Assessment of Fusarium-Damaged Kernels in Common Wheat in Romania in the Years 2015 and 2016 with Extreme Weather Events
Abstract
:1. Introduction
2. Results
2.1. Agrometeorologic Factors in Romania, in the Agricultural Years 2015 and 2016
2.2. Fusarium-Damaged Kernels in Common Wheat in Romania in 2015 and 2016
2.2.1. FDKs in Common Wheat by Agricultural Year and Agricultural Region in Romania in 2015 and 2016
2.2.2. FDKs in Common Wheat by Geographic Position in Romania in 2015 and 2016
2.2.3. FDKs in Common Wheat by Soil in Romania in 2015 and 2016
2.2.4. FDKs in Common Wheat by Aridity Indices in Romania in 2015 and 2016
De Martonne Aridity Index (Iar-dM)
Climatic Water Deficit (CWD)
3. Discussion
3.1. Agrometeorologic Factors in Romania in the Agricultural Years 2015 and 2016
3.2. Fusarium-Damaged Kernels in Common Wheat in Romania in 2015 and 2016
3.2.1. FDKs in Common Wheat by Agricultural Year and Region in Romania in 2015 and 2016
3.2.2. FDKs in Common Wheat by Geographic Position in Romania in 2015 and 2016
3.2.3. FDK Values in Common Wheat by Soil in Romania in 2015 and 2016
3.2.4. FDKs in Common Wheat by Aridity Indices in Romania in 2015 and 2016
De Martonne Aridity Index (Iar-dM)
Climatic Water Deficit (CWD)
4. Conclusions
5. Materials and Methods
5.1. Sampling
5.2. Analysis of Fusarium-Damaged Kernels in Common Wheat
5.3. Geographic Coordinates
5.4. Agroclimatic Data
5.5. Data Processing and Statistical Analysis
5.6. Spatial and Geographic Distribution
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 25 November 2021).
- Khadka, K.; Earl, H.J.; Raizada, M.N.; Navabi, A. A Physio-Morphological Trait-Based Approach for Breeding Drought Tolerant Wheat. Front. Plant Sci. 2020, 11, 26. [Google Scholar] [CrossRef] [PubMed]
- Lantican, M.A.; Braun, M.J.; Payne, T.S.; Singh, T.P.; Sonder, K.; Baum, M.; van Ginkel, M.; Erenstein, O. Impacts of International Wheat Improvement Research 1994–2014; CIMMYT: Mexico City, Mexico, 2016; p. 74. Available online: https://www.researchgate.net/publication/299730139_Impacts_of_international_wheat_improvement_research_1994-2014 (accessed on 5 March 2022).
- Chen, D.; Chen, H.W. Using the Köppen classification to quantify climate variation and change: An example for 1901–2010. Environ. Dev. 2013, 6, 69–79. [Google Scholar] [CrossRef]
- Google Earth. Google Landsat. Available online: https://earth.google.com/web/ (accessed on 9 December 2021).
- Hofstätter, M.; Blöschl, G. Vb Cyclones Synchronized with the Arctic-/North Atlantic Oscillation. J. Geophys. Res. Atmos. 2019, 124, 3259–3278. [Google Scholar] [CrossRef] [PubMed]
- Mîndrescu, M.; Grădinaru, I. Central and Eastern Europe paleoscience symposium: From local to global. Past Glob. Chang. Mag. 2017, 25, 114. [Google Scholar] [CrossRef] [Green Version]
- Hofstätter, M.; Chimani, B.; Lexer, A.; Bloschl, G. A new classification scheme of European cyclone tracks with relevance to precipitation. Water Resour. Res. 2016, 52, 7086–7104. [Google Scholar] [CrossRef]
- Apostol, L. The Mediterranean cyclones—The role in ensuring water resources and their potential of climatic risk, in the east of Romania. Present Environ. Sustain. Dev. 2008, 2, 43–163. [Google Scholar]
- Gagiu, V.; Mateescu, E.; Dobre, A.A.; Smeu, I.; Cucu, M.E.; Oprea, O.A.; Alexandru, D.; Iorga, E.; Belc, N. Deoxynivalenol occurrence in triticale crops in Romania during the 2012–2014 period with extreme weather events. Toxins 2021, 13, 456. [Google Scholar] [CrossRef]
- Stănilă, A.-L.; Dumitru, M. Soils Zones in Romania and Pedogenetic Processes. Agric. Agric. Sci. Procedia 2016, 10, 135–139. [Google Scholar] [CrossRef] [Green Version]
- European Commission (EC). Soil Atlas of Europe, European Soil Bureau Network; Office for Official Publications of the European Communities: Luxembourg, 2005; p. L-2995. Available online: https://esdac.jrc.ec.europa.eu/Projects/Soil_Atlas/Download/Atlas.pdf (accessed on 9 December 2021).
