Development of Acid Hydrolysis-Based UPLC–MS/MS Method for Determination of Alternaria Toxins and Its Application in the Occurrence Assessment in Solanaceous Vegetables and Their Products
Abstract
1. Introduction
2. Results and Discussion
2.1. Optimization of Extraction
2.1.1. Validation via Reported Methods
2.1.2. Optimization of Extraction Conditions
2.2. Optimization of Clean-Up Conditions
2.3. Validation Method
2.4. Method Application
3. Conclusions
4. Materials and Methods
4.1. Chemicals, Reagents, and Materials
4.2. Sample Preparation
4.3. Apparatus and UPLC–MS/MS Conditions
4.4. Method Validation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, H.; Xian, Y.; Xiao, K.; Wu, Y.; Zhu, L.; He, J. Development and comparison of single-step solid phase extraction and QuEChERS clean-up for the analysis of 7 mycotoxins in fruits and vegetables during storage by UHPLC-MS/MS. Food Chem. 2019, 274, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Carrasco, Y.; Molto, J.C.; Manes, J.; Berrada, H. Development of a GC-MS/MS strategy to determine 15 mycotoxins and metabolites in human urine. Talanta 2014, 128, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Hessel-Pras, S.; Kieshauer, J.; Roenn, G.; Luckert, C.; Braeuning, A.; Lampen, A. In vitro characterization of hepatic toxicity of Alternaria toxins. Mycotoxin Res. 2019, 35, 157–168. [Google Scholar] [CrossRef]
- Chen, A.; Mao, X.; Sun, Q.; Wei, Z.; Li, J.; You, Y.; Zhao, J.; Jiang, G.; Wu, Y.; Wang, L.; et al. Alternaria Mycotoxins: An Overview of Toxicity, Metabolism, and Analysis in Food. J. Agric. Food Chem. 2021, 69, 7817–7830. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Zou, L.; Luo, R.; Wang, Y. Determination of five Alternaria toxins in wolfberry using modified QuEChERS and ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chem. 2020, 311, 125975. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, D.; Yang, X.; Zhang, L.; Yang, M. Detection of seven Alternaria toxins in edible and medicinal herbs using ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chem. X 2022, 13, 100186. [Google Scholar] [CrossRef]
- Qiao, X.; Zhang, J.; Yang, Y.; Yin, J.; Li, H.; Xing, Y.; Shao, B. Development of a simple and rapid LC-MS/MS method for the simultaneous quantification of five Alternaria mycotoxins in human urine. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2020, 1144, 122096. [Google Scholar] [CrossRef]
- Van de Perre, E.; Deschuyffeleer, N.; Jacxsens, L.; Vekeman, F.; Van Der Hauwaert, W.; Asam, S.; Rychlik, M.; Devlieghere, F.; De Meulenaer, B. Screening of moulds and mycotoxins in tomatoes, bell peppers, onions, soft red fruits and derived tomato products. Food Control 2014, 37, 165–170. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, N.; Xian, H.; Wei, D.; Shi, L.; Feng, X. A single-step solid phase extraction for the simultaneous determination of 8 mycotoxins in fruits by ultra-high performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2016, 1429, 22–29. [Google Scholar] [CrossRef]
- Guo, W.; Fan, K.; Nie, D.; Meng, J.; Huang, Q.; Yang, J.; Shen, Y.; Tangni, E.K.; Zhao, Z.; Wu, Y.; et al. Development of a QuEChERS-Based UHPLC-MS/MS Method for Simultaneous Determination of Six Alternaria Toxins in Grapes. Toxins 2019, 11, 87. [Google Scholar] [CrossRef]
- Noser, J.; Schneider, P.; Rother, M.; Schmutz, H. Determination of six Alternaria toxins with UPLC-MS/MS and their occurrence in tomatoes and tomato products from the Swiss market. Mycotoxin Res. 2011, 27, 265–271. [Google Scholar] [CrossRef]
- Zwickel, T.; Klaffke, H.; Richards, K.; Rychlik, M. Development of a high performance liquid chromatography tandem mass spectrometry based analysis for the simultaneous quantification of various Alternaria toxins in wine, vegetable juices and fruit juices. J. Chromatogr. A 2016, 1455, 74–85. [Google Scholar] [CrossRef]
- Fan, C.; Cao, X.; Liu, M.; Wang, W. Determination of Alternaria mycotoxins in wine and juice using ionic liquid modified countercurrent chromatography as a pretreatment method followed by high-performance liquid chromatography. J. Chromatogr. A 2016, 1436, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Walravens, J.; Mikula, H.; Rychlik, M.; Asam, S.; Ediage, E.N.; Di Mavungu, J.D.; Van Landschoot, A.; Vanhaecke, L.; De Saeger, S. Development and validation of an ultra-high-performance liquid chromatography tandem mass spectrometric method for the simultaneous determination of free and conjugated Alternaria toxins in cereal-based foodstuffs. J. Chromatogr. A 2014, 1372, 91–101. [Google Scholar] [CrossRef]
