Occurrence and Exposure Assessment of Zearalenone in the Zhejiang Province, China
Abstract
:1. Introduction
2. Results
2.1. Occurrence of ZEN in the Zhejiang Province
2.2. Consumption of Surveyed Foods
2.3. Dietary Exposure Assessment
2.3.1. Exposure Assessment Based on Different Age Groups Under Different Scenarios
2.3.2. ZEN Non-Carcinogenic Exposure Assessment
3. Discussion
4. Conclusions
5. Material and Methods
5.1. Sample Collection
5.2. Preparation of the Standard Solution
5.3. Sample Preparation and Analysis
5.4. Method Validation and Quality Control
5.5. Food Consumption Data
5.6. Dietary Exposure Assessment
5.6.1. Dietary Exposure
5.6.2. Urine Exposure Assessment
5.6.3. Tolerable Duration of Exposure to Non-Carcinogenic ZEN
5.7. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alshannaq, A.; Yu, J.H. Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. Int. J. Environ. Res. Public Health 2017, 14, 632. [Google Scholar] [CrossRef] [PubMed]
- Taborda, B.; Santos, A.M.; Costa, M.T.; Mendes, M.M.; Lopes de Andrade, V.; Mateus, L. Contribution of cereals and cows’ milk consumption to the exposure to mycotoxins: A study with Portuguese children. Food Addit. Contam. Part A 2022, 39, 588–598. [Google Scholar] [CrossRef]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zheng, W.; Bian, X.; Yuan, Y.; Gu, J.; Liu, X.; Liu, Z.; Bian, J. Zearalenone induces apoptosis and cytoprotective autophagy in primary Leydig cells. Toxicol. Lett. 2014, 226, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Rai, A.; Das, M.; Tripathi, A. Occurrence and toxicity of a fusarium mycotoxin, zearalenone. Crit. Rev. Food Sci. Nutr. 2020, 60, 2710–2729. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.; Benford, D.; Boobis, A.; Ceccatelli, S.; Cottrill, B.; Cravedi, J.P.; van Leeuwen, R. Scientific Opinion on the risks for public health related to the presence of zearalenone in food. EFSA J. 2011, 9, 2197. [Google Scholar] [CrossRef]
- Han, X.; Huangfu, B.; Xu, T.; Xu, W.; Asakiya, C.; Huang, K.; He, X. Research Progress of Safety of Zearalenone: A Review. Toxins 2022, 14, 386. [Google Scholar] [CrossRef]
- Rogowska, A.; Pomastowski, P.; Sagandykova, G.; Buszewski, B. Zearalenone and its metabolites: Effect on human health, metabolism and neutralisation methods. Toxicon 2019, 162, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-H.; Hong, S.-Y.; Kang, J.; Cho, S.; Lee, K.; An, T.; Lee, C.; Chung, S. Simultaneous Determination of Multi-Mycotoxins in Cereal Grains Collected from South Korea by LC/MS/MS. Toxins 2017, 9, 106. [Google Scholar] [CrossRef]
- Aldana, J.R.; Silva, L.J.G.; Pena, A.; Mañes, V.J.; Lino, C.M. Occurrence and risk assessment of zearalenone in flours from Portuguese and Dutch markets. Food Control 2014, 45, 51–55. [Google Scholar] [CrossRef]
- Juan, C.; Ritieni, A.; Mañes, J. Occurrence of Fusarium mycotoxins in Italian cereal and cereal products from organic farming. Food Chem. 2013, 141, 1747–1755. [Google Scholar] [CrossRef] [PubMed]
- Andrade, P.D.; Dias, J.V.; Souza, D.M.; Brito, A.P.; van Donkersgoed, G.; Pizzutti, I.R.; Caldas, E.D. Mycotoxins in cereals and cereal-based products: Incidence and probabilistic dietary risk assessment for the Brazilian population. Food Chem. Toxicol. 2020, 143, 111572. [Google Scholar] [CrossRef]