- Tabuc, C.; Taranu, I.; Calin, L. Survey of moulds and mycotoxin contamination of cereals in South-Eastern Romania in 2008–2010. Arch. Zootech. 2011, 14, 25–38. Available online: https://ibna.ro/arhiva/AZ%2014-4/AZ%2014-4_02%20Tabuc.pdf (accessed on 15 October 2020).
- Ion, V. Phytotechnics (University Course, Book). Faculty of Horticulture. University of Agricultural Sciences and Veterinary Medicine in Bucharest, Romania, 2010; p. 143. Available online: https://www.horticultura-bucuresti.ro/images/pdf/Fitotehnie.pdf (accessed on 9 December 2021). (In Romanian).
- Stanciu, O.; Juan, C.; Berrada, H.; Miere, D.; Loghin, F.; Mañes, J. Study on Trichothecene and Zearalenone Presence in Romanian Wheat Relative to Weather Conditions. Toxins 2019, 11, 163. [Google Scholar] [CrossRef] [Green Version]
- Ionita, M.; Tallaksen, L.M.; Kingston, D.G.; Stagge, J.H.; Laaha, G.; Van Lanen, H.A.J.; Scholz, P.; Chelcea, S.M.; Haslinger, K. The European 2015 drought from a climatological perspective. Hydrol. Earth Syst. Sci. 2017, 21, 1397–1419. [Google Scholar] [CrossRef] [Green Version]
- Dong, B.; Sutton, R.; Shaffrey, L.; Wilcox, L. The 2015 European heatwave. Bull. Am. Meteorol. Soc. 2016, 97, S57–S62. [Google Scholar] [CrossRef]
- World Weather Attribution Initiative (WWAI). Rainstorms in France and Germany, May 2016. 9 June 2016. Partners: Environmental Change Institute, University of Oxford; Royal Netherlands Meteorological Institute (KNMI); Red Cross Red Crescent Climate Centre. 2016. Available online: https://www.worldweatherattribution.org/european-rainstorms-may-2016/?fbclid=IwAR2v5GKsK7Tkd0Rsk7xKKGSIp47ajEYE4LSxzugZlQC8L-d7aXCzRqufrVg (accessed on 9 December 2021).
- Davies, R. France—Thousands Evacuated after River Levels Hit 100 Year High. FloodList, 2 June 2016. Available online: https://floodlist.com/europe/france-rivers-levels-hit-100-year-high-june-2016?fbclid=IwAR1NY2cVy2p4LEvMW1OcUyUhNvAt_ZjbuyauJE8m7sB1YKGaXQ0k_zpb1d4 (accessed on 9 December 2021).
- Alfieri, L.; Feyen, L.; Salamon, P.; Thielen, J.; Bianchi, A.; Dottori, F.; Burek, P. Modelling the socio-economic impact of river floods in Europe. Nat. Hazards Earth Syst. Sci. 2016, 16, 1401–1411. [Google Scholar] [CrossRef] [Green Version]
- World Meteorological Organization (WMO). 2015 Second Hottest Year on Record for Europe. 2015. Available online: https://public.wmo.int/en/media/news/2015-second-hottest-year-record-europe (accessed on 12 January 2022).
- National Oceanic and Atmospheric Administration (NOAA). Europe. Percent of Normal Precipitation in May and June in 2015 and 2016. Available online: http://www.weather-info.co.uk/wxsvc/Verification.html (accessed on 23 December 2021).
- Stephenson, D.B. Definition, diagnosis, and origin of extreme weather and climate events. In Climate Extremes and Society; Diaz, H.F., Murnane, R.J., Eds.; Cambridge University Press: Cambridge, UK, 2008; pp. 11–23. Available online: https://empslocal.ex.ac.uk/people/staff/dbs202/publications/2008/extremes.pdf (accessed on 12 September 2020).