- Ji, X.; Xiao, Y.; Wang, W.; Lyu, W.; Wang, X.; Li, Y.; Deng, T.; Yang, H. Mycotoxins in cereal-based infant foods marketed in China: Occurrence and risk assessment. Food Control 2022, 138, 108998. [Google Scholar] [CrossRef]
- Wei, D.; Wang, Y.; Jiang, D.; Feng, X.; Li, J.; Wang, M. Survey of Alternaria Toxins and Other Mycotoxins in Dried Fruits in China. Toxins 2017, 9, 200. [Google Scholar] [CrossRef]
- López, P.; Venema, D.; de Rijk, T.; de Kok, A.; Scholten, J.M.; Mol, H.G.J.; de Nijs, M. Occurrence of Alternaria toxins in food products in The Netherlands. Food Control 2016, 60, 196–204. [Google Scholar] [CrossRef]
- Hickert, S.; Bergmann, M.; Ersen, S.; Cramer, B.; Humpf, H.U. Survey of Alternaria toxin contamination in food from the German market, using a rapid HPLC-MS/MS approach. Mycotoxin Res. 2016, 32, 7–18. [Google Scholar] [CrossRef]
- De Berardis, S.; De Paola, E.L.; Montevecchi, G.; Garbini, D.; Masino, F.; Antonelli, A.; Melucci, D. Determination of four Alternaria alternata mycotoxins by QuEChERS approach coupled with liquid chromatography-tandem mass spectrometry in tomato-based and fruit-based products. Food Res. Int. 2018, 106, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Yin, J.; Yang, Y.; Zhang, J.; Shao, B.; Li, H.; Chen, H. Determination of Alternaria Mycotoxins in Fresh Sweet Cherries and Cherry-Based Products: Method Validation and Occurrence. J. Agric. Food Chem. 2018, 66, 11846–11853. [Google Scholar] [CrossRef]
- Aichinger, G.; Kruger, F.; Puntscher, H.; Preindl, K.; Warth, B.; Marko, D. Naturally occurring mixtures of Alternaria toxins: Anti-estrogenic and genotoxic effects in vitro. Arch. Toxicol. 2019, 93, 3021–3031. [Google Scholar] [CrossRef] [PubMed]
- Prelle, A.; Spadaro, D.; Garibaldi, A.; Gullino, M.L. A new method for detection of five alternaria toxins in food matrices based on LC-APCI-MS. Food Chem. 2013, 140, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Tolgyesi, A.; Stroka, J.; Tamosiunas, V.; Zwickel, T. Simultaneous analysis of Alternaria toxins and citrinin in tomato: An optimised method using liquid chromatography-tandem mass spectrometry. Food Addit. Contam. Part A 2015, 32, 1512–1522. [Google Scholar] [CrossRef]
- Dong, M.; Nie, D.; Tang, H.; Rao, Q.; Qu, M.; Wang, W.; Han, L.; Song, W.; Han, Z. Analysis of amicarbazone and its two metabolites in grains and soybeans by liquid chromatography with tandem mass spectrometry. J. Sep. Sci. 2015, 38, 2245–2252. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, C.; Tölgyesi, Á.; Bouten, K.; Cordeiro, F.; Stroka, J. Determination of Alternaria Toxins in Food by SPE and LC-IDMS: Development and In-House Validation of a Candidate Method for Standardisation. Separations 2022, 9, 70. [Google Scholar] [CrossRef]
- Wu, L.-h.; Zhou, C.; Long, G.-y.; Yang, X.-b.; Wei, Z.-y.; Liao, Y.-j.; Yang, H.; Hu, C.-x. Fitness of fall armyworm, Spodoptera frugiperda to three solanaceous vegetables. J. Integr. Agric. 2021, 20, 755–763. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, J.; Sun, L.; Yuan, Q.; Cheng, G.; Argyropoulos, D.S. Extraction and characterization of lignin from corncob residue after acid-catalyzed steam explosion pretreatment. Ind. Crops Prod. 2019, 133, 241–249. [Google Scholar] [CrossRef]
- Xiao, L.; Sha, W.; Tao, C.; Hou, C.; Xiao, G.; Ren, J. Effect on purine releasement of Lentinus edodes by different food processing techniques. Food Chem. X 2022, 13, 100260. [Google Scholar] [CrossRef]
- He, Q.; Liang, J.; Zhao, Y.; Yuan, Y.; Wang, Z.; Gao, Z.; Wei, J.; Yue, T. Enzymatic degradation of mycotoxin patulin by an extracellular lipase from Ralstonia and its application in apple juice. Food Control 2022, 136, 108870. [Google Scholar] [CrossRef]
- Asam, S.; Lichtenegger, M.; Muzik, K.; Liu, Y.; Frank, O.; Hofmann, T.; Rychlik, M. Development of analytical methods for the determination of tenuazonic acid analogues in food commodities. J. Chromatogr. A 2013, 1289, 27–36. [Google Scholar] [CrossRef]
- European Commission. Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed (SANTE/12682/2019). Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/AqcGuidance_SANTE_2019_12682.pdf (accessed on 1 March 2022).
