Botulinum Toxin Treatment of Psoriasis—A Comprehensive Review
Abstract
1. Introduction
2. Study Design
3. Results
4. Animal Studies
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Michalek, I.; Loring, B.; John, S. A systematic review of worldwide epidemiology of psoriasis. J. Eur. Acad. Dermatol. Venereol. 2016, 31, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Paller, A.S.; Singh, R.; Cloutier, M.; Gauthier-Loiselle, M.; Emond, B.; Guerin, A.; Ganguli, A. Prevalence of Psoriasis in Children and Adolescents in the United States: A Claims-Based Analysis. J. Drugs Dermatol. JDD 2018, 17, 187–194. [Google Scholar] [PubMed]
- Armstrong, A.W.; Read, C. Pathophysiology, Clinical Presentation, and Treatment of Psoriasis: A Review. JAMA 2020, 323, 1945–1960. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhang, H.; Lin, W.; Lu, L.; Su, J.; Chen, X. Signaling pathways and targeted therapies for psoriasis. Signal Transduct. Target. Ther. 2023, 8, 437. [Google Scholar]
- Lee, H.-J.; Kim, M. Challenges and Future Trends in the Treatment of Psoriasis. Int. J. Mol. Sci. 2023, 24, 13313. [Google Scholar] [CrossRef]
- Krueger, G.G.; Feldman, S.R.; Camisa, C.; Duvic, M.; Elder, J.T.; Gottlieb, A.B.; Koo, J.; Krueger, J.G.; Lebwohl, M.; Lowe, N.; et al. Two considerations for patients with psoriasis and their clinicians: What defines mild, moderate, and severe psoriasis? What constitutes a clinically significant improvement when treating psoriasis? J. Am. Acad. Dermatol. 2000, 43, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Saalbach, A.; Kunz, M. Impact of Chronic Inflammation in Psoriasis on Bone Metabolism. Front. Immunol. 2022, 13, 925503. [Google Scholar]
- Sieminska, I.; Pieniawska, M.; Grzywa, T.M. The Immunology of Psoriasis—Current Concepts in Pathogenesis. Clin. Rev. Allergy Immunol. 2024, 66, 164–191. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jankovic, J. Botulinum toxin: State of the art. Mov. Disord. 2017, 32, 1131–1138. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.A.; Schütz, S.G.; Simpson, D.M. Botulinum Toxin for Neuropathic Pain and Spasticity: An Overview. Pain Manag. 2014, 4, 129–151. [Google Scholar] [CrossRef] [PubMed]
- Borodic, G.E.; Acquadro, M.; Johnson, E.A. Botulinum toxin therapy for pain and inflammatory disorders: Mechanisms and therapeutic effects. Expert Opin. Investig. Drugs 2001, 10, 1531–1544. [Google Scholar] [PubMed]
- Grando, S.; Zachary, C. The non-neuronal and nonmuscular effects of botulinum toxin: An opportunity for a deadly molecule to treat disease in the skin and beyond. Br. J. Dermatol. 2018, 178, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.P.; Shan, X.F.; Qiu, J.X.; Wang, L.N.; Xiang, R.L.; Cai, Z.G. Botulinum toxin type A inhibits M1 macrophage polarization by deactivation of JAK2/STAT1 and IκB/NFκB pathway and contributes to scar alleviation in aseptic skin wound healing. Biomed. Pharmacother. 2024, 174, 116468. [Google Scholar]
- Zanchi, M.; Favot, F.; Bizzarini, M.; Piai, M.; Donini, M.; Sedona, P. Botulinum toxin type-A for the treatment of inverse psoriasis. J. Eur. Acad. Dermatol. Venereol. 2008, 22, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Saber, M.; Brassard, D.; Benohanian, A. Inverse Psoriasis and Hyperhidrosis of the Axillae Responding to Botulinum Toxin Type A. Arch. Dermatol. 2011, 147, 629–630. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, E.; Ward, N.L. Efficacy of botulinum neurotoxin type A for treating recalcitrant plaque psoriasis. J. Drugs Dermatol. 2014, 13, 1407–1408. [Google Scholar] [PubMed]
- Todberg, T.; Zachariae, C.; Bregnhøj, A.; Hedelund, L.; Bonefeld, K.; Nielsen, K.; Iversen, L.; Skov, L.; Todberg, T.; Zachariae, C.; et al. The effect of botulinum neurotoxin A in patients with plaque psoriasis—An exploratory trial. J. Eur. Acad. Dermatol. Venereol. 2017, 32, E81–E82. [Google Scholar] [CrossRef] [PubMed]
