A UK Single-Center, Retrospective, Noninterventional Study of Clinical Outcomes and Costs of Two BotulinumtoxinA Treatments for Limb Spasticity
Abstract
Plain Language Summary
1. Introduction
2. Results
2.1. Baseline Demographics and Clinical Characteristics
2.2. Description of Injection Practice
2.3. Treatment Outcomes
2.3.1. Goal Attainment Scale T Scores
2.3.2. Reinjections
2.3.3. Patient-Reported Outcomes
2.4. Cost of BoNT-A Treatment
2.5. Safety
2.6. Service Redesign
3. Discussion
Limitations
4. Conclusions
5. Materials and Methods
5.1. Study Design
5.2. Ethics
5.3. Inclusion and Exclusion Criteria
5.4. Population
5.5. Patient Follow-Up
5.6. Practice Changes and Continuity
5.7. Study Objectives
5.7.1. Primary Objective
5.7.2. Secondary Objectives
5.8. Patient-Level Treatment Cost Estimations
5.9. Data Analysis
5.10. Exploratory Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pandyan, A.D.; Gregoric, M.; Barnes, M.P.; Wood, D.; Van Wijck, F.; Burridge, J.; Hermens, H.; Johnson, G.R. Spasticity: Clinical perceptions, neurological realities and meaningful measurement. Disabil. Rehabil. 2005, 27, 2–6. [Google Scholar] [CrossRef]
- Patel, A.T.; Wein, T.; Bahroo, L.B.; Wilczynski, O.; Rios, C.D.; Murie-Fernandez, M. Perspective of an an international online patient and caregiver community on the burden of spasticity and impact of botulinum neurotoxin therapy: Survey study. JMIR Public Health Surveill. 2020, 6, e17928. [Google Scholar] [CrossRef] [PubMed]
- Royal College of Physicians; The British Society Of Rehabilitation Medicine; The Chartered Society of Physiotherapy; Association of Chartered Physiotherapists in Neurology and the Royal College of Occupational Therapists. Spasticity in Adults: Management Using Botulinum Toxin National Guidelines, 2nd ed.; Royal College of Physician: London, UK, 2018. [Google Scholar]
- Ward, A.B. Spasticity treatment with botulinum toxin. Turk. J. Phys. Med. Rehab. 2007, 53, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Christofi, G.; BCh, B.M.; Ashford, S.; Birns, J.; Dalton, C.; Duke, L.; Madsen, C.; Salam, S. Improving the management of post-stroke spasticity: Time for action. J. Rehabil. Med. Clin. Commun. 2018, 1, 1000004. [Google Scholar] [CrossRef]
- Bavikatte, G.; Subramanian, G.; Ashford, S.; Allison, R.; Hicklin, D. Early identification, intervention and management of post-stroke spasticity: Expert consensus recommendations. J. Cent. Nerv. Syst. Dis. 2021, 13, 11795735211036576. [Google Scholar] [CrossRef]
- Chang, E.; Ghosh, N.; Yanni, D.; Lee, S.; Alexandru, D.; Mozaffar, T. A review of spasticity treatments: Pharmacological and interventional approaches. Crit. Rev. Phys. Rehabil. Med. 2013, 25, 11–22. [Google Scholar] [CrossRef]
- Turner-Stokes, L.; Jacinto, J.; Fheodoroff, K.; Brashear, A.; Maisonobe, P.; Lysandropoulos, A.; Ashford, S.; The ULIS-III Study Group. Longitudinal goal attainment with integrated upper limb spasticity management including repeat injections of botulinum toxin A: Findings from the prospective, observational Upper Limb International Spasticity (ULIS-III) cohort study. J. Rehabil. Med. 2021, 53, jrm00157. [Google Scholar] [CrossRef]