- Maldonado Haro, M.L.; Cabrera, G.; Fernández Pinto, V.; Patriarca, A. Alternaria toxins in tomato products from the Argentinean market. Food Control 2023, 147, 109607. [Google Scholar] [CrossRef]
- López, P.; Venema, D.; Mol, H.; Spanjer, M.; de Stoppelaar, J.; Pfeiffer, E.; de Nijs, M. Alternaria toxins and conjugates in selected foods in the Netherlands. Food Control 2016, 69, 153–159. [Google Scholar] [CrossRef]
- Ji, X.; Xiao, Y.; Jin, C.; Wang, W.; Lyu, W.; Tang, B.; Yang, H. Alternaria mycotoxins in food commodities marketed through e-commerce stores in China: Occurrence and risk assessment. Food Control 2022, 140, 109125. [Google Scholar] [CrossRef]
- Kecojević, I.; Đekić, S.; Lazović, M.; Mrkajić, D.; Baošić, R.; Lolić, A. Evaluation of LC-MS/MS methodology for determination of 179 multi-class pesticides in cabbage and rice by modified QuEChERS extraction. Food Control 2021, 123, 107693. [Google Scholar] [CrossRef]
- Tang, H.; Ma, L.; Huang, J.; Li, Y.; Liu, Z.; Meng, D.; Wen, G.; Dong, M.; Wang, W.; Zhao, L. Residue behavior and dietary risk assessment of six pesticides in pak choi using QuEChERS method coupled with UPLC-MS/MS. Ecotoxicol. Environ. Saf. 2021, 213, 112022. [Google Scholar] [CrossRef] [PubMed]
Compound | Matrix | Linear Range (μg/L) | Calibration Curve | Correlation Coefficient (R2) | LOD (μg/kg) | Average Recovery Rate (%) (RSD (%)) (n = 6) | ||
---|---|---|---|---|---|---|---|---|
2 μg/kg | 10 μg/kg | 1000 μg/kg | ||||||
ALS | Chili paste | 1–1000 | y = 4802x + 14064 | 1.000 | 0.5 | 77.2 (5.7) | 76.0 (2.6) | 82.8 (2.8) |
Eggplant | 1–1000 | y = 4548x + 39771 | 0.999 | 0.5 | 75.2 (3.4) | 81.0 (8.2) | 75.6 (3.0) | |
Ketchup | 1–1000 | y = 5456x + 26143 | 1.000 | 0.5 | 75.6 (3.6) | 72.0 (2.8) | 80.0 (6.4) | |
Pepper | 1–1000 | y = 3766x + 21551 | 1.000 | 0.5 | 72.4 (2.3) | 76.0 (4.5) | 81.6 (4.6) | |
Tomato | 1–1000 | y = 5304x + 47966 | 0.999 | 0.5 | 76.8 (3.4) | 76.6 (3.5) | 82.8 (3.4) | |
ALT | Chili paste | 1–1000 | y = 1400x + 5590 | 1.000 | 0.5 | 100.4 (15.5) | 96.2 (7.5) | 91.2 (3.5) |
Eggplant | 1–1000 | y = 1963x − 1128 | 0.999 | 0.5 | 85.4 (6.7) | 85.8 (5.5) | 91.2 (4.9) | |
Ketchup | 1–1000 | y = 1780x + 1184 | 1.000 | 0.5 | 97.4 (13.0) | 82.6 (5.4) | 98.0 (12.5) | |
Pepper | 1–1000 | y = 1219x + 6487 | 1.000 | 0.5 | 96.4 (13.0) | 91.0 (4.2) | 92.6 (6.6) | |
Tomato | 1–1000 | y = 1329x + 9554 | 1.000 | 0.5 | 103.6 (11.6) | 89.0 (4.3) | 90.8 (5.9) | |
AME | Chili paste | 5–1000 | y = 290x + 2029 | 0.999 | 2 | 93.0 (3.1) a | 87.8 (12.8) | 92.6 (8.0) |
Eggplant | 5–1000 | y = 541x + 5632 | 0.999 | 2 | 105.2 (13.7) a | 91.0 (1.3) | 89.8 (4.1) | |
