Harmful Algal Bloom Monitoring with Unmanned Aerial Vehicles: Tools, Challenges, and Public Health Implications
Abstract
1. Introduction
2. Applications of UAVs for Protecting Public Health
2.1. Studies Focused on Chlorophyll-A Estimation
2.2. Studies Focused on Phycocyanin Estimation
2.3. Non-Pigment UAV Applications: Toxins, Biomass, and Sampling
3. UAV Hardware and Software for HAB Monitoring
3.1. Overview of UAV Platforms
3.2. Sensor and Payload Configurations
3.3. Configurations and Corrections for Reflectance Retrieval
3.4. Image Processing Software and Programming Tools
4. Measurement and Modeling of Cyanobacteria-Associated Metrics
4.1. Spectral Indices for Cyanobacteria Quantification
4.2. Ground-Truthing and Accuracy Assessment Techniques
4.3. Computational Models for HAB Forecasting and Analysis
5. Discussion
5.1. Practical and Environmental Challenges in UAV-Based HAB Monitoring
5.2. Regulatory Considerations for UAV Deployment
5.3. Pre-Flight Planning and Operational Considerations
5.4. Future Research and Technology Directions
6. Conclusions
- Sensor trade-offs: RGB offers low-cost screening, while multispectral and hyperspectral sensors enable more quantitative HAB metrics.
- Data quality hinges on processing: Reflectance retrieval, software selection, and robust validation are essential for reliable outputs.
- Operational and regulatory factors matter: Flight planning, georeferencing, and compliance directly influence applicability.
- Direct public health value: UAV data can strengthen early warning systems, inform water treatment operations, and guide recreational health advisories.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CAA | Civil Aviation Authority |
CASA | Civil Aviation Safety Authority |
CC | Colored Compounds |
CDOM | Colored Dissolved Organic Matter |
CNN | Convolutional Neural Network |
COST | Cosine of the Solar Zenith Angle |
DVI | Difference Vegetation Index |
EASA | European Union Aviation Safety Agency |
EBS | Ensemble-Based System |
FAA | Federal Aviation Administration |
fDOM | Fluorescent Dissolved Organic Matter |
GCP | Ground Control Point |
GCS | Ground Control Station |
GNSS | Global Navigation Satellite System |
GPS | Global Positioning System |
GSD | Ground Sampling Distance |
HAB | Harmful Algal Bloom |
HSV | Hue Saturation Value |
NGBDI | Normalized Green-Blue Difference Index |
NGRDI | Normalized Green-Red Difference Index |
NDRE | Normalized Difference Red Edge Index |
NDVI | Normalized Difference Vegetation Index |
NIR | Near Infrared |
PC | Phycocyanin |
RE | Red Edge (Spectral Band) |
RGB | Red Green Blue (Camera) |
RMSE | Root Mean Square Error |
Rrs | Remote Sensing Reflectance |
RRMSE | Relative Root Mean Square Error |
R2 | Coefficient of Determination (Statistical term) |
SDD | Secchi Disk Depth |
SHI | Spectral Harmonic Index |
SWIR | Shortwave Infrared |
TN | Total Nitrogen |
TP | Total Phosphorus |
TSS | Total Suspended Solids |
UAV | Unmanned Aerial Vehicle |
UAS | Unmanned Aircraft System |
USA | United States of America |
USV | Unmanned Surface Vehicle |
References
- Zhang, F.; Hu, C.; Shum, C.K.; Liang, S.; Lee, J. Satellite Remote Sensing of Drinking Water Intakes in Lake Erie for Cyanobacteria Population Using Two MODIS-Based Indicators as a Potential Tool for Toxin Tracking. Front. Mar. Sci. 2017, 4, 124. [Google Scholar] [CrossRef]