- Aschenbeck, K.A.; Hordinsky, M.K.; Kennedy, W.R.; Wendelschafer-Crabb, G.; Ericson, M.E.; Kavand, S.; Bertin, A.; Dykstra, D.D.; Panoutsopoulou, I.G. Neuromodulatory treatment of recalcitrant plaque psoriasis with onabotulinumtoxinA. J. Am. Acad. Dermatol. 2018, 79, 1156–1159. [Google Scholar] [CrossRef] [PubMed]
- González, C.; Franco, M.; Londoño, A.; Valenzuela, F. Breaking paradigms in the treatment of psoriasis: Use of botulinum toxin for the treatment of plaque psoriasis. Dermatol. Ther. 2020, 33, e14319. [Google Scholar] [CrossRef] [PubMed]
- Gharib, K.; Mostafa, A.; Elsayed, A. Evaluation of Botulinum Toxin Type A Injection in the Treatment of Localized Chronic Pruritus. J. Clin. Aesthet. Dermatol. 2020, 13, 12–17. [Google Scholar] [PubMed] [PubMed Central]
- Khattab, F.M.; Samir, M.A. Botulinum toxin type-A versus 5-fluorouracil in the treatment of plaque psoriasis: Comparative study. J. Cosmet. Dermatol. 2021, 20, 3128–3132. [Google Scholar] [CrossRef] [PubMed]
- Botsali, A.; Erbil, H. Management of nail psoriasis with a single injection of abobotulinum toxin. J. Cosmet. Dermatol. 2020, 20, 1418–1420. [Google Scholar] [CrossRef] [PubMed]
- Popescu, M.N.; Beiu, C.; Iliescu, M.G.; Mihai, M.M.; Popa, L.G.; Stănescu, A.M.A.; Berteanu, M. Botulinum Toxin Use for Modulating Neuroimmune Cutaneous Activity in Psoriasis. Medicina 2022, 58, 813. [Google Scholar] [CrossRef] [PubMed]
- Juntongjin, P.; Srisinlapakig, S.; Nitayavardhana, S. Botulinum toxin injection shows promise in nail psoriasis: A comparative randomized controlled trial. JAAD Int. 2024, 16, 105–111. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ward, N.L.; Kavlick, K.D.; Diaconu, D.; Dawes, S.M.; Michaels, K.A.; Gilbert, E. Botulinum Neurotoxin A Decreases Infiltrating Cutaneous Lymphocytes and Improves Acanthosis in the KC-Tie2 Mouse Model. J. Investig. Dermatol. 2012, 132, 1927–1930. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Amalia, S.N.; Uchiyama, A.; Baral, H.; Inoue, Y.; Yamazaki, S.; Fujiwara, C.; Sekiguchi, A.; Yokoyama, Y.; Ogino, S.; Torii, R.; et al. Suppression of neuropeptide by botulinum toxin improves imiquimod-induced psoriasis-like dermatitis via the regulation of neuroimmune system. J. Dermatol. Sci. 2020, 101, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-Q.; Chen, X.-Y.; Cui, Y.-Z.; Yan, B.-X.; Zhou, Y.; Wang, Z.-Y.; Xu, F.; Huang, Y.-Z.; Zheng, Y.-X.; Man, X.-Y. Cutaneous nerve fibers participate in the progression of psoriasis by linking epidermal keratinocytes and immunocytes. Cell. Mol. Life Sci. 2022, 79, 267. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, C.; Sun, P.-Y.; Jiang, Y.; Liu, Y.; Liu, Z.; Han, S.-L.; Wang, B.-S.; Huang, Y.-X.; Ren, A.-R.; Lu, J.-F.; et al. Sensory ASIC3 channel exacerbates psoriatic inflammation via a neurogenic pathway in female mice. Nat. Commun. 2024, 15, 5288. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wride, A.M.; Chen, G.F.; Spaulding, S.L.; Tkachenko, E.; Cohen, J.M. Biologics for Psoriasis. Dermatol. Clin. 2024, 42, 339–355. [Google Scholar] [CrossRef] [PubMed]
- Riol-Blanco, L.; Ordovas-Montanes, J.; Perro, M.; Naval, E.; Thiriot, A.; Alvarez, D.; Paust, S.; Wood, J.N.; Von Andrian, U.H. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature 2014, 510, 157–161. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shi, X.; Gao, C.; Wang, L.; Chu, X.; Shi, Q.; Yang, H.; Li, T. Botulinum toxin type A ameliorates adjuvant-arthritis pain by inhibiting microglial activation-mediated neuroinflammation and intracellular molecular signaling. Toxicon 2020, 178, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Khanijou, S.; Rubino, J.; Aoki, K.R. Subcutaneous administration of botulinum toxin A reduces formalin-induced pain. Pain 2004, 107, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Izumi, M.; Ikeuchi, M.; Ji, Q.; Tani, T. Local ASIC3 modulates pain and disease progression in a rat model of osteoarthritis. J. Biomed. Sci. 2012, 19, 77. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hou, Y.-P.; Zhang, Y.-P.; Song, Y.-F.; Zhu, C.-M.; Wang, Y.-C.; Xie, G.