- Briones-Reyes, D.; Gómez-Martinez, L.; Cueva-Rolón, R. Zearalenone contamination in corn for human consumption in the state of Tlaxcala, Mexico. Food Chem. 2007, 100, 693–698. [Google Scholar] [CrossRef]
- Mahdjoubi, C.K.; Arroyo-Manzanares, N.; Hamini-Kadar, N.; García-Campaña, A.M.; Mebrouk, K.; Gámiz-Gracia, L. Multi-Mycotoxin Occurrence and Exposure Assessment Approach in Foodstuffs from Algeria. Toxins 2020, 12, 194. [Google Scholar] [CrossRef] [PubMed]
- Kpan, K.K.G.; Manda, P.; Osseke, S.M.; Tiho, S.; Ardjouma, D. Dietary exposure to zearalenone in maize and millet grains and their porridges marketed in Abidjan (Côte d’Ivoire). Food Addit. Contam. Part A 2023, 40, 1264–1274. [Google Scholar] [CrossRef] [PubMed]
- Nji, Q.N.; Babalola, O.O.; Ekwomadu, T.I.; Nleya, N.; Mwanza, M. Six Main Contributing Factors to High Levels of Mycotoxin Contamination in African Foods. Toxins 2022, 14, 318. [Google Scholar] [CrossRef]
- 978. Zearalenone (WHO Food Additives Series 44). Available online: https://www.inchem.org/documents/jecfa/jecmono/v44jec14.htm (accessed on 20 August 2024).
- Li, F.; Zhao, X.; Jiao, Y.; Duan, X.; Yu, L.; Zheng, F.; Wang, X.; Wang, L.; Wang, J.-S.; Zhao, X.; et al. Exposure assessment of aflatoxins and zearalenone in edible vegetable oils in Shandong, China: Health risks posed by mycotoxin immunotoxicity and reproductive toxicity in children. Environ. Sci. Pollut. Res. Int. 2023, 30, 3743–3758. [Google Scholar] [CrossRef]
- Yazar, S.; Omurtag, G.Z. Fumonisins, Trichothecenes and Zearalenone in Cereals. Int. J. Mol. Sci. 2008, 9, 2062–2090. [Google Scholar] [CrossRef]
- Marin, D.E.; Pistol, G.C.; Bulgaru, C.V.; Taranu, I. Cytotoxic and inflammatory effects of individual and combined exposure of HepG2 cells to zearalenone and its metabolites. Naunyn-Schmiedebergs Arch. Pharmacol. 2019, 392, 937–947. [Google Scholar] [CrossRef]
- Hueza, I.M.; Raspantini, P.C.F.; Raspantini, L.E.R.; Latorre, A.O.; Górniak, S.L. Zearalenone, an Estrogenic Mycotoxin, Is an Immunotoxic Compound. Toxins 2014, 6, 1080–1095. [Google Scholar] [CrossRef] [PubMed]
- Claeys, L.; Romano, C.; De Ruyck, K.; Wilson, H.; Fervers, B.; Korenjak, M.; Zavadil, J.; Gunter, M.J.; De Saeger, S.; De Boevre, M.; et al. Mycotoxin exposure and human cancer risk: A systematic review of epidemiological studies. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1449–1464. [Google Scholar] [CrossRef]
- Leffers, H. Oestrogenic potencies of Zeranol, oestradiol, diethylstilboestrol, Bisphenol-A and genistein: Implications for exposure assessment of potential endocrine disrupters. Hum. Reprod. 2001, 16, 1037–1045. [Google Scholar] [CrossRef]
- Sáenz De Rodriguez, C.A.; Bongiovanni, A.M.; Borrego, L.C.D. An epidemic of precocious development in Puerto Rican children. J. Pediatr. 1985, 107, 393–396. [Google Scholar] [CrossRef] [PubMed]
- Fara, G.M.; Corvo, G.D.; Bernuzzi, S.; Bigatello, A.; Pietro, C.D.; Scaglioni, S.; Chiumello, G. Epidemic of Breast Enlargement in an Italian School. Lancet 1979, 314, 295–297. [Google Scholar] [CrossRef] [PubMed]