- European Academies Science Advisory Council (EASAC). Extreme Weather Events in Europe. Preparing for Climate Change Adaptation: An Update on EASAC’s 2013 Study. Statement. Extreme Weather Events 2018; pp. 1–8. Available online: https://easac.eu/media-room/press-releases/details/new-data-confirm-increased-frequency-of-extreme-weather-events-european-national-science-academies-urge-further-action-on-climate-change-adaptation/ (accessed on 12 September 2020).
- European Academies Science Advisory Council (EASAC). Trends in Extreme Weather Events in Europe: Implications for National and European Union Adaptation Strategies. EASAC Policy Report 22 November 2013; ISBN 978-3-8047-3239-1. Available online: https://www.leopoldina.org/uploads/tx_leopublication/2013_Easac_Report_Extreme_Weather_Events.pdf (accessed on 12 September 2020).
- Wolf, G.; Czaja, A.; Brayshaw, D.J.; Klingaman, N.P. Connection between sea surface anomalies and atmospheric quasi-stationary waves. J. Clim. 2020, 33, 201–212. [Google Scholar] [CrossRef]
- Rutkin, A. What’s Causing the Devastating Floods in France and Germany? 3 June 2016. Available online: https://www.newscientist.com/article/2092131-whats-causing-the-devastating-floods-in-france-and-germany/ (accessed on 9 December 2021).
- The Guardian. Omega Block is Nature’s Secret Weapon. 16 June 2016. Available online: https://www.theguardian.com/science/2016/jun/16/omega-block-natures-secret-weapon-weatherwatch (accessed on 9 December 2021).
- Oprea, O.-A.; Mateescu, E.; Barbu, A.; Tudor, R. Extreme dry years in the 21st century at the level of the agricultural areas of Muntenia, Romania. Sciendo 2018, 1, 101–109. [Google Scholar] [CrossRef] [Green Version]
- National Meteorological Administration (NMA). Annual Report. 2015. Available online: https://www.meteoromania.ro/wp-content/uploads/raport/Raport-2015.pdf (accessed on 9 December 2021). (In Romanian).
- van Lanen, H.A.J.; Laaha, G.; Kingston, D.G.; Gauster, T.; Ionita, M.; Vidal, J.P.; Vlnas, R.; Tallaksen, L.M.; Stahl, K.; Hannaford, J.; et al. Hydrology needed to manage droughts: The 2015 European case. Hydrol. Process. 2016, 30, 3097–3104. [Google Scholar] [CrossRef] [Green Version]
- Covaci, I.E.; Dragomir, M. Inundațiile din Moldova de la începutul lunii iunie 2016 [Floods in Moldavia in Early June 2016]. Revista Stiintifica a Administratiei Nationale de Meteorologie 2016; pp. 14–26. Available online: https://www.meteoromania.ro/wp-content/uploads/revista_stiintifica/revistastiintifica2016.pdf (accessed on 9 December 2021).
- National Meteorological Administration (NMA). Annual Report. 2016. Available online: https://www.meteoromania.ro/wp-content/uploads/raport/Raport-2016.pdf (accessed on 9 December 2021). (In Romanian).
- Mediafax. Cod Rosu de Inundatii, Extins in noua Judete din Moldova si Prelungit pana Sambata dupa Amiaza (Harta-Video) [Red Flood Code, Extended to Nine Counties in Moldavia and Extended until Saturday Afternoon (Video-Map)]. 2016. Available online: https://www.mediafax.ro/social/cod-rosu-de-inundatii-in-moldova-doi-oameni-si-au-pierdut-viata-iar-peste-doua-sute-au-fost-evacuati-din-cauza-inundatiilor-harta-video-15421251 (accessed on 9 December 2021).
- Lupo, A.R. Atmospheric blocking events: A review. Ann. N. Y. Acad. Sci. 2020, 1504, 5–24. [Google Scholar] [CrossRef] [PubMed]
- Woollings, T.; Barriopedro, D.; Methven, J.; Son, S.-W.; Martius, O.; Harvey, B.; Sillmann, J.; Lupo, A.R.; Seneviratne, S. Blocking and its Response to Climate Change. Curr. Clim. Chang. Rep. 2018, 4, 287–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meteorological Office (MetOffice). Blocking Weather Patterns (Video). Youtube. 2017. Available online: https://www.youtube.com/watch?v=Fr2EmBYDK_8 (accessed on 24 November 2021).