- Turner-Stokes, L.; Jacinto, J.; Fheodoroff, K.; Brashear, A.; Maisonobe, P.; Lysandropoulos, A.; Ashford, S.; The ULIS-III Study Group. Assessing the effectiveness of upper-limb spasticity management using a structured approach to goal-setting and outcome measurement: First cycle results from the ULIS-III Study. J. Rehabil. Med. 2021, 53, jrm00133. [Google Scholar] [CrossRef]
- Ozer, I.S.; Kuzu Kumcu, M.; Tezcan Aydemir, S.; Akbostanci, M.C. Dose conversion ratio, comparative efficacy, and adverse events after switching from onabotulinum toxin A to abobotulinum toxin A for neurological conditions. Clin. Neurol. Neurosurg. 2021, 209, 106889. [Google Scholar] [CrossRef] [PubMed]
- Simpson, D.M.; Hallett, M.; Ashman, E.J.; Comella, C.L.; Green, M.W.; Gronseth, G.S.; Armstrong, M.J.; Gloss, D.; Potrebic, S.; Jankovic, J.; et al. Practice guideline update summary: Botulinum neurotoxin for the treatment of blepharospasm, cervical dystonia, adult spasticity, and headache: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 2016, 86, 1818–1826. [Google Scholar] [CrossRef]
- Ipsen Ltd. Summary of Product Characteristics, Dysport®. Available online: https://www.medicines.org.uk/emc/product/964/smpc (accessed on 1 March 2023).
- AbbVie Ltd. Summary of Product Characteristics, BOTOX® (onabotulinumtoxinA). Available online: https://www.medicines.org.uk/emc/product/859/smpc (accessed on 1 March 2023).
- Merz Pharma UK Ltd. Summary of Product Characteristics, Xeomin® (incobotulinumtoxinA). Available online: https://www.medicines.org.uk/emc/product/6202/smpc (accessed on 1 March 2023).
- Roze, S.; Kurth, H.; Hunt, B.; Valentine, W.; Marty, R. Evaluation of the cost per patient per injection of botulinum toxin A in upper limb spasticity: Comparison of two preparations in 19 countries. Med. Devices 2012, 5, 97–101. [Google Scholar] [CrossRef][Green Version]
- Danchenko, N.; Johnston, K.M.; Haeussler, K.; Whalen, J. Comparative efficacy, safety, and cost-effectiveness of abobotulinumtoxinA and onabotulinumtoxinA in children with upper limb spasticity: A systematic literature review, indirect treatment comparison, and economic evaluation. J. Med. Econ. 2021, 24, 949–961. [Google Scholar] [CrossRef] [PubMed]
- Danchenko, N.; Johnston, K.M.; Whalen, J. The cost-effectiveness of abobotulinumtoxinA (Dysport) and onabotulinumtoxinA (Botox) for managing spasticity of the upper and lower limbs, and cervical dystonia. J. Med. Econ. 2022, 25, 919–929. [Google Scholar] [CrossRef]
- Abogunrin, S.; Brand, S.; Desai, K.; Dinet, J.; Gabriel, S.; Harrower, T. AbobotulinumtoxinA in the management of cervical dystonia in the United Kingdom: A budget impact analysis. Clinicoecon. Outcomes Res 2015, 7, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Francisco, G.E.; Balbert, A.; Bavikatte, G.; Bensmail, D.; Carda, S.; Deltombe, T.; Draulans, N.; Escaldi, S.; Gross, R.; Jacinto, J.; et al. A practical guide to optimizing the benefits of post-stroke spasticity interventions with botulinum toxin A: An international group consensus. J. Rehabil. Med. 2021, 53, jrm00134. [Google Scholar] [CrossRef] [PubMed]
- Pohar, R.; Rabb, D. Switching Botulinum Toxin A Products for Patients with Upper Limb Spasticity Or cervical Dystonia: A Review of Clinical Effectiveness; CADTH Rapid Response Report: Summary with Critical Appraisal; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, Canada, 2018; p. 24.