- Atta, I.; Laghari, T.M.; Khan, Y.N.; Lone, S.W.; Ibrahim, M.; Raza, J. Precocious puberty in children. Int. J. Pediatr. Endocrinol. 2014, 25, 124–128. [Google Scholar] [CrossRef]
- Saenz de Rodriguez, C.A. Environmental hormone contamination in Puerto Rico. N. Engl. J. Med. 1984, 310, 1741–1742. [Google Scholar] [CrossRef]
- Majeed, S.; Boevre, M.D.; Saeger, S.D.; Rauf, W.; Tawab, A. Multiple Mycotoxins in Rice: Occurrence and Health Risk Assessment in Children and Adults of Punjab, Pakistan. Toxins 2018, 10, 77. [Google Scholar] [CrossRef]
- Eslamizad, S.; Yazdanpanah, H.; Hadian, Z.; Tsitsimpikou, C.; Goumenou, M.; Shojaee AliAbadi, M.H.; Kamalabadi, M.; Tsatsakis, A. Exposure to multiple mycotoxins in domestic and imported rice commercially traded in Tehran and possible risk to public health. Toxicol. Rep. 2021, 8, 1856–1864. [Google Scholar] [CrossRef]
- Sirot, V.; Fremy, J.M.; Leblanc, J.C. Dietary exposure to mycotoxins and health risk assessment in the second French total diet study. Food Chem. Toxicol. 2013, 52, 1–11. [Google Scholar] [CrossRef]
- De Boevre, M.; Jacxsens, L.; Lachat, C.; Eeckhout, M.; Di Mavungu, J.D.; Audenaert, K.; Maene, P.; Haesaert, G.; Kolsteren, P.; De Meulenaer, B.; et al. Human exposure to mycotoxins and their masked forms through cereal-based foods in Belgium. Toxicol. Lett. 2013, 218, 281–292. [Google Scholar] [CrossRef]
- Troestch, J.; Reyes, S.; Vega, A. Determination of Mycotoxin Contamination Levels in Rice and Dietary Exposure Assessment. J. Toxicol. 2022, 2022, 3596768. [Google Scholar] [CrossRef] [PubMed]
- El Jai, A.; Juan, C.; Juan-García, A.; Mañes, J.; Zinedine, A. Multi-mycotoxin contamination of green tea infusion and dietary exposure assessment in Moroccan population. Food Res. Int. 2021, 140, 109958. [Google Scholar] [CrossRef]
- Bouafifssa, Y.; Manyes, L.; Rahouti, M.; Manes, J.; Berrada, H.; Zinedine, A.; Fernandez-Franzon, M. Multi-Occurrence of Twenty Mycotoxinsin Pasta and a Risk Assessment in the Moroccan Population. Toxins 2018, 10, 432. [Google Scholar] [CrossRef] [PubMed]
- Yau, A.T.; Chen, M.Y.; Lam, C.; Ho, Y.; Xiao, Y.; Chung, S.W. Dietary exposure to mycotoxins of the Hong Kong adult population from a Total Diet Study. Food Addit. Contam. Part A 2016, 33, 1026–1035. [Google Scholar] [CrossRef]
- Yazdanpanah, H.; Zarghi, A.; Shafaati, A.R.; Foroutan, S.M.; Aboul-Fathi, F.; Khoddam, A.; Nazari, F. Exposure Assessment of the Tehran Population (Iran) to Zearalenone Mycotoxin. Iran. J. Pharm. Res. 2012, 11, 251–256. [Google Scholar]
- Stanciu, O.; Juan, C.; Miere, D.; Berrada, H.; Loghin, F.; Mañes, J. First study on trichothecene and zearalenone exposure of the Romanian population through wheat-based products consumption. Food Chem. Toxicol. 2018, 121, 336–342. [Google Scholar] [CrossRef] [PubMed]
- GB2761-2017; National Standard of Food Safety: Mycotoxin limits in food. National Health and Family Planning Commission of the People’s Republic of China, China Food and Drug Administration: Beijing, China, 2017.
- T/ZNZ 187-2023; Zhejiang Agricultural Products Quality and Safety Society Group Standard: Specification on Mycotoxin Control in Cereal-Based Complementary Foods for Infants and Young Children. Zhejiang Agricultural Products Quality and Safety Society: Zhejiang, China, 2023.