- Wu, D.; Li, R.; Zhang, F.; Liu, J. A review on drone-based harmful algae blooms monitoring. Environ. Monit. Assess. 2019, 191, 211. [Google Scholar] [CrossRef] [PubMed]
- Barruffa, A.S.; Pardo, Á.; Faggian, R.; Sposito, V. Monitoring cyanobacterial harmful algal blooms by unmanned aerial vehicles in aquatic ecosystems. Environ. Sci. Water Res. Technol. 2021, 7, 573–583. [Google Scholar] [CrossRef]
- Lee, J.; Lee, S.; Jiang, X. Cyanobacterial Toxins in Freshwater and Food: Important Sources of Exposure to Humans. Annu. Rev. Food Sci. Technol. 2017, 8, 281–304. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, Y.; Qin, B.; Zhou, B. Remote sensing of cyanobacterial blooms in inland waters: Present knowledge and future challenges. Sci. Bull. 2019, 64, 1540–1556. [Google Scholar] [CrossRef]
- O’Neil, J.M.; Davis, T.W.; Burford, M.A.; Gobler, C.J. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 2012, 14, 313–334. [Google Scholar] [CrossRef]
- Lyu, P.; Malang, Y.; Liu, H.H.T.; Lai, J.; Liu, J.; Jiang, B.; Qu, M.; Anderson, S.; Lefebvre, D.D.; Wang, Y. Autonomous cyanobacterial harmful algal blooms monitoring using multirotor UAS. Int. J. Remote Sens. 2017, 38, 2818–2843. [Google Scholar] [CrossRef]
- El-Alem, A.; Chokmani, K.; Venkatesan, A.; Rachid, L.; Agili, H.; Dedieu, J.-P. How Accurate Is an Unmanned Aerial Vehicle Data-Based Model Applied on Satellite Imagery for Chlorophyll-a Estimation in Freshwater Bodies? Remote Sens. 2021, 13, 1134. [Google Scholar] [CrossRef]
- Cillero Castro, C.; Domínguez Gómez, J.A.; Delgado Martín, J.; Hinojo Sánchez, B.A.; Cereijo Arango, J.L.; Cheda Tuya, F.A.; Díaz-Varela, R. An UAV and Satellite Multispectral Data Approach to Monitor Water Quality in Small Reservoirs. Remote Sens. 2020, 12, 1514. [Google Scholar] [CrossRef]
- Gaffey, C.; Bhardwaj, A. Applications of Unmanned Aerial Vehicles in Cryosphere: Latest Advances and Prospects. Remote Sens. 2020, 12, 948. [Google Scholar] [CrossRef]
- Aguirre-Gómez, R.; Salmerón-García, O.; Gómez-Rodríguez, G.; Peralta-Higuera, A. Use of unmanned aerial vehicles and remote sensors in urban lakes studies in Mexico. Int. J. Remote Sens. 2017, 38, 2771–2779. [Google Scholar] [CrossRef]
- Shang, S.; Lee, Z.; Lin, G.; Hu, C.; Shi, L.; Zhang, Y.; Li, X.; Wu, J.; Yan, J. Sensing an intense phytoplankton bloom in the western Taiwan Strait from radiometric measurements on a UAV. Remote Sens. Environ. 2017, 198, 85–94. [Google Scholar] [CrossRef]
- Xu, F.; Gao, Z.; Jiang, X.; Shang, W.; Ning, J.; Song, D.; Ai, J. A UAV and S2A data-based estimation of the initial biomass of green algae in the South Yellow Sea. Mar. Pollut. Bull. 2018, 128, 408–414. [Google Scholar] [CrossRef]
- Choo, Y.; Kang, G.; Kim, D.; Lee, S. A study on the evaluation of water-bloom using image processing. Environ. Sci. Pollut. Res. 2018, 25, 36775–36780. [Google Scholar] [CrossRef]
- Becker, R.H.; Sayers, M.; Dehm, D.; Shuchman, R.; Quintero, K.; Bosse, K.; Sawtell, R. Unmanned aerial system based spectroradiometer for monitoring harmful algal blooms: A new paradigm in water quality monitoring. J. Great Lakes Res. 2019, 45, 444–453. [Google Scholar] [CrossRef]