- Shabbar, A.; Huang, J.; Higuchi, K. The relationship between the wintertime North Atlantic Oscillation and blocking episodes in the North Atlantic. Int. J. Climatol. 2001, 21, 355–369. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration (NOAA). Basic Wave Patterns. National Weather Services. Available online: https://www.weather.gov/jetstream/basic (accessed on 14 December 2021).
- American Meteorological Society (AMS). Blocking. Gloss. Meteorol. 2012. Available online: https://glossary.ametsoc.org/wiki/Blocking (accessed on 9 December 2021).
- Vautard, R.; Colette, A.; van Meijgaard, E.; Meleux, F.; van Oldenborgh, G.J.; Otto, F.; Tobin, I.; Yiou, P. Attribution of wintertime anticyclonic stagnation contributing to air pollution in western Europe. Bull. Am. Meteorol. Soc. 2016, 99, S54–S59. [Google Scholar] [CrossRef] [Green Version]
- Slessarev, E.W.; Lin, Y.; Bingham, N.L.; Johnson, J.; Dai, Y.; Schimel, J.P.; Chadwick, O.A. Water balance creates a threshold in soil pH at the global scale. Nature 2016, 540, 567–569. [Google Scholar] [CrossRef] [PubMed]
- Leplat, J.; Friberg, H.; Abid, M.; Steinberg, C. Survival of Fusarium graminearum, the causal agent of Fusarium head blight. A review. Agron. Sustain. Dev. 2012, 33, 97–111. [Google Scholar] [CrossRef]
- Young, I.; Ritz, K. Tillage, habitat space and function of soil microbes. Soil Tillage Res. 2000, 53, 201–213. [Google Scholar] [CrossRef]
- Shah, L.; Ali, A.; Yahya, M.; Zhu, Y.; Wang, S.; Si, H.; Rahman, H.; Ma, C. Integrated control of Fusarium Head Blight and deoxynivalenol mycotoxin in wheat. Plant Pathol. 2018, 67, 532–548. [Google Scholar] [CrossRef]
- Jimenez-Garcia, S.N.; Garcia-Mier, L.; Garcia-Trejo, J.F.; Ramirez-Gomez, X.S.; Guevara-Gonzalez, R.G.C.; Feregrino-Perez, A.A. Fusarium mycotoxins and metabolites that modulate their production. Fusarium-Plant Dis. Pathog. Divers. Genet. Divers. Resist. Mol. Markers 2018, 23–40. [Google Scholar] [CrossRef] [Green Version]
- Waalwijk, C.; Vanheule, A.; Audenaert, K.; Zhang, H.; Warris, S.; van de Geest, H.; van der Lee, T. Fusarium in the age of genomics. Trop. Plant Pathol. 2017, 42, 184–189. [Google Scholar] [CrossRef] [Green Version]
- Backhouse, D. Global distribution of Fusarium graminearum, F. asiaticum and F. boothii from wheat in relation to climate. Eur. J. Plant Pathol. 2014, 139, 161–173. [Google Scholar] [CrossRef]
- Trail, F. For blighted waves of grain: Fusarium graminearum in the postgenomics era. Plant Physiol. 2009, 149, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Champeil, A.; Doré, T.; Fourbet, J.-F. Fusarium head blight: Epidemiological origin of the effects of cultural practices on head blight attacks and the production of mycotoxins by Fusarium in wheat grains. Plant Sci. 2004, 166, 1389–1415. [Google Scholar] [CrossRef]
- Mesterhazy, A. Updating the Breeding Philosophy of Wheat to Fusarium Head Blight (FHB): Resistance Components, QTL Identification, and Phenotyping—A Review. Plants 2020, 9, 1702. [Google Scholar] [CrossRef] [PubMed]
- Mesterhazy, A. Types and components of resistance to Fusarium head blight of wheat. Plant Breed. 1995, 114, 377–386. [Google Scholar] [CrossRef]
- Khaeim, H.M.; Clark, A.; Pearson, T.; Van Sanford, D. Methods of assessing Fusarium damage to wheat kernels. Al-Qadisiyah J. Agric. Sci. 2019, 9, 297–308. Available online: https://agris.fao.org/agris-search/search.do?recordID=DJ20210171273 (accessed on 12 January 2022). [CrossRef]
- ISO 7970:2009; Wheat (Triticum aestivum L.)—Specification. (Replaced by ISO 7970:2011).