Ketchup | 5–1000 | y = 627x + 6041 | 0.999 | 2 | 85.4 (10.1) a | 86.2 (3.3) | 92.8 (10.8) | |
Pepper | 5–1000 | y = 484x + 1091 | 1.000 | 2 | 103.2 (12.2) a | 93.2 (6.3) | 89.2 (2.9) | |
Tomato | 5–1000 | y = 607x + 13240 | 0.998 | 2 | 87.6 (14.2) a | 96.6 (3.2) | 96.0 (2.4) | |
AOH | Chili paste | 5–1000 | y = 840x + 6452 | 1.000 | 2 | 86.0 (14.1) | 93.8 (7.2) | 92.2 (3.5) |
Eggplant | 1–1000 | y = 1291x + 9660 | 1.000 | 0.5 | 86.8 (5.3) | 101.4 (2.6) | 95.2 (3.6) | |
Ketchup | 1–1000 | y = 1559x + 11605 | 0.998 | 0.5 | 107.4 (4.7) | 89.2 (6.6) | 95.8 (10.8) | |
Pepper | 1–1000 | y = 875x + 8618 | 1.000 | 0.5 | 85.4 (14.8) | 92.6 (5.3) | 92.4 (4.2) | |
Tomato | 1–1000 | y = 1056x + 12184 | 0.999 | 0.5 | 84.2 (15.1) | 89.8 (7.1) | 93.0 (3.8) | |
TeA | Chili paste | 0.5–1000 | y = 9007x + 59591 | 1.000 | 0.2 | 73.2 (3.5) | 75.4 (4.8) | 78.6 (3.6) |
Eggplant | 0.1–1000 | y = 12988x + 70681 | 1.000 | 0.05 | 74.8 (2.4) | 77.2 (2.8) | 76.8 (6.4) | |
Ketchup | 0.1–1000 | y = 13465x + 36066 | 1.000 | 0.05 | 75.4 (4.5) | 76.2 (3.3) | 82.0 (4.6) | |
Pepper | 0.5–1000 | y = 10670x + 22379 | 1.000 | 0.2 | 72.6 (3.3) | 75.2 (1.5) | 77.8 (3.7) | |
Tomato | 0.5–1000 | y = 10876x + 70959 | 1.000 | 0.2 | 75.8 (2.9) | 75.8 (3.4) | 81.8 (7.7) | |
TEN | Chili paste | 0.1–1000 | y = 12846x + 23279 | 1.000 | 0.05 | 87.6 (8.2) | 80.6 (5.5) | 96.0 (2.4) |
Eggplant | 0.1–1000 | y = 14980x + 31438 | 1.000 | 0.05 | 86.8 (1.5) | 84.0 (2.4) | 93.6 (3.8) | |
Ketchup | 0.1–1000 | y = 15575x + 12590 | 1.000 | 0.05 | 94.0 (11.2) | 78.2 (4.2) | 96.0 (10.7) | |
Pepper | 0.1–1000 | y = 12366x + 25385 | 1.000 | 0.05 | 90.2 (2.1) | 94.6 (4.1) | 93.4 (3.5) | |
Tomato | 0.1–1000 | y = 14814x + 26054 | 1.000 | 0.05 | 94.4 (10.6) | 92.2 (5.9) | 92.4 (3.9) |
Matrix | Npos/N | Nqual | Nquant | Avgquan (μg/kg) | Minquan (μg/kg) | Maxquan (μg/kg) |
---|---|---|---|---|---|---|
Chili paste (N = 33) | ||||||
ALS | 0/33 | 0 | 0 | - | - | - |
ALT | 0/33 | 0 | 0 | - | - | - |
AME | 0/33 | 0 | 0 | - | - | - |
AOH | 0/33 | 0 | 0 | - | - | - |
TeA | 4/33 | 0 | 4 | 12.1 | 3.44 | 19.3 |
TEN | 2/33 | 2 | 0 | - | - | |
Eggplant (N = 244) | ||||||
ALS | 0/244 | 0 | 0 | - | - | - |
ALT | 0/244 | 0 | 0 | - | - | - |
AME | 0/244 | 0 | 0 | - | - | - |
AOH | 0/244 | 0 | 0 | - | - | - |
TeA | 2/244 | 0 | 2 | 128 | 41.8 | 214 |
TEN | 4/244 | 2 | 2 | 4.27 | 2.10 | 6.44 |
Ketchup (N = 23) | ||||||
ALS | 0/23 | 0 | 0 | - | - | - |
ALT | 0/23 | 0 | 0 | - | - | - |
AME | 2/23 | 0 | 2 | 12.3 | 11.9 | 12.6 |
AOH | 3/23 | 0 | 3 | 8.06 | 5.75 | 10.3 |
TeA | 14/23 | 0 | 14 | 85.1 | 5.61 | 337 |
TEN | 3/23 | 2 | 1 | 2.81 | 2.81 | 2.81 |