- Yu, S.; Li, Y.; Peng, S. Dietary exposure assessment of deoxynivalenol in cereal-based complementary foods for infants and young children sold in Shanghai. CerealsOils 2023, 36, 135–138. [Google Scholar]
- China Statistical Yearbook—2023. Available online: https://www.stats.gov.cn/sj/ndsj/2023/indexch.htm (accessed on 2 April 2024).
- Ma, J.; Jiang, G.; Zheng, W.; Zhang, M. A longitudinal assessment of aluminum contents in foodstuffs and aluminum intake of residents in Tianjin metropolis. Food Sci. Nutr. 2019, 7, 997–1003. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Y.; Zhang, W.; Chen, K.; Liang, B.; Jie, H.; Wang, Y. Investigation on aluminum content in commercially available foods in Guangzhou City and dietary exposure assessment, 2014–2018. Mod. Prev. Med. 2020, 47, 1967–1969. [Google Scholar]
- Li, X.; Qin, Z.; Zhang, W.; Su, X.; Liu, J.; Zheng, W.; Yang, Y.; Wen, H.; Zhao, L. Contaminations of aflatoxin B1 and zearalenone in edible oil in Shandong province in 2015. J. Food Saf. Qual. 2018, 9, 198–203. [Google Scholar]
- Zhang, Y.; Lin, X.; Xia, Y.; An, K.; Zhang, M. Contamination status of some fungal toxins in commercially available vegetable oil in Tianjin in 2017. Occup. Health 2018, 34, 3353–3356. [Google Scholar] [CrossRef]
- Kappenstein, O.; Klaffke, H.S.; Mehlitz, I.; Tiebach, R.; Weber, R.; Lepschy, J.; Wittkowski, R. Determination of zearalenone in edible oils with SEC and LC-ESI-MS/MS. Mycotoxin Res. 2005, 21, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, D.; Wen, J.; Fang, T.; Wang, P.; Cheng, F. Influence of corn oil production process on corn gibberellin ketene and vomiting toxins. Cereal Food Ind. 2015, 22, 19–22. [Google Scholar]
- Gong, C.; Dong, F.; Wang, Z. Investigation and Analysis of Mycotoxins Contamination in Cereal and Its Products Sold in Yantai Market. Food Res. Dev. 2018, 39, 189–194. [Google Scholar] [CrossRef]
- Xie, H.; Yuan, Y.; Yu, H.; Zhou, Y.; Tan, H.; Zhou, H. Simultaneous determination of 15 kinds of mycotoxins and 6 kinds of pesticide residues in cereal-based complementary foods for infants and young children by isotope dilution-ultra performance liquid chromatography-tandem mass spectrometry. J. Food Saf. Qual. 2021, 12, 5306–5313. [Google Scholar] [CrossRef]
- Hu, W.; Xu, L.; Yang, J.; Ling, R. QuEChERS-based extraction procedure and rapid resolution liquid chromatography coupled to triple quadrupole mass spectrometry for the determination of nine mycotoxins in cereal-based complementary foods for infants and young children. Chin. J. Chromatogr. 2014, 32, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wang, C.; Tian, L.; Wang, M.; Guo, R.; Qiao, H. Analysis on contamination of zearalenone and dietary exposure assessment in food samples of Shaanxi Province in 2013–2016. J. Hyg. Res. 2017, 46, 585–588. [Google Scholar] [CrossRef]
- Su, B.; Xie, W.; Ouyang, Y.; Chen, L. Determination of twelve mycotoxins in cereal-based complementary foods for infants and young children by ultra high performance liquid chromatography coupled to mass spectrometry using QuEChERS approach. Chin. J. Food Hyg. 2016, 28, 467–471. [Google Scholar] [CrossRef]
- Geng, J.; Zhao, L.; Zhang, X.; Zhang, S.; Wang, H. Survey of mycotoxins contamination in nutritional infant rice flour in China. Chin. J. Food Hyg. 2017, 29, 67–70. [Google Scholar] [CrossRef]