-L. Botulinum toxin type A inhibits rat pyloric myoelectrical activity and substance P release in vivo. Can. J. Physiol. Pharmacol. 2007, 85, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.-F.; Xie, J.-F.; Ren, Y.-X.; Wang, C.; Kong, X.-P.; Zong, X.-J.; Fan, L.-L.; Hou, Y.-P. The Inhibitory Effect of Botulinum Toxin Type A on Rat Pyloric Smooth Muscle Contractile Response to Substance P In Vitro. Toxins 2015, 7, 4143–4156. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dressler, D.; Saberi, F.A. Botulinum Toxin: Mechanisms of Action. Eur. Neurol. 2005, 53, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Lacković, Z.; Filipović, B.; Matak, I.; Helyes, Z. Activity of botulinum toxin type A in cranial dura: Implications for treatment of migraine and other headaches. Br. J. Pharmacol. 2015, 173, 279–291. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, L.; Tai, N.Z.; Fan, Z.H. Effect of botulinum toxin type A on the expression of substance P, calcitonin gene-related peptide, transforming growth factor beta-1 and alpha smooth muscle actin A in wound healing in rats. Zhonghua Zheng Xing Wai Ke Za Zhi 2009, 25, 50–53. (In Chinese) [Google Scholar] [PubMed]
- Huang, P.P.; Khan, I.; Suhail, M.S.A.; Malkmus, S.; Yaksh, T.L. Spinal Botulinum Neurotoxin B: Effects on Afferent Transmitter Release and Nociceptive Processing. PLoS ONE 2011, 6, e19126. [Google Scholar] [CrossRef]
- Cady, R.; Turner, I.; Dexter, K.; Beach, M.E.; Cady, R.; Durham, P. An Exploratory Study of Salivary Calcitonin Gene-Related Peptide Levels Relative to Acute Interventions and Preventative Treatment with OnabotulinumtoxinA in Chronic Migraine. Headache: J. Head Face Pain 2013, 54, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Grumelli, C.; Verderio, C.; Pozzi, D.; Rossetto, O.; Montecucco, C.; Matteoli, M. Internalization and Mechanism of Action of Clostridial Toxins in Neurons. NeuroToxicology 2005, 26, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Rossetto, O. The binding of botulinum neurotoxins to different peripheral neurons. Toxicon 2018, 147, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Matak, I.; Bölcskei, K.; Bach-Rojecky, L.; Helyes, Z. Mechanisms of Botulinum Toxin Type A Action on Pain. Toxins 2019, 11, 459. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Purkiss, J.; Welch, M.; Doward, S.; Foster, K. Capsaicin-stimulated release of substance P from cultured dorsal root ganglion neurons: Involvement of two distinct mechanisms. Biochem. Pharmacol. 2000, 59, 1403–1406. [Google Scholar] [CrossRef] [PubMed]
- James, J.; Otto, T.; Gao, J.; Porter, M.L. Oral Psoriasis Therapies. Dermatol. Clin. 2024, 42, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Martina, E.; Diotallevi, F.; Radi, G.; Campanati, A.; Offidani, A. Therapeutic Use of Botulinum Neurotoxins in Dermatology: Systematic Review. Toxins 2021, 13, 120. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Author and Date | Study Type | #pt | Type of Psoriasis | Type of Toxin | Dose | Results |
---|---|---|---|---|---|---|
Zanchi et al., 2008 [14] | Pro, OL | 15 | Inverse psoriasis | onaA | Total dose: 50–100 units, divided into 20–40 sites | Extension of erythema, intensity and infiltration showed improvement in 13 out of 15 subjects (87%). All patients reported symptom relief. |
Saber et al., 2011 [15] | Case report | 1 | Inverse psoriasis | onaA | Total dose: 100 units | The patient experienced significant improvement of axillary psoriasis within one week of receiving the injections. |
Gilbert & Ward, 2014 [16] | Case report | 1 | Plaque psoriasis | aboA | Total dose of 30 units divided in 8 sites. | Improvement of plaque severity within 3 weeks—complete remission after 7 months. Recurrence in 8th month. |
Todberg et al., 2017 [17] | DB, PC | 8 | Plaque psoriasis | aboA | Total dose: 36 units, divided in 9 sites | Failed to improve the appearance of plaques. |
Aschenbeck et al., 2018 [18] | Pro, OL | 8 | Plaque psoriasis | onaA | Total dose: 28–95 units | Injections were correlated with significantly reduced PASI and PGA scores (p < 0.01) for both scales. |
