.; Benaglia, T.; de Sá Carvalho, B.; et al. Randomized Trial of Botulinum Toxin Type A in Hereditary Spastic Paraplegia—The SPASTOX Trial. Mov. Disord. 2021, 36, 1654–1663. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.A.; Ollenschläger, M.; Klebe, S.; Schüle, R.; Jeschonneck, N.; Kellner, M.; Loris, E.; Greinwalder, T.; Eskofier, B.M.; Winkler, J.; et al. Mobile digital gait analysis captures effects of botulinum toxin in hereditary spastic paraplegia. Eur. J. Neurol. 2024, 31, e16367. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brin, M.F.; Nelson, M.; Ashourian, N.; Brideau-Andersen, A.; Maltman, J. Update on Non-Interchangeability of Botulinum Neurotoxin Products. Toxins 2024, 16, 266. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, S.; Chen, W.; Zhou, J.; Liang, Q.; Zhang, Y.; Su, M.; Zhang, Z.; Qu, J. The Benefits and Safety of Monoclonal Antibodies: Implications for Cancer Immunotherapy. J. Inflamm. Res. 2025, 18, 4335–4357. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Giovannelli, M.; Borriello, G.; Castri, P.; Prosperini, L.; Pozzilli, C. Early physiotherapy after injection of botulinum toxin increases the beneficial effects on spasticity in patients with multiple sclerosis. Clin. Rehabil. 2007, 21, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Hwang, I.S.; Ryu, J.W.; Jin, S.; Kim, S.A.; Kim, M.S. Long-Term Enhancement of Botulinum Toxin Injections for Post-Stroke Spasticity by Use of Stretching Exercises-A Randomized Controlled Trial. Toxins 2024, 16, 267. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nonnekes, J.; Geurts, A. Letter to the Editor: Randomized Trial of Botulinum Toxin Type A in Hereditary Spastic Paraplegia-The SPASTOX Trial. Mov. Disord. 2021, 36, 1733. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cosgrove, A.P.; Graham, H.K. Botulinum toxin A prevents the development of contractures in the hereditary spastic mouse. Dev. Med. Child Neurol. 1994, 36, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, C.; Ispoglou, S.; Helliwell, B.; Hicklin, D.; Sturman, S.; Pandyan, A. Can the early use of botulinum toxin in post stroke spasticity reduce contracture development? A randomised controlled trial. Clin. Rehabil. 2020, 35, 399–409. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tilborg, N.A.W.V.; de Groot, V.; Meskers, C.G.M. The effectiveness of early interventions for post-stroke spasticity: A systematic review. Disabil. Rehabil. 2024, 47, 900–911. [Google Scholar] [CrossRef] [PubMed]
- Gormley, M.; Fehlings, D.; Kim, H.; Bonikowski, M.; Banach, M.; Gul, F.; Meilahn, J.; Racette, B.; Huang, N.; Niu, X.; et al. Efficacy and Safety of OnabotulinumtoxinA for the Treatment of Pediatric Upper and Lower Limb Spasticity: Results From 2 Open-Label, Long-term Extension Trials. J. Child Neurol. 2025, 40, 168–179. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Westhoff, B.; Seller, K.; Wild, A.; Jaeger, M.; Krauspe, R. Ultrasound-guided botulinum toxin injection technique for the iliopsoas muscle. Dev. Med. Child Neurol. 2003, 45, 829–832. [Google Scholar] [CrossRef] [PubMed]