- ISO 7970:2011; Wheat (Triticum aestivum L.)—Specification. (Replaced by ISO 7970:2021).
- ISO 7970:2021; Wheat (Triticum aestivum L.)—Specification. Available online: https://www.iso.org/standard/75731.html (accessed on 12 January 2022).
- EN 15587:2018; Cereal and Cereal Products—Determination of Besatz in Wheat (Triticum aestivum L.), Durum Wheat (Triticum durum Desf.), Rye (Secale cereale L.), Triticale (Triticosecale Wittmack spp.) and Feed Barley (Hordeum vulgare L.). Available online: https://www.en-standard.eu/bs-en-15587-2018-cereal-and-cereal-products-determination-of-besatz-in-wheat-durum-wheat-rye-triticale-and-feed-barley/?gclid=EAIaIQobChMIjM2-44aY9gIVFeJ3Ch1kHgknEAMYASAAEgLYDfD_BwE (accessed on 12 January 2022).
- SR EN 15587:2019; Cereale și Produse Cerealiere. Determinarea Conținutului de Impurități în Grâu (Triticum aestivum L.), Grâu Durum (Triticum durum Desf.), Secară (Secale cereale L.), Triticale (Triticosecale Wittmack spp.) și orz Pentru Hrana Animalelor (Hordeum vulgare L.). Available online: https://magazin.asro.ro/ro/standard/271011 (accessed on 12 January 2022).
- Canadian Grain Commission. Wheat: Grading Factors. Available online: https://www.grainscanada.gc.ca/en/grain-quality/official-grain-grading-guide/04-wheat/grading-factors.html (accessed on 12 January 2022).
- Ackerman, A.J.; Holmes, R.; Gaskins, E.; Jordan, K.E.; Hicks, D.S.; Fitzgerald, J.; Griffey, C.A.; Mason, R.E.; Harrison, S.A.; Murphy, J.P.; et al. Evaluation of Methods for Measuring Fusarium-Damaged Kernels of Wheat. Agronomy 2022, 12, 532. [Google Scholar] [CrossRef]
- Alisaac, E.; Behmann, J.; Rathgeb, A.; Karlovsky, P.; Dehne, H.-W.; Mahlein, A.-K. Assessment of Fusarium Infection and Mycotoxin Contamination of Wheat Kernels and Flour Using Hyperspectral Imaging. Toxins 2019, 11, 556. [Google Scholar] [CrossRef] [Green Version]
- Paul, R.A.; Lipps, P.E.; Madden, L.V. Relationship between visual estimates of Fusarium Head Blight intensity and deoxynivalenol accumulation in harvested wheat grain: A meta-analysis. Phytopathology 2005, 95, 225–236. [Google Scholar] [CrossRef] [Green Version]
- Ochodzki, P.; Twardawska, A.; Wiśniewska, H.; Góral, T. Resistance to Fusarium Head Blight, Kernel Damage, and Concentrations of Fusarium Mycotoxins in the Grain of Winter Wheat Lines. Agronomy 2021, 11, 1690. [Google Scholar] [CrossRef]
- Edwards, S.G.; Kharbikar, L.L.; Dickin, E.T.; MacDonald, S.; Scudamore, K.A. Impact of pre-harvest rainfall on the distribution of Fusarium mycotoxins in wheat mill fractions. Food Control 2018, 89, 150–156. [Google Scholar] [CrossRef]
- Belluco, B.; de Camargo, A.C.; da Gloria, E.M.; dos Santos Dias, C.T.; Button, D.C.; Calori-Domingues, M.A. Deoxynivalenol in wheat milling fractions: A critical evaluation regarding ongoing and new legislation limits. J. Cereal Sci. 2017, 77, 284–290. [Google Scholar] [CrossRef]
- Paterson, R.R.M.; Lima, N. How will climat change affect mycotoxins in food? Food Res. Int. 2010, 43, 1902–1914. [Google Scholar] [CrossRef] [Green Version]
- Tirado, M.C.; Clarke, R.; Jaykus, L.A.; McQuatters-Gollop, A.; Frank, J.M. Climate change an food safety: A review. Food Res. Int. 2010, 43, 1745–1765. [Google Scholar] [CrossRef]