- Nestor, M.S.A.; Glynis, R. Duration of action of abobotulinumtoxinA and onabotulinumtoxinA. A randomized, double-blind study using a contralateral frontalis model. J. Clin. Aesthet. Dermatol. 2011, 4, 43–49. [Google Scholar] [PubMed]
- Thomas, A.J.; Larson, M.O.; Braden, S.; Cannon, R.B.; Ward, P.D. Effect of 3 commercially available botulinum toxin neuromodulators on facial synkinesis: A randomized clinical trial. JAMA Facial Plast. Surg. 2018, 20, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Khan, P.; Riberto, M.; Frances, J.A.; Chueire, R.; Amorim, A.; Xerez, D.; Chung, T.M.; Mercuri, L.H.C.; Longo, A.L.; Lianza, S.; et al. The effectiveness of botulinum toxin type A (BoNT-A) treatment in Brazilian patients with chronic post-stroke spasticity: Results from the observational, multicenter, prospective BCause study. Toxins 2020, 12, 770. [Google Scholar] [CrossRef] [PubMed]
- Ghroubi, S.; Alila, S.; Elleuch, W.; Ayed, H.B.; Mhiri, C.; Elleuch, M.H. Efficacy of botulinum toxin A for the treatment of hemiparesis in adults with chronic upper limb spasticity. Pan Afr. Med. J. 2020, 35, 55. [Google Scholar] [CrossRef]
- Field, M.; Splevins, A.; Picaut, P.; van der Schans, M.; Langenberg, J.; Noort, D.; Snyder, D.; Foster, K. AbobotulinumtoxinA (Dysport®), onabotulinumtoxinA (Botox®), and incobotulinumtoxinA (Xeomin®) neurotoxin content and potential implications for duration of response in patients. Toxins 2018, 10, 535. [Google Scholar] [CrossRef]
- Esquenazi, A.; Delgado, M.R.; Hauser, R.A.; Picaut, P.; Foster, K.; Lysandropoulos, A.; Gracies, J.M. Duration of symptom relief between injections for abobotulinumtoxinA (Dysport®) in spastic paresis and cervical dystonia: Comparison of evidence from clinical studies. Front. Neurol. 2020, 11, 576117. [Google Scholar] [CrossRef] [PubMed]
- Esquenazi, A.; Pons, L.; Calvi-Gries, F.; Otto, J. Extensor digitorum brevis and DIRECTION: Two studies in progress comparing the duration of response of abobotulinumtoxina with other native botulinum toxins. Toxicon 2022, 214, S16–S17. [Google Scholar] [CrossRef]
- Fheodoroff, K.; Rekand, T.; Medeiros, L.; Kossmehl, P.; Wissel, J.; Bensmail, D.; Scheschonka, A.; Flatau-Baque, B.; Simon, O.; Dressler, D.; et al. Quality of life in subjects with upper- and lower-limb spasticity treated with incobotulinumtoxinA. Health Qual. Life Outcomes 2020, 18, 51. [Google Scholar] [CrossRef] [PubMed]
- Cho, T.H.; Hong, J.E.; Yang, H.M. Neuromuscular compartmentation of the subscapularis muscle and its clinical implication for botulinum neurotoxin injection. Sci. Rep. 2023, 13, 11167. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; An, M.H.; Lee, H.J.; Yi, K.H. Guidance in botulinum neurotoxin injection for lower extremity spasticity: Sihler’s staining technique. Surg. Radiol. Anat. 2023, 45, 1055–1062. [Google Scholar] [CrossRef] [PubMed]