- Cano-Sancho, G.; Marin, S.; Ramos, A.J.; Sanchis, V. Occurrence of zearalenone, an oestrogenic mycotoxin, in Catalonia (Spain) and exposure assessment. Food Chem. Toxicol. 2012, 50, 835–839. [Google Scholar] [CrossRef] [PubMed]
- Lombaert, G.A.; Pellaers, P.; Roscoe, V.; Mankotia, M.; Neil, R.; Scott, P.M. Mycotoxins in infant cereal foods from the Canadian retail market. Food Addit. Contam. 2003, 20, 494–504. [Google Scholar] [CrossRef] [PubMed]
- Rehagel, C.; Akineden, Ö.; Usleber, E. Microbiological and mycotoxicological analyses of processed cereal-based complementary foods for infants and young children from the German market. J. Food Sci. 2022, 87, 1810–1822. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Li, W. Research progress and prevention and control of zearalenone toxin. Cereal Feed. Ind. 2017, 12, 36–40. [Google Scholar] [CrossRef]
- Marques, M.F.; Martins, H.M.; Costa, J.M.; Bernardo, F. Co-occurrence of deoxynivalenol and zearalenone in crops marketed in Portugal. Food Addit. Contam. Part B 2008, 1, 130–133. [Google Scholar] [CrossRef] [PubMed]
- Lijalem, Y.G.; Gab-Allah, M.A.; Yu, H.; Choi, K.; Kim, B. Occurrence of zearalenone and its major metabolites in cereal flour from Korea. Food Addit. Contam. Part A 2023, 40, 675–687. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, S.; Wu, J.; Shen, L.; Yao, X. Investigation of mycotoxins in grain and its products in Henan Province. Chin. J. Food Hyg. 2020, 32, 418–421. [Google Scholar] [CrossRef]
- Wang, S.; Hu, Y.; Liang, L. Analysis of zearalenone monitoring results in corn products in Luoyang City, 2018-2019. Appl. Prev. Med. 2021, 27, 42–43. [Google Scholar]
- Hu, J.; Qiao, H.; Tian, L.; Wang, M.; Wang, C.; Guo, R. Mycotoxin contamination in cereals and their products in Shaanxi Province, 2013–2016. J. Hyg. Res. 2017, 46, 1013–1015. [Google Scholar] [CrossRef]
- Hewitt, T.C.; Flack, C.L.; Kolodziejczyk, J.K.; Chacon, A.M.; D’Ovidio, K.L. Occurrence of zearalenone in fresh corn and corn products collected from local Hispanic markets in San Diego County, CA. Food Control 2012, 26, 300–304. [Google Scholar] [CrossRef]
- Yang, X.; Gao, J.; Liu, Q.; Yang, D. Co-occurrence of mycotoxins in maize and maize-derived food in China and estimation of dietary intake. Food Addit. Contam. Part B 2019, 12, 124–134. [Google Scholar] [CrossRef]
- Yang, R.; Wang, Y.; Zhang, L.; Zhao, Z.; Zhao, J.; Peng, S. Prepubertal exposure to an oestrogenic mycotoxin zearalenone induces central precocious puberty in immature female rats through the mechanism of premature activation of hypothalamic kisspeptin-GPR54 signaling. Mol. Cell. Endocrinol. 2016, 437, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Dourson, M.L.; Felter, S.P.; Robinson, D. Evolution of science-based uncertainty factors in noncancer risk assessment. Regul. Toxicol. Pharmacol. RTP 1996, 24, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Asci, A.; Durmaz, E.; Erkekoglu, P.; Pasli, D.; Bircan, I.; Kocer-Gumusel, B. Urinary zearalenone levels in girls with premature thelarche and idiopathic central precocious puberty. Minerva Pediatr. 2014, 66, 571–578. [Google Scholar] [PubMed]
- Khosrokhavar, R.; Rahimifard, N.; Shoeibi, S.; Hamedani, M.P.; Hosseini, M.-J. Effects of zearalenone and α-Zearalenol in comparison with Raloxifene on T47D cells. Toxicol. Mech. Methods 2009, 19, 246–250. [Google Scholar] [CrossRef]