Pepper (N = 450) | ||||||
ALS | 0/450 | 0 | 0 | - | - | - |
ALT | 2/450 | 0 | 2 | 18.2 | 16.3 | 20.0 |
AME | 0/450 | 0 | 0 | - | - | - |
AOH | 0/450 | 0 | 0 | - | - | - |
TeA | 6/450 | 0 | 6 | 157 | 7.29 | 806 |
TEN | 5/450 | 2 | 3 | 8.07 | 2.28 | 13.1 |
Tomato (N = 189) | ||||||
ALS | 0/189 | 0 | 0 | - | - | - |
ALT | 1/189 | 0 | 1 | 5.29 | 5.29 | 5.29 |
AME | 0/189 | 0 | 0 | - | - | - |
AOH | 0/189 | 0 | 0 | - | - | - |
TeA | 0/189 | 0 | 0 | - | - | - |
TEN | 6/189 | 4 | 2 | 4.58 | 2.72 | 6.43 |
Compound | Structure | Retention Time (min) | Precursor Ion (m/z) | Product Ion (m/z) | Q1 Pre Bias (v) | CE (v) | Q3 Pre Bias (v) |
---|---|---|---|---|---|---|---|
ALS | 1.77 | 288.80 | 230.10 * 245.10 | 21.0 21.0 | 21 15 | 15.0 11.0 | |
ALT | 1.73 | 293.00 | 257.10 * 275.10 | −15.0 −15.0 | −16.0 −9.0 | −30.0 −19.0 | |
AME | 1.95 | 273.00 | 128.10 * 258.00 | −15.0 −15.0 | −46.0 −27.0 | −25.0 −18.0 | |
AOH | 1.80 | 259.00 | 185.10 * 213.10 | −14.0 −14.0 | −32.0 −26.0 | −12.0 −22.0 | |
TeA | 1.80 | 198.10 | 125.00 * 153.10 | −11.0 −11.0 | −17.0 −14.0 | −24.0 −16.0 | |
TEN | 2.12 | 415.20 | 199.20 * 312.20 | −13.0 −12.0 | −15.0 −23.0 | −12.0 −12.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, H.; Han, W.; Fei, S.; Li, Y.; Huang, J.; Dong, M.; Wang, L.; Wang, W.; Zhang, Y. Development of Acid Hydrolysis-Based UPLC–MS/MS Method for Determination of Alternaria Toxins and Its Application in the Occurrence Assessment in Solanaceous Vegetables and Their Products. Toxins 2023, 15, 201. https://doi.org/10.3390/toxins15030201
Tang H, Han W, Fei S, Li Y, Huang J, Dong M, Wang L, Wang W, Zhang Y. Development of Acid Hydrolysis-Based UPLC–MS/MS Method for Determination of Alternaria Toxins and Its Application in the Occurrence Assessment in Solanaceous Vegetables and Their Products. Toxins. 2023; 15(3):201. https://doi.org/10.3390/toxins15030201
Chicago/Turabian StyleTang, Hongxia, Wei Han, Shaoxiang Fei, Yubo Li, Jiaqing Huang, Maofeng Dong, Lei Wang, Weimin Wang, and Ying Zhang. 2023. "Development of Acid Hydrolysis-Based UPLC–MS/MS Method for Determination of Alternaria Toxins and Its Application in the Occurrence Assessment in Solanaceous Vegetables and Their Products" Toxins 15, no. 3: 201. https://doi.org/10.3390/toxins15030201
APA StyleTang, H., Han, W., Fei, S., Li, Y., Huang, J., Dong, M., Wang, L., Wang, W., & Zhang, Y. (2023). Development of Acid Hydrolysis-Based UPLC–MS/MS Method for Determination of Alternaria Toxins and Its Application in the Occurrence Assessment in Solanaceous Vegetables and Their Products. Toxins, 15(3), 201. https://doi.org/10.3390/toxins15030201