- Yi, K.H.; Lee, J.H.; Hur, H.W.; Lee, H.J.; Choi, Y.J.; Kim, H.J. Distribution of the intramuscular innervation of the triceps brachii: Clinical importance in the treatment of spasticity with botulinum neurotoxin. Clin. Anat. 2023; online ahead of print. [Google Scholar] [CrossRef]
- Kiresuk, T.J.; Sherman, R.E. Goal attainment scaling: A general method for evaluating comprehensive community mental health programs. Community Ment. Health J. 1968, 4, 443–453. [Google Scholar] [CrossRef]
Cohort 1 (Pre-2017) (N = 60) | Cohort 2 (Post-2017) (N = 54) | |
---|---|---|
Age at first BoNT-A injection | ||
Mean (SD), years | 58.4 (15.6) | 57.7 (16.3) |
Median (range), years | 57.1 (23.0–85.2) | 62.7 (18.2–90.5) |
Sex, n (%) | ||
Male | 26 (43.3) | 22 (40.7) |
Female | 34 (56.7) | 32 (59.3) |
Underlying neurological condition | ||
Patients with data available, n | 60 | 53 |
Stroke due to infarction, n (%) | 18 (30.0) | 17 (32.1) |
Stroke–hemorrhagic, n (%) | 2 (3.3) | 8 (15.1) |
Stroke–unspecified, n (%) | 12 (20.0) | 0 (0.0) |
Chronic disease (MS and other), n (%) | 15 (25.0) | 12 (22.6) |
Traumatic brain injury, n (%) | 5 (8.3) | 6 (11.3) |
Other a, n (%) | 8 (13.3) | 10 (18.9) |
Not known, n | 0 | 1 |
Time from diagnosis of neurological condition to first BoNT-A injection | ||
Patients with data available, n | 41 | 40 |
Median (range), years | 2.1 (0.3–29.7) | 2.4 (0.1–27.0) |
Location of spasticity, n (%) | ||
LL spasticity | 30 (50.0) | 30 (55.6) |
UL spasticity | 23 (38.3) | 19 (35.2) |
LL + UL spasticity | 7 (11.7) | 5 (9.3) |
Time from diagnosis of spasticity to first BoNT-A injection | ||
Patients with data available, n | 57 | 54 |
Median (range), years | 0 (0.0–0.1) | 0 (0.0–3.1) |
Baseline existing therapies for LS, n (%) | ||
Prescribed antispasticity medication | 28 (46.7) | 25 (46.3) |
Pain medication and opioid use | 15 (25.0) | 22 (40.7) |
Physiotherapy and/or occupational therapy | 35 (58.3) | 28 (51.9) |
No therapy recorded | 12 (20.0) | 10 (18.5) |
Cohort 1 (Pre-2017) (N = 60) | Cohort 2 (Post-2017) (N = 54) | |||
---|---|---|---|---|
Patients attending scheduled visit, n (%) | ||||
Week 6 | 42 (70.0) | 40 (74.1) | ||
Week 12 | 40 (66.7) | 26 (48.1) | ||
Week 24 | 22 (36.7) | 22 (40.7) | ||
Patients reinjected at each visit, n (%) | ||||
Week 6 | 0 (0.0) | 0 (0.0) | ||
Week 12 | 5 (8.3) | 7 (13.0) | ||
Week 24 | 11 (18.3) | 15 (27.8) | ||
Time between index date and reinjection | ||||
Patients reinjected during the 24-week follow-up a, n (%) | 16 (26.7) | 22 (40.7) | ||
Mean (SD), weeks | 16.4 (2.7) | 17.4 (3.7) | ||
95% CI, weeks | 15.1–17.7 | 15.9–19.0 | ||
Median (Q1, Q3), weeks | 16.1 (15.1, 17.3) | 17.1 (15.1, 19.9) | ||
Patients reinjected during the observation period b, n (%) | 18 (30.0) | 27 (50.0) c | ||
Mean (SD), weeks | 19.9 (9.1) | 19.8 (6.2) | ||
95% CI, weeks | 15.0–23.4 | 17.4–22.1 | ||
Median (Q1, Q3), weeks | 16.1 (15.4, 18.0) | 18.1 (16.1, 23.1) | ||
Limb injected at reinjection | ||||
Data available, n | 14 | 31 c | ||