González et al., 2020 [19] | Pro, OL | 8 | Plaque psoriasis | aboA | Total dose of up to 50 units, 5 units cm3 | Significant improvement in TCS score in all subjects (p < 0.05) 4 weeks post-treatment. |
Gharib et al., 2020 [20] | Pro, OL | 4 | Inverse psoriasis | aboA | Total dose: 50–100 units | Statistically significant reductions in both the EASI score and PASI score after treatment |
Khattab & Samir, 2021 [21] | Refinex versus 5-fluouracil | 35 | Plaque psoriasis | Refinex | Total dose: 50–100 units | The response rate was 85% for Refinex and 90% for 5-FU (no significant difference). Side effect rate was similar. The recurrence rate was 15% for both agents. |
Botsali & Erbil, 2020 [22] | Pro, OL | 2 | Nail psoriasis | aboA | Total dose: 15 units, divided in two sites | In both patients, VAS assessment of nail lesions improved by more than 4 grades. |
Popescu et al., 2022 [23] | Case report | 1 | Plaque psoriasis | abo-A, IM for spasticity | Total dose: 1000 units | Marked improvement after a single trial in a patient who had failed responding to steroids and UV-B. |
Juntongjin et al., 2024 [24] | Botulinum toxin versus triamcinolone acetonide and vitamin D | 16 | Nail psoriasis | aboA | Total dose: 30 units divided in 4 sites | One intralesional dose of BoNT-A delivered outcomes comparable to multiple TA injection sessions showing sustained effectiveness, especially in lesions affecting the nail bed. |
Author and Date | Animal Model | # | Toxin | Dose | Assessed | Results |
---|---|---|---|---|---|---|
Ward et al., 2012 [25] | KC-Tie2 Mouse | 11 | aboA | 9 units/kg intradermal injection, compared with saline | Histologic analysis and immunostaining for CD11c, CD4, F4/80, CD8 | aboA injections led to significant reductions in psoriasiform skin inflammation and epidermal hyperplasia, as well as decreases in infiltrating CD4+ T cells and CD11c+ DCs, occurring simultaneously with improvements in acanthosis. |
Amalia et al., 2021 [26] | Mice, imiquimod (IMQ) induced Psoriasis-like model | 10 | rimaB | 2 units injected intradermally in 4 sites | PASI, histological examination by immunostaining, real-time RT-PCR | Marked decrease in PSI score, reduction of CD4, T cells, CD11c+ dendritic cells and IL-17A/F production in the lesion. Significant decrease in PGP9.5 and nerve fibers and neuropeptides. |
Chen et al., 2022 [27] | Pre-treated IMQ model mice and Spinal hemi-sectioned mice | NS | onaA | Total: 1 unit (0.25)/site, subcutaneously | Immunofluorescence, histochemistry, western blotting, immunoelectron microscopy, qRT-PCR, ELISA, RNA sequence reanalysis | Skin injected by onaA showed less scaling and reduced erythema and thickness. PASI was significantly lower in onaA-injected skin than controls. Skin injected with onaA showed reduction of CGRP-positive cells and reduced secretion of CGRP in cell culture. |
Huang et al., 2024 [28] | ASIC3 mice | NS | BoNT-A | 30 units/kg | Immunofluorescence, histologic analysis of skin inflammation, CGRP release assay, flow cytometry, skin pH assessment | Reduced keratinocyte proliferation and epidermal thickening, decreased the elevated level of cytokines. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghaseminejad-Bandpey, A.; Etemadmoghadam, S.; Jabbari, B. Botulinum Toxin Treatment of Psoriasis—A Comprehensive Review. Toxins 2024, 16, 449. https://doi.org/10.3390/toxins16100449
Ghaseminejad-Bandpey A, Etemadmoghadam S, Jabbari B. Botulinum Toxin Treatment of Psoriasis—A Comprehensive Review. Toxins. 2024; 16(10):449. https://doi.org/10.3390/toxins16100449
Chicago/Turabian StyleGhaseminejad-Bandpey, Ali, Shahroo Etemadmoghadam, and Bahman Jabbari. 2024. "Botulinum Toxin Treatment of Psoriasis—A Comprehensive Review" Toxins 16, no. 10: 449. https://doi.org/10.3390/toxins16100449
APA StyleGhaseminejad-Bandpey, A., Etemadmoghadam, S., & Jabbari, B. (2024). Botulinum Toxin Treatment of Psoriasis—A Comprehensive Review. Toxins, 16(10), 449. https://doi.org/10.3390/toxins16100449