- Ruano, L.; Melo, C.; Silva, M.C.; Coutinho, P. The global epidemiology of hereditary ataxia and spastic paraplegia: A systematic review of prevalence studies. Neuroepidemiology 2014, 42, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Fourtassi, M.; Jacquin-Courtois, S.; Scheiber-Nogueira, M.C.; Hajjioui, A.; Luaute, J.; Charvier, K.; Maucort-Boulch, D.; Rode, G. Bladder dysfunction in hereditary spastic paraplegia: A clinical and urodynamic evaluation. Spinal Cord 2012, 50, 558–562. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Shen, N.; Feng, S. Botulinum toxin A for the treatment of neurogenic bladder in children: A systematic review and meta-analysis. ANZ J. Surg. 2025, 95, 1115–1121. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.A.; Beckinger, V.E.; Möller, B.; Knüpfer, S.; Hamann, M.; Deuschl, G. Urinary symptoms, quality of life, and patient satisfaction in genetic and sporadic hereditary spastic paraplegia. J. Neurol. 2019, 266, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Elovic, E.P.; Munin, M.C.; Kaňovský, P.; Hanschmann, A.; Hiersemenzel, R.; Marciniak, C. Randomized, placebo-controlled trial of incobotulinumtoxina for upper-limb post-stroke spasticity. Muscle Nerve 2015, 53, 415–421. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bianchi, F.; Nelson, M.; Wissel, J.; Kim, H.; Traut, A.; Shah, D.; Musacchio, T.; Jabbari, B. OnabotulinumtoxinA in the Management of Pain in Adult Patients with Spasticity: A Systematic Literature Review. Toxins 2025, 17, 418. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Matak, I.; Lacković, Z. Botulinum toxin A, brain and pain. Prog. Neurobiol. 2014, 119–120, 39–59. [Google Scholar] [CrossRef] [PubMed]
- Marino, M.J.; Terashima, T.; Steinauer, J.J.; Eddinger, K.A.; Yaksh, T.L.; Xu, Q. Botulinum toxin B in the sensory afferent: Transmitter release, spinal activation, and pain behavior. Pain 2014, 155, 674–684. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vahter, L.; Braschinsky, M.; Haldre, S.; Gross-Paju, K. The prevalence of depression in hereditary spastic paraplegia. Clin. Rehabil. 2009, 23, 857–861. [Google Scholar] [CrossRef] [PubMed]
- Schulze, J.; Neumann, I.; Magid, M.; Finzi, E.; Sinke, C.; Wollmer, M.A.; Krüger, T.H.C. Botulinum toxin for the management of depression: An updated review of the evidence and meta-analysis. J. Psychiatr. Res. 2021, 135, 332–340. [Google Scholar] [CrossRef] [PubMed]
Authors and Date | #pts | Study Type | Toxin Type | Total Dose (u) | Muscles Injected | Primary Outcome | Results | Adverse Effects |
---|---|---|---|---|---|---|---|---|
Roussoux et al., 2007 [19] | 15 | Pros | onaA | 400 | Adductor magnus, soleus, gastrocnemius, flexor digitorum longus | Gait velocity, Modified Ashworth Scale (MAS), Patient Satisfaction Scale (0–4 scale) | Gait velocity improved in 8 out of 10 patients following injection of hip adductors; all injected patients were moderately satisfied | Two patients reported local pain at the site of injection for two days |
Hecht et al., 2008 [20] | 19 | Retro | 1. onaA 2. aboA | 1. Up to 400 U 2. Up to 1500 U | Psoas, hip adductor | Modified Ashworth Scale, patient subjective rating of 0–3, gait assessment | Gait improved in 5 out of 12 patients; all patients reported good or very good response (2 and 3); MAS improved in 17 out of 19 patients; muscle spasms improved | Reversible weakness: 4; transient local pain: 1 |
Geva-Dyan et al., 2010 Children [21] | 12 | Retro | onA, aboA | Total doses did not exceed 12 u/kg (onaA) and 25–30 u/kg (aboA) Dose varied per muscle | Gastrocnemius, adductor, hamstring | Modified Ashworth Scale, general motor function measure, quality of motor skills | General motor function improved (11/12: p 0.01) Quality of motor skill improved 10/12: (p 0.01) | Transient weakness: 1; transient local pain: 1 |