- Belhassen, H.; Jiménez-Díaz, I.; Arrebola, J.P.; Ghali, R.; Ghorbel, H.; Olea, N.; Hedili, A. Zearalenone and its metabolites in urine and breast cancer risk: A case-control study in Tunisia. Chemosphere 2015, 128, 1–6. [Google Scholar] [CrossRef]
- Przybyłowicz, K.E.; Arłukowicz, T.; Danielewicz, A.; Morze, J.; Gajęcka, M.; Zielonka, Ł.; Fotschki, B.; Sawicki, T. Association Between Mycotoxin Exposure and Dietary Habits in Colorectal Cancer Development Among a Polish Population: A Study Protocol. Int. J. Environ. Res. Public Health 2020, 17, 698. [Google Scholar] [CrossRef]
- Unicsovics, M.; Molnár, Z.; Mézes, M.; Posta, K.; Nagyéri, G.; Várbíró, S.; Ács, N.; Sára, L.; Szőke, Z. The Possible Role of Mycotoxins in the Pathogenesis of Endometrial Cancer. Toxins 2024, 16, 236. [Google Scholar] [CrossRef]
- Pajewska, M.; Łojko, M.; Cendrowski, K.; Sawicki, W.; Kowalkowski, T.; Buszewski, B.; Gadzała-Kopciuch, R. The determination of zearalenone and its major metabolites in endometrial cancer tissues. Anal. Bioanal. Chem. 2018, 410, 1571–1582. [Google Scholar] [CrossRef] [PubMed]
- Gadzała-Kopciuch, R.; Cendrowski, K.; Cesarz, A.; Kiełbasa, P.; Buszewski, B. Determination of zearalenone and its metabolites in endometrial cancer by coupled separation techniques. Anal. Bioanal. Chem. 2011, 401, 2069–2078. [Google Scholar] [CrossRef]
- Chapter 6: Dietary Exposure Assessment for Chemicals in Food. Available online: https://www.who.int/publications/i/item/9789241572408 (accessed on 2 April 2024).
- Arya, R.; Antonisamy, B.; Kumar, S. Sample Size Estimation in Prevalence Studies. Indian J. Pediatr. 2012, 79, 1482–1488. [Google Scholar] [CrossRef]
- Šarkanj, B.; Ezekiel, C.N.; Turner, P.C.; Abia, W.A.; Rychlik, M.; Krska, R.; Sulyok, M.; Warth, B. Ultra-sensitive, stable isotope assisted quantification of multiple urinary mycotoxin exposure biomarkers. Anal. Chim. Acta 2018, 1019, 84–92. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Li, C. Application of exposure assessment in the evaluation of food safety status. J. Insp. Quar. 2002, 11–12, 17. [Google Scholar]
- Wu, X.; Zhao, B.; QI, X.; Zhou, B. Review on the risk assessment methods for chemical pollutants in food. Prev. Med. 2020, 32, 682–685. [Google Scholar] [CrossRef]
- Solfrizzo, M.; Gambacorta, L.; Visconti, A. Assessment of multi-mycotoxin exposure in southern Italy by urinary multi-biomarker determination. Toxins 2014, 6, 523–538. [Google Scholar] [CrossRef]
- Beckford, K.; Grimes, C.A.; Margerison, C.; Riddell, L.J.; Skeaff, S.A.; West, M.L.; Nowson, C.A. A systematic review and meta-analysis of 24-h urinary output of children and adolescents: Impact on the assessment of iodine status using urinary biomarkers. Eur. J. Nutr. 2020, 59, 3113–3131. [Google Scholar] [CrossRef]
- Cocker, J.; Mason, H.J.; Warren, N.D.; Cotton, R.J. Creatinine adjustment of biological monitoring results. Occup. Med. 2011, 61, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Warth, B.; Sulyok, M.; Berthiller, F.; Schuhmacher, R.; Krska, R. New insights into the human metabolism of the Fusarium mycotoxins deoxynivalenol and zearalenone. Toxicol. Lett. 2013, 220, 88–94. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Handbook for Non-Cancer Health Effects Valuation; EPA Science and Policy Council: Washington, DC, USA, 2000.