LL only, n (%) | 9 (64.3) | 18 (58.1) | ||
UL only, n (%) | 3 (21.4) | 13 (41.9) | ||
LL + UL, n (%) | 2 (14.3) | 0 (0) | ||
Total dose at reinjection (units in Cohort 1 and Cohort 2 are noninterchangeable) | n | mean (SD), U | n | mean (SD), U |
UL | 5 | 214.0 (37.8) | 13 | 696.2 (420.1) |
LL | 11 | 203.6 (64.3) | 17 d | 708.8 (445.9) |
UL and/or LL | 14 | 236.4 (80.8) | 30 c,d | 703.3 (427.5) |
Cohort 1 (Pre-2017) (N = 60) | Cohort 2 (Post-2017) (N = 54) | |||
---|---|---|---|---|
EQ-5D VAS score by visit a | n | n | ||
Baseline, median (Q1, Q3) | 54 (41.3, 70.0) | 46 | 60 (50.0, 75.0) | 35 |
Week 6, median (Q1, Q3) | 55 (48.0, 75.0) | 36 | 65 (50.0, 80.0) | 24 |
Week 12, median (Q1, Q3) | 65 (50.0, 75.0) | 25 | 80 (62.5, 90.0) | 15 |
Change in EQ-5D VAS score a | n | n | ||
Change from baseline to Week 6, median (Q1, Q3) | 0 (−7.5, 0.0) | 35 | 0 (−5.0, 0.0) | 24 |
Change from baseline to Week 12, median (Q1, Q3) | 0 (−10.0, 0.0) | 24 | −5 (−28.8, 0.0) | 14 |
Costs (£) | Cohort 1 (Pre-2017) (N = 60) | Cohort 2 (Post-2017) (N = 54) | ||||
---|---|---|---|---|---|---|
Mean (SD) | 95% CI | n | Mean (SD) | 95% CI | n | |
Per patient | ||||||
Week 6 | 315.56 (141.88) | 279.66–351.46 | 60 | 249.25 (136.08) | 212.96–285.55 | 54 |
Week 12 | 343.20 (189.54) | 295.24–391.16 | 60 | 273.21 (159.09) | 230.77–315.64 | 54 |
Per responder | ||||||
Week 6 | 276.40 (116.80) | 246.85–305.95 | 15 | 233.80 (139.91) | 198.40–269.20 | 22 |
Week 12 | 391.57 (268.97) | 323.51–459.63 | 12 | 290.89 (182.94) | 244.60–337.18 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bezzina, C.; Degtiar, V.; Danchenko, N.; Maisonobe, P.; Davis, B.; Engmann, E.; Guyon, E.; Lecanuet, S.; Whalen, J. A UK Single-Center, Retrospective, Noninterventional Study of Clinical Outcomes and Costs of Two BotulinumtoxinA Treatments for Limb Spasticity. Toxins 2023, 15, 532. https://doi.org/10.3390/toxins15090532
Bezzina C, Degtiar V, Danchenko N, Maisonobe P, Davis B, Engmann E, Guyon E, Lecanuet S, Whalen J. A UK Single-Center, Retrospective, Noninterventional Study of Clinical Outcomes and Costs of Two BotulinumtoxinA Treatments for Limb Spasticity. Toxins. 2023; 15(9):532. https://doi.org/10.3390/toxins15090532
Chicago/Turabian StyleBezzina, Clive, Vadim Degtiar, Natalya Danchenko, Pascal Maisonobe, Benjamin Davis, Emanuel Engmann, Elodie Guyon, Sophie Lecanuet, and John Whalen. 2023. "A UK Single-Center, Retrospective, Noninterventional Study of Clinical Outcomes and Costs of Two BotulinumtoxinA Treatments for Limb Spasticity" Toxins 15, no. 9: 532. https://doi.org/10.3390/toxins15090532
APA StyleBezzina, C., Degtiar, V., Danchenko, N., Maisonobe, P., Davis, B., Engmann, E., Guyon, E., Lecanuet, S., & Whalen, J. (2023). A UK Single-Center, Retrospective, Noninterventional Study of Clinical Outcomes and Costs of Two BotulinumtoxinA Treatments for Limb Spasticity. Toxins, 15(9), 532. https://doi.org/10.3390/toxins15090532