- Bacala, R.; Fu, B.X.; Cordova, K.; Hatcher, D.W. Wheat Fusarium Protease Specificity and Effect on Dough Properties. Foods 2021, 10, 1585. [Google Scholar] [CrossRef] [PubMed]
- Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Global Mycotoxin Occurrence in Feed: A Ten-Year Survey. Toxins 2019, 11, 375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gagiu, V.; Mateescu, E.; Armeanu, I.; Dobre, A.A.; Smeu, I.; Cucu, M.E.; Oprea, O.A.; Iorga, E.; Belc, N. Post-Harvest Contamination with Mycotoxins in the Context of the Geographic and Agroclimatic Conditions in Romania. Toxins 2018, 10, 533. [Google Scholar] [CrossRef] [Green Version]
- Gagiu, V. Triticale Crop and Contamination with Mycotoxins under the Influence of Climate Change—Global Study. J. Hyg. Eng. Des. 2018, 23, 30–45. Available online: https://keypublishing.org/jhed/jhed-volumes/jhed-volume-23-fqs-4-valeria-gagiu-2018-triticale-crop-and-contamination-with-mycotoxins-under-the-influence-of-climate-change-global-study/ (accessed on 9 December 2021).
- Trabucco, A.; Zomer, R. Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v2. figshare. Fileset. CGIAR Consort. Spat. Inf. (CGIAR-CSI) 2019. Available online: https://figshare.com/articles/dataset/Global_Aridity_Index_and_Potential_Evapotranspiration_ET0_Climate_Database_v2/7504448/3?file=13901336 (accessed on 9 December 2021).
- Pasquali, M.; Beyer, M.; Logrieco, A.; Audenaert, K.; Balmas, V.; Basler, R.; Boutigny, A.-L.; Chrpová, J.; Czembor, E.; Gagkaeva, T.; et al. A European Database of Fusarium graminearum and F. culmorum Trichothecene Genotypes. Front. Microbiol. 2016, 7, 406. [Google Scholar] [CrossRef] [Green Version]
- Schatzmayr, G.; Streit, E. Global occurrence of mycotoxins in the food and feed chain: Facts and figures. World Mycotoxin J. 2013, 6, 213–222. [Google Scholar] [CrossRef]
- National Aeronautics and Space Administration (NASA). Impact of Climate Change on Global Wheat Yields. Visualizations by Mark SubbaRao, Released on 1 September 2021. Available online: https://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=4914 (accessed on 5 March 2022).
- Battilani, P.; Toscano, P.; van der Fels-Klerx, H.J.; Moretti, A.; Camardo Leggieri, M.; Brera, C.; Rortais, A.; Goumperis, T.; Robinson, T. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Sci. Rep. 2016, 6, 24328. [Google Scholar] [CrossRef] [Green Version]
- Busuioc, A.; Caian, M.; Bojariu, R.; Boroneant, C.; Baciu, M.; Dumitrescu, A. Scenarii de schimbare a regimului climatic in Romania pentru perioada 2001–2030 [Scenarios for changing the climate regime in Romania for the period 2001–2030]. Brochure on the website of the Ministry of Environment, Waters and Forests. Admin. Naț. Met. București 2012, 25. Available online: http://mmediu.ro/new/wp-content/uploads/2014/02/2012-04-23_schimbari_climatice_schimbareregimclimatic2001_2030.pdf (accessed on 9 December 2021).
- Ministerul Agriculturii și Dezvoltării Rurale (MADR). MANUAL din 5 iulie 2017 de Gradare Pentru Semințe de Consum [MANUAL of 5 July 2017 Grading for Consumer Seeds]. Publicat în Monitorul Oficial nr. 537 bis din 10 iulie. 2017. Available online: http://legislatie.just.ro/Public/DetaliiDocumentAfis/192063 (accessed on 1 February 2022).