- Adegbola, I.P.; Aborisade, B.A.; Adetutu, A. Health risk assessment and heavy metal accumulation in fish species (Clarias gariepinus and Sarotherodon melanotheron) from industrially polluted Ogun and Eleyele Rivers, Nigeria. Toxicol. Rep. 2021, 8, 1445–1460. [Google Scholar] [CrossRef]
- Ahmed, M.K.; Shaheen, N.; Islam, M.S.; Habibullah-al-Mamun, M.; Islam, S.; Mohiduzzaman, M.; Bhattacharjee, L. Dietary intake of trace elements from highly consumed cultured fish (Labeo rohita, Pangasius pangasius and Oreochromis mossambicus) and human health risk implications in Bangladesh. Chemosphere 2015, 128, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Sato, T.; Xing, B.; Tao, S. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Sci. Total Environ. 2005, 350, 28–37. [Google Scholar] [CrossRef]
Food Group | Food Name | Sample Size | Detection Rate | Mean | Max (μg/kg) | Value Limitation (μg/kg) | |
---|---|---|---|---|---|---|---|
LB 1 | UB 2 | EFSA 3 | |||||
Cereals and their products | Rice | 93 | 18.28% | 3.39 | 7.48 | 39.00 | - |
Maize and its products | 31 | 19.35% | 1.10 | 2.71 | 13.20 | 100 | |
Millet | 31 | 29.03% | 1.44 | 2.86 | 7.23 | 75 | |
Oats (flakes) | 31 | 3.23% | 0.22 | 2.16 | 6.83 | 75 | |
Brown rice | 31 | 22.58% | 1.35 | 2.90 | 17.20 | 75 | |
Cereal supplements for infants and young children | 61 | 26.23% | 2.12 | 5.81 | 15.30 | 20 | |
Noodle products | Instant noodles | 38 | 13.16% | 0.68 | 1.55 | 12.40 | - |
Dry noodle products | 57 | 10.53% | 0.66 | 1.56 | 11.70 | - | |
Wet noodle products | 2 | 0% | 0.00 | 5.00 | 5.00 | - | |
Tea | Dark tea | 33 | 9.10% | 1.63 | 2.54 | 19.40 | - |
Black tea | 11 | 9.10% | 0.42 | 1.33 | 4.60 | - | |
Green tea | 30 | 20.00% | 2.82 | 3.62 | 18.60 | - | |
Puffed food | Puffed food product | 62 | 56.45% * | 6.37 | 8.55 | 63.20 | - |
Oil | Corn oil | 197 | 87.82% * | 66.97 | 67.58 | 371.00 | 400 |
Food Name | Consumption (g/day) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
≤6 | 7–12 | 13–17 | 18–59 | ≥60 | All | |||||||
P50 | P95 | P50 | P95 | P50 | P95 | P50 | P95 | P50 | P95 | P50 | P95 | |
Rice | 120.00 | 300.00 | 160.00 | 360.00 | 200.00 | 450.00 | 240.00 | 600.00 | 240.00 | 480.00 | 225.00 | 600.00 |
Millet | 1.00 | 10.64 | 0.67 | 14.29 | 0.83 | 11.43 | 1.00 | 17.14 | 1.64 | 23.21 | 1.00 | 14.29 |
Maize and its products | 2.00 | 16.51 | 2.67 | 21.43 | 2.67 | 28.57 | 3.00 | 25.71 | 3.00 | 28.57 | 3.86 | 25.71 |
Wet noodle products | 4.28 | 35.71 | 5.33 | 42.86 | 6.67 | 50.00 | 6.67 | 51.43 | 6.67 | 42.86 | 6.67 | 48.57 |
Instant noodles | 2.67 | 14.00 | 2.77 | 22.86 | 3.33 | 31.07 | 1.80 | 17.14 | 1.48 | 28.57 | 2.17 | 22.86 |
Tea | 0.07 | 1.04 | 0.17 | 0.87 | 0.14 | 12.50 | 0.86 | 10.00 | 2.00 | 13.49 | 1.00 | 10.00 |
Food Name | Scenario | Dietary Exposure (µg/kg b.w.) | Exposure Contributions (%) | ||||
---|---|---|---|---|---|---|---|
≤6 | 7–12 | 13–17 | 18–59 | ≥60 | All | ||
Rice | Scenario 1 1 | 0.360 7 | 0.249 | 0.200 | 0.226 | 0.188 | 55.85 |
Scenario 2 2 | 0.078 | 0.054 | 0.043 | 0.049 | 0.041 | ||