- Kim, T.W.; Yun, H.S.; Kim, K.B.; Hong, S.B. Development of Real-time HABs Detection Technique Using Unmanned Aerial Vehicle (UAV). J. Coast. Res. 2019, 91, 391. [Google Scholar] [CrossRef]
- Baek, J.-Y.; Jo, Y.-H.; Kim, W.; Lee, J.-S.; Jung, D.; Kim, D.-W.; Nam, J. A New Algorithm to Estimate Chlorophyll-A Concentrations in Turbid Yellow Sea Water Using a Multispectral Sensor in a Low-Altitude Remote Sensing System. Remote Sens. 2019, 11, 2257. [Google Scholar] [CrossRef]
- Arango, J.G.; Nairn, R.W. Prediction of Optical and Non-Optical Water Quality Parameters in Oligotrophic and Eutrophic Aquatic Systems Using a Small Unmanned Aerial System. Drones 2019, 4, 1. [Google Scholar] [CrossRef]
- Kimura, F.; Morinaga, A.; Fukushima, M.; Ishiguro, T.; Sato, Y.; Sakaguchi, A.; Kawashita, T.; Yamamoto, I.; Kobayashi, T. Early Detection System of Harmful Algal Bloom Using Drones and Water Sample Image Recognition. Sens. Mater. 2019, 31, 4155. [Google Scholar] [CrossRef]
- Stoyneva-Gärtner, M.P.; Uzunov, B.A.; Descy, J.-P.; Gärtner, G.; Draganova, P.H.; Borisova, C.I.; Pavlova, V.; Mitreva, M. Pilot application of drone observations and pigment marker detection by HPLC in studies of cyanobacterial harmful algal blooms in Bulgarian inland waters. Mar. Freshw. Res. 2020, 71, 606. [Google Scholar] [CrossRef]
- Kwon, Y.S.; Pyo, J.; Kwon, Y.-H.; Duan, H.; Cho, K.H.; Park, Y. Drone-based hyperspectral remote sensing of cyanobacteria using vertical cumulative pigment concentration in a deep reservoir. Remote Sens. Environ. 2020, 236, 111517. [Google Scholar] [CrossRef]
- Cheng, K.H.; Chan, S.N.; Lee, J.H.W. Remote sensing of coastal algal blooms using unmanned aerial vehicles (UAVs). Mar. Pollut. Bull. 2020, 152, 110889. [Google Scholar] [CrossRef]
- McEliece, R.; Hinz, S.; Guarini, J.-M.; Coston-Guarini, J. Evaluation of Nearshore and Offshore Water Quality Assessment Using UAV Multispectral Imagery. Remote Sens. 2020, 12, 2258. [Google Scholar] [CrossRef]
- Son, G.; Kim, D.; Kim, Y.D.; Lyu, S.; Kim, S. A Forecasting Method for Harmful Algal Bloom (HAB)-Prone Regions Allowing Preemptive Countermeasures Based only on Acoustic Doppler Current Profiler Measurements in a Large River. Water 2020, 12, 3488. [Google Scholar] [CrossRef]
- Tóth, V.Z.; Grósz, J.; Ladányi, M.; Jung, A. A new lake algae detection method supported by a drone-based multispectral camera. Lakes Reserv. Sci. Policy Manag. Sustain. Use 2021, 26, e12377. [Google Scholar] [CrossRef]
- Luo, L.; Zhao, W.; Wang, L.; Ogashawara, I.; Yang, Q.; Zhou, H.; Yang, R.; Duan, Q.; Zhou, C.; Zhuang, Y. Are the shoreline and eutrophication of desert lakes related to desert development? Environ. Monit. Assess. 2021, 193, 43. [Google Scholar] [CrossRef]
- Douglas Greene, S.B.; LeFevre, G.H.; Markfort, C.D. Improving the spatial and temporal monitoring of cyanotoxins in Iowa lakes using a multiscale and multi-modal monitoring approach. Sci. Total Environ. 2021, 760, 143327. [Google Scholar] [CrossRef]
- Windle, A.E.; Silsbe, G.M. Evaluation of Unoccupied Aircraft System (UAS) Remote Sensing Reflectance Retrievals for Water Quality Monitoring in Coastal Waters. Front. Environ. Sci. 2021, 9, 674247. [Google Scholar] [CrossRef]