De Niet et al., 2015 [22] | 15 | Pros | aboA | 500–750 u | Gastrocnemius, triceps surae | Comfortable gait velocity, maximum gait velocity, Modified Ashworth Scale, muscle strength measured by MRC | Comfortable gait velocity increased by 9% and 12% (p < 0.05); 12 out of 15 patients expressed satisfaction; in two patients, muscle spasms improved | Transient weakness: 3 |
Riccardo et al., 2016 [23] | 10 | Retro | incoA | Mean doses: hip adductor: 125 u; gastrocnemius: 110 u; soleus: 132 u All injected bilaterally | Adductors, gastrocnemius, soleus | Speed of step, foot pressure, Modified Ashworth Scale | Speed of step showed a gradual increase, peaking at 5 months | Not mentioned |
Servelhere et al., 2018 [24] | 33 | Pros | aboA | 1110 ± 535 u | Adductors, hamstring, soleus, gastrocnemius, tibialis posterior, quadriceps | Modified Fatigue Impact Scale (MFIS), Modified Ashworth Scale, gait velocity, 10-Meter Walk Test | MFIS improved (p: 0.011); adductor tone improved (p < 0.05); no improvement in 10-Meter Walk Test | Transient lower-limb weakness: 1; increased sleepiness: 1 |
Van Lith et al., 2019 [25] | 25 | Pros | incoA | 150–200/leg | Hip adductors, gracilis muscle | Gait width, quality of sideways stepping, gait speed, Modified Ashworth Scale | Preferred gait speed and lateral balance improved significantly | None |
Paparella et al., 2020 [26] | 18 | Retro | onaA, incoA, aboA | Dose was determined based on the patients’ weight | Adductors, hamstring, soleus, rectus femoris, gastrocnemius | Comfortable gait velocity, SPRS, TUG test, VAS, NRS, Modified Ashworth Scale | Significant improvement in VAS, NRS, SPRS, gait velocity, TUG test and modified Ashworth Scale (p < 0.05) | None |
de Lima et al., 2021 [27] | 55 | DB-PC | Prosigne versus saline | 400 u: 100 units into each muscle bilaterally | Adductor magnus, triceps surae | Comfortable and maximal gait velocity, SPRS, Modified Ashworth Scale | Adductor muscle tone decreased in Prosigne group (p = 0.01); no significant difference between two groups regarding gait or SPRS | Side effects were noted in 14% of toxin group and 7% of saline group; all mild and transient |
Ibrahim et al., 2024 [28] | 56 | Pros | onaA, incoA, aboA, | Mean doses: adductor: 133 u; triceps surae: 109 u; tibialis posterior: 64 u | Adductors, tibialis posterior, triceps surae, flexor digitorum brevis, rectus femoris, biceps femoris | SPRS, Modified Ashworth Scale, Patient Goal Attainment Scale (GAS): 0–4 | One month post-injection, SPRS, stride velocity and Ashworth score significantly improved (p < 0.5); GAS improved in 66% of patients | Not mentioned |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jabbari, B.; Comtesse, S.; Tavassoli, F. Botulinum Toxin Treatment in Hereditary Spastic Paraplegia—A Comprehensive Review and Update. Toxins 2025, 17, 503. https://doi.org/10.3390/toxins17100503
Jabbari B, Comtesse S, Tavassoli F. Botulinum Toxin Treatment in Hereditary Spastic Paraplegia—A Comprehensive Review and Update. Toxins. 2025; 17(10):503. https://doi.org/10.3390/toxins17100503
Chicago/Turabian StyleJabbari, Bahman, Samira Comtesse, and Fattaneh Tavassoli. 2025. "Botulinum Toxin Treatment in Hereditary Spastic Paraplegia—A Comprehensive Review and Update" Toxins 17, no. 10: 503. https://doi.org/10.3390/toxins17100503
APA StyleJabbari, B., Comtesse, S., & Tavassoli, F. (2025). Botulinum Toxin Treatment in Hereditary Spastic Paraplegia—A Comprehensive Review and Update. Toxins, 17(10), 503. https://doi.org/10.3390/toxins17100503