Scenario 3 3 | 0.144 | 0.111 | 0.089 | 0.091 | 0.094 | ||
Scenario 4 4 | 0.031 | 0.024 | 0.019 | 0.020 | 0.020 | ||
Millet | Scenario 1 | 0.004 | 0.003 | 0.001 | 0.002 | 0.002 | 0.34 |
Scenario 2 | 0.001 | 0.001 | <0.001 | 0.001 | 0.001 | ||
Scenario 3 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
Scenario 4 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
Maize and its products | Scenario 1 | 0.005 | 0.003 | 0.003 | 0.002 | 0.003 | 0.54 |
Scenario 2 | 0.002 | 0.001 | 0.001 | 0.001 | 0.001 | ||
Scenario 3 | 0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
Scenario 4 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
Wet noodle products | Scenario 1 | 0.009 | 0.006 | 0.005 | 0.004 | 0.004 | 1.81 |
Scenario 2 | 0.009 | 0.006 | 0.005 | 0.004 | 0.004 | ||
Scenario 3 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | ||
Scenario 4 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | ||
Instant noodles | Scenario 1 | 0.003 | 0.003 | 0.002 | 0.001 | 0.002 | 0.22 |
Scenario 2 | 0.001 | 0.001 | 0.001 | <0.001 | <0.001 | ||
Scenario 3 | 0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
Scenario 4 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
Tea | Scenario 1 | 0.001 | <0.001 | 0.004 | 0.003 | 0.004 | 0.19 |
Scenario 2 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
Scenario 3 | <0.001 | <0.001 | <0.001 | <0.001 | 0.001 | ||
Scenario 4 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
Puffed food products | Scenario 5 5 | 0.001 | 2.11 | ||||
Dry noodle products | Scenario 5 | <0.001 | 0.15 | ||||
Corn oil | Scenario 5 | 0.009 | 14.06 | ||||
Cereal supplements for infants and young children | Scenario 6 6 | 0.016 | 24.72 |
Food Name | P50 Exposure 1 (UB 2, µg/kg b.w.) | Exposure Duration (Years) |
---|---|---|
Rice | 0.0200 | 6.25 |
Millet | <0.0001 | 215,045.83 |
Maize and its products | 0.0001 | 75,071.20 |
Wet noodle products | 0.0006 | 6467.53 |
Instant noodles | <0.0001 | 202,193.74 |
Tea | <0.0001 | 36,879.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Z.; Zhang, R.; Wu, P.; Zhao, D.; Chen, J.; Pan, X.; Wang, J.; Zhang, H.; Qi, X.; Weng, Q.; et al. Occurrence and Exposure Assessment of Zearalenone in the Zhejiang Province, China. Toxins 2025, 17, 9. https://doi.org/10.3390/toxins17010009
Lu Z, Zhang R, Wu P, Zhao D, Chen J, Pan X, Wang J, Zhang H, Qi X, Weng Q, et al. Occurrence and Exposure Assessment of Zearalenone in the Zhejiang Province, China. Toxins. 2025; 17(1):9. https://doi.org/10.3390/toxins17010009
Chicago/Turabian StyleLu, Zijie, Ronghua Zhang, Pinggu Wu, Dong Zhao, Jiang Chen, Xiaodong Pan, Jikai Wang, Hexiang Zhang, Xiaojuan Qi, Qin Weng, and et al. 2025. "Occurrence and Exposure Assessment of Zearalenone in the Zhejiang Province, China" Toxins 17, no. 1: 9. https://doi.org/10.3390/toxins17010009
APA StyleLu, Z., Zhang, R., Wu, P., Zhao, D., Chen, J., Pan, X., Wang, J., Zhang, H., Qi, X., Weng, Q., Ye, S., & Zhou, B. (2025). Occurrence and Exposure Assessment of Zearalenone in the Zhejiang Province, China. Toxins, 17(1), 9. https://doi.org/10.3390/toxins17010009