- Hong, S.M.; Baek, S.-S.; Yun, D.; Kwon, Y.-H.; Duan, H.; Pyo, J.; Cho, K.H. Monitoring the vertical distribution of HABs using hyperspectral imagery and deep learning models. Sci. Total Environ. 2021, 794, 148592. [Google Scholar] [CrossRef]
- Che, S.; Du, G.; Wang, N.; He, K.; Mo, Z.; Sun, B.; Chen, Y.; Cao, Y.; Wang, J.; Mao, Y. Biomass estimation of cultivated red algae Pyropia using unmanned aerial platform based multispectral imaging. Plant Methods 2021, 17, 12. [Google Scholar] [CrossRef]
- Bilyeu, L.; Bloomfield, B.; Hanlon, R.; González-Rocha, J.; Jacquemin, S.J.; Ault, A.P.; Birbeck, J.A.; Westrick, J.A.; Foroutan, H.; Ross, S.D.; et al. Drone-based particle monitoring above two harmful algal blooms (HABs) in the USA. Environ. Sci. Atmos. 2022, 2, 1351–1363. [Google Scholar] [CrossRef]
- Hanlon, R.; Jacquemin, S.J.; Birbeck, J.A.; Westrick, J.A.; Harb, C.; Gruszewski, H.; Ault, A.P.; Scott, D.; Foroutan, H.; Ross, S.D.; et al. Drone-based water sampling and characterization of three freshwater harmful algal blooms in the United States. Front. Remote Sens. 2022, 3, 949052. [Google Scholar] [CrossRef]
- Pyo, J.; Hong, S.M.; Jang, J.; Park, S.; Park, J.; Noh, J.H.; Cho, K.H. Drone-borne sensing of major and accessory pigments in algae using deep learning modeling. GIScience Remote Sens. 2022, 59, 310–332. [Google Scholar] [CrossRef]
- Ebadi, L.; Shafri, H.Z.M. A stable and accurate wavelet-based method for noise reduction from hyperspectral vegetation spectrum. Earth Sci. Inform. 2015, 8, 411–425. [Google Scholar] [CrossRef]
- Almuhtaram, H.; Kibuye, F.A.; Ajjampur, S.; Glover, C.M.; Hofmann, R.; Gaget, V.; Owen, C.; Wert, E.C.; Zamyadi, A. State of knowledge on early warning tools for cyanobacteria detection. Ecol. Indic. 2021, 133, 108442. [Google Scholar] [CrossRef]
- Mohsan, S.A.H.; Khan, M.A.; Noor, F.; Ullah, I.; Alsharif, M.H. Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive Review. Drones 2022, 6, 147. [Google Scholar] [CrossRef]
- Harder, P.; Schirmer, M.; Pomeroy, J.; Helgason, W. Accuracy of snow depth estimation in mountain and prairie environments by an unmanned aerial vehicle. Cryosphere 2016, 10, 2559–2571. [Google Scholar] [CrossRef]
- Kislik, C.; Dronova, I.; Kelly, M. UAVs in Support of Algal Bloom Research: A Review of Current Applications and Future Opportunities. Drones 2018, 2, 35. [Google Scholar] [CrossRef]
- Song, Q.; Ma, C.; Liu, J.; Wei, H. Quantifying ocean surface green tides using high-spatial resolution thermal images. Opt. Express 2022, 30, 36592. [Google Scholar] [CrossRef]
- Wang, Z.; Li, B.; Li, L. Research on Water Quality Detection Technology Based on Multispectral Remote Sensing. IOP Conf. Ser. Earth Environ. Sci. 2019, 237, 032087. [Google Scholar] [CrossRef]
- Eskandari, R.; Mahdianpari, M.; Mohammadimanesh, F.; Salehi, B.; Brisco, B.; Homayouni, S. Meta-analysis of Unmanned Aerial Vehicle (UAV) Imagery for Agro-environmental Monitoring Using Machine Learning and Statistical Models. Remote Sens. 2020, 12, 3511. [Google Scholar] [CrossRef]
- Isacsson, M. Snow Layer Mapping by Remote Sensing from Unmanned Aerial Vehicles. Ph.D. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2017. [Google Scholar]