- Stadtherr, L.; Coumou, D.; Petoukhov, V.; Petri, S.; Rahmstorf, S. Record Balkan floods of 2014 linked to planetary wave resonance. Sci. Adv. 2016, 2, e1501428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ionita, M.; Dima, M.; Lohmann, G.; Scholz, P.; Rimbu, N. Predicting the June 2013 European Flooding Based on Precipitation, Soil Moisture, and Sea Level Pressure. J. Hydrometeorol. 2015, 16, 598–614. [Google Scholar] [CrossRef] [Green Version]
- Schröter, K.; Kunz, M.; Elmer, F.; Mühr, B.; Merz, B. What made the June 2013 flood in Germany an exceptional event? A hydro-meteorological evaluation. Hydrol. Earth Syst. Sci. 2015, 19, 309–327. [Google Scholar] [CrossRef] [Green Version]
- Zurich Insurance Company. Balkan Floods of May 2014: Challenges Facing Flood Resilience in a Former War Zone. A Zurich Flood Resilience Program Case Study. 2015. Available online: https://www.preventionweb.net/files/44332_44332zurichrisknexusmay2015balkanfl.pdf (accessed on 28 June 2021).
- International Commission for the Protection of the Danube River (ICPDR). Floods in June 2013 in the Danube River Basin. A Brief Overview of Key Events and Lessons Learned; International Commission for the Protection of the Danube River (ICPDR): Vienna, Austria, 2014; pp. 1–30. Available online: https://www.icpdr.org/main/sites/default/files/nodes/documents/icpdr_floods-report-web_0.pdf (accessed on 1 March 2022).
- Strelec Mahović, N.; Renko, T.; Tutiš, V.; Trošić, T. Synoptic Analysis of the Catastrophic Floods in SE Europe, May 2014. Newsletter of the Working Group on Co-operation Between European Forecasters (WGCEF) N° 20. Eur. Forecast. 2015, 43–47. Available online: http://www.euroforecaster.org/newsletter20/dhmz.pdf (accessed on 8 September 2020).
- Polifronie, E.M. Luna iulie 2014—A patra cea mai ploioasă din ultimii 50 de ani [July 2014—The fourth Rainiest in the last 50 Years]. Rev. Științifică Admin. Naț. Meteorol. Bucuresti 2014, 42–57. Available online: https://www.meteoromania.ro/despre-noi/cercetare/revista-stiintifica/revista-stiintifica-2014/ (accessed on 5 February 2021).
- World Meteorological Organization (WMO). Assessment of the Observed Extreme Conditions during Late Boreal Winter 2011/2012. In World Meteorological Organization, Weather—Climate—Water, WCDMP; World Meteorological Org. (WMO): Geneva, Switzerland, 2013; Volume 80, p. 16. Available online: https://library.wmo.int/doc_num.php?explnum_id=5067 (accessed on 1 February 2022).
- Bloschl, G.; Nester, T.; Komma, J.; Parajka, J.; Perdigão, R.A.P. The June 2013 flood in the Upper Danube Basin, and comparisons with the 2002, 1954 and 1899 floods. Hydrol. Earth Syst. Sci. 2013, 17, 5197–5212. [Google Scholar] [CrossRef] [Green Version]
- National Administration Romanian Waters (NARW). Raport ‘’Evaluarea Preliminară a Riscului la Inundații’’ 2010-2016 (Report ‘’Preliminary Flood Risk Assessment‘’ 2010–2016). Administrația Bazinală De Apă Buzău—Ialomița. p. 97. Available online: http://www.inhga.ro/documents/10184/386602/PFRA_Report_RO5.pdf/1f0fae43-c468-4343-8d0e-695492c07368 (accessed on 28 June 2021).
- Kautz, L.-A.; Martius, O.; Pfahl, S.; Pinto, J.G.; Ramos, A.M.; Sousa, P.M.; Woollings, T. Atmospheric Blocking and Weather Extremes over the Euro-Atlantic Sector—A Review. Weather Clim. Dyn. 2021, 3, 305–336. [Google Scholar] [CrossRef]
- Wu, B.; Yang, K.; Francis, J.A. A Cold Event in Asia during January–February 2012 and Its Possible Association with Arctic Sea Ice Loss. J. Clim. 2017, 30, 7971–7990. [Google Scholar] [CrossRef]