- Eltner, A.; Kaiser, A.; Castillo, C.; Rock, G.; Neugirg, F.; Abellán, A. Image-based surface reconstruction in geomorphometryndash; merits, limits and developments. Earth Surf. Dyn. 2016, 4, 359–389. [Google Scholar] [CrossRef]
- Sawtell, R.W.; Anderson, R.; Tokars, R.; Lekki, J.D.; Shuchman, R.A.; Bosse, K.R.; Sayers, M.J. Real time HABs mapping using NASA Glenn hyperspectral imager. J. Great Lakes Res. 2019, 45, 596–608. [Google Scholar] [CrossRef]
- Gitelson, A. The peak near 700 nm on radiance spectra of algae and water: Relationships of its magnitude and position with chlorophyll concentration. Int. J. Remote Sens. 1992, 13, 3367–3373. [Google Scholar] [CrossRef]
- Letelier, R. An analysis of chlorophyll fluorescence algorithms for the moderate resolution imaging spectrometer (MODIS). Remote Sens. Environ. 1996, 58, 215–223. [Google Scholar] [CrossRef]
- Zhao, D.; Cai, Y.; Jiang, H.; Xu, D.; Zhang, W.; An, S. Estimation of water clarity in Taihu Lake and surrounding rivers using Landsat imagery. Adv. Water Resour. 2011, 34, 165–173. [Google Scholar] [CrossRef]
- Gons, H.J. A chlorophyll-retrieval algorithm for satellite imagery (Medium Resolution Imaging Spectrometer) of inland and coastal waters. J. Plankton Res. 2002, 24, 947–951. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Schalles, J.F.; Hladik, C.M. Remote chlorophyll-a retrieval in turbid. productive estuaries: Chesapeake Bay case study. Remote Sens. Environ. 2007, 109, 464–472. [Google Scholar] [CrossRef]
- Wierzbicki, D.; Kedzierski, M.; Fryskowska, A. Assesment of the Influence of UAV Image Quality on the Orthophoto Production. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2015, XL-1-W4, 1–8. [Google Scholar] [CrossRef]
- Sekrecka, A.; Wierzbicki, D.; Kedzierski, M. Influence of the Sun Position and Platform Orientation on the Quality of Imagery Obtained from Unmanned Aerial Vehicles. Remote Sens. 2020, 12, 1040. [Google Scholar] [CrossRef]
- Elhadary, A.; Rabah, M.; Ghanim, E.; Mohie, R.; Taha, A. The influence of flight height and overlap on UAV imagery over featureless surfaces and constructing formulas predicting the geometrical accuracy. NRIAG J. Astron. Geophys. 2022, 11, 210–223. [Google Scholar] [CrossRef]
- Zeng, C.; Richardson, M.; King, D.J. The impacts of environmental variables on water reflectance measured using a lightweight unmanned aerial vehicle (UAV)-based spectrometer system. ISPRS J. Photogramm. Remote Sens. 2017, 130, 217–230. [Google Scholar] [CrossRef]
- Federal Aviation Administration. Small Unmanned Aircraft Systems (UAS) Regulations (Part 107). Available online: https://www.faa.gov/newsroom/small-unmanned-aircraft-systems-uas-regulations-part-107 (accessed on 13 June 2023).
- Duffy, J.P.; Cunliffe, A.M.; DeBell, L.; Sandbrook, C.; Wich, S.A.; Shutler, J.D.; Myers-Smith, I.H.; Varela, M.R.; Anderson, K. Location. location, location: Considerations when using lightweight drones in challenging environments. Remote Sens. Ecol. Conserv. 2018, 4, 7–19. [Google Scholar] [CrossRef]
- Federal Aviation Administration. UAS Remote Identification. Available online: https://www.faa.gov/uas/getting_started/remote_id (accessed on 13 June 2023).
- EASA. Drones (UAS). Available online: https://www.easa.europa.eu/en/the-agency/faqs/drones-uas (accessed on 2 September 2025).
- UK Civil Aviation Authority. Where You Can Fly Drones. Available online: https://register-drones.caa.co.uk/drone-code/where-you-can-fly (accessed on 2 September 2025).
- Canada, T. Flying Your Drone Safely and Legally. AARV 13864973; AARV. Available online: https://tc.canada.ca/en/aviation/drone-safety/learn-rules-you-fly-your-drone/flying-your-drone-safely-legally (accessed on 1 April 2025).
- Authority, C.A.S. Drones [DCMIType]. Civil Aviation Safety Authority. Available online: https://www.casa.gov.au/drones (accessed on 18 May 2021).
- Kwak, Y. A Study on Drone’s Liability on Flight in South Korea. J. Distrib. Sci. 2016, 14, 5–10. [Google Scholar] [CrossRef]
- Cracknell, A. UAVs: Regulations and law enforcement. Int. J. Remote Sens. 2017, 38, 3054–3067. [Google Scholar] [CrossRef]
- Coombes, M.; Fletcher, T.; Chen, W.-H.; Liu, C. Decomposition-based mission planning for fixed-wing UAVs surveying in wind. J. Field Robot. 2020, 37, 440–465. [Google Scholar] [CrossRef]
- Awasthi, B.; Karki, S.; Regmi, P.; Dhami, D.S.; Thapa, S.; Panday, U.S. Analyzing the Effect of Distribution Pattern and Number of GCPs on Overall Accuracy of UAV Photogrammetric Results. In Proceedings of UASG 2019; Jain, K., Khoshelham, K., Zhu, X., Tiwari, A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 339–354. [Google Scholar] [CrossRef]
- Naeimi, M.; Azizi, Z.; Mortazavi, M.S.; Mohebbi Nozar, S.L.; Ezam, M. Prediction of harmful algal blooms in the Persian Gulf using remote sensing and artificial intelligence modeling. J. Sea Res. 2025, 207, 102619. [Google Scholar] [CrossRef]
- Marrone, B.L.; Banerjee, S.; Talapatra, A.; Gonzalez-Esquer, C.R.; Pilania, G. Toward a Predictive Understanding of Cyanobacterial Harmful Algal Blooms through AI Integration of Physical. Chemical, and Biological Data. ACS EST Water 2024, 4, 844–858. [Google Scholar] [CrossRef]
- Jung, S.; Cho, H.; Kim, D.; Kim, K.; Han, J.-I.; Myung, H. Development of Algal Bloom Removal System Using Unmanned Aerial Vehicle and Surface Vehicle. IEEE Access 2017, 5, 22166–22176. [Google Scholar] [CrossRef]
- Hagh, S.F.; Amngostar, P.; Zylka, A.; Zimmerman, M.; Cresanti, L.; Karins, S.; O’Neil-Dunne, J.P.; Ritz, K.; Williams, C.J.; Morales-Williams, A.M.; et al. Autonomous UAV-Mounted LoRaWAN System for Real-Time Monitoring of Harmful Algal Blooms (HABs) and Water Quality. IEEE Sens. J. 2024, 24, 11414–11424. [Google Scholar] [CrossRef]
Fixed Wing | Rotorcraft | VTOL | |
---|---|---|---|
Advantages: | Longer flight times | Perform closer analysis | Vertical take-off and landing |
Survey larger areas | Vertical take-off and landing | Longer flight times | |
Carry heavier payloads | Higher spatial resolution | Survey larger areas | |
More stable in high winds | |||
Can be automated | |||
Disadvantages: | Difficult takeoff and landing | Shorter flight times. | Expensive |
Low maneuverability | User control limited | ||
Inability to hover | Altitude requirement for transition to occur |
Index | Formula | Reference |
---|---|---|
Normalized Difference Vegetation Index (NDVI) | (NIR − Red)/(NIR + Red) | [3,9,14,27,30] |
Normalized Green Red Difference Index (NGRDI) | (Green − Red)/(Green + Red) | [13] |
Normalized Green Blue Difference Index (NGBDI) | (Green − Blue)/(Green + Blue) | [13] |
Green Leaf Index (GLI) | (2 × Green − Red − Blue)/(2 × Green + Red + Blue) | [13] |
Excess Green (EXG) | 2 × Green − Red − Blue | [13] |
Cyanobacteria Index (CI) | CI = −SS (681) | [15] |
The Color Producing Algorithm (CPA-A) | Bio-optical inversion model | [15] |
Surface Scum Index (SSI) | SSI = ((NIR) − (VIS)/(NIR) + (VIS)) | [15] |
Kab 1 | 1.67 − 3.94 × ln(Blue) + 3.78 × ln(Green) | [9,27] |
Surface Algal Index (SABI) | (NIR − Red)/(Blue + Green) | [9,27] |
KIVU | (Blue − Red)/Green | [9,27] |
Normalized Difference Chlorophyll Index (NDCI) | (RE − Red)/(RE + Red) | [9] |
2BDA_1 (2 band algorithm) | NIR/Red | [9] |
2BDA_2 (2 band algorithm) | RE/Red | [9] |
3BDA_1 (3 band algorithm) | (Red−1 − RE−1) × NIR | [9] |
3BDA_MOD (3 band algorithm modified) | Red−1 − RE−1 | [9] |
B3B1 (normalized index) | (Green − Blue)/(Green + Blue) | [9] |
GB1 (Simple ratio) | Green/Blue | [9] |
GR (Simple ratio) | Green/Red | [9] |
Normalized Difference of Red Edge (NDRE) | (NIR − RE)/(NIR + RE) | [27,30] |
Difference Vegetation Index (DVI) | NIR − Red | [30] |
Ratio Vegetation Index (RVI) | NIR/Red | [30] |
Blue Normalized Difference Vegetation Index (BNDVI) | (NIR − Blue)/(NIR + Blue) | [27] |
Fluorescence Line Height (FLH Blue) | Green − (Red + (Blue − Red)) | [27] |
SHI Index | (eRed − eNIR)/(eRed + eNIR) | [27] |
Region/Authority | Pilot Certification | Insurance Required | Potential Issues for HAB Monitoring | Reference |
---|---|---|---|---|
USA (FAA) | Part 107 certificate | Not required by federally | Remote ID adds cost; restricted zones limit sites | [54,55,56] |
EU (EASA) | A1/A3 or A2 competency | Mandated in several EU member countries | Insurance varies; cross-border ops complex | [57] |
UK (CAA) | Flyer ID + Operator ID | Required for commercial ops | Higher premiums for over-water work | [58] |
Canada (Transport Canada) | Basic/Advanced certification | Not required federally | Advanced cert. needed near facilities | [59] |
Australia (CASA) | Accreditation or Remote pilot license | Not required federally | Remote pilot license adds cost, exemptions limited | [60] |
South Korea (MOLIT) | Remote pilot license | Mandatory (≥150 M KRW) | High insurance cost; strict coastal permits | [61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byrd, K.; Wu, J.; Lee, J. Harmful Algal Bloom Monitoring with Unmanned Aerial Vehicles: Tools, Challenges, and Public Health Implications. Toxins 2025, 17, 475. https://doi.org/10.3390/toxins17100475
Byrd K, Wu J, Lee J. Harmful Algal Bloom Monitoring with Unmanned Aerial Vehicles: Tools, Challenges, and Public Health Implications. Toxins. 2025; 17(10):475. https://doi.org/10.3390/toxins17100475
Chicago/Turabian StyleByrd, Kendall, Jianyong Wu, and Jiyoung Lee. 2025. "Harmful Algal Bloom Monitoring with Unmanned Aerial Vehicles: Tools, Challenges, and Public Health Implications" Toxins 17, no. 10: 475. https://doi.org/10.3390/toxins17100475
APA StyleByrd, K., Wu, J., & Lee, J. (2025). Harmful Algal Bloom Monitoring with Unmanned Aerial Vehicles: Tools, Challenges, and Public Health Implications. Toxins, 17(10), 475. https://doi.org/10.3390/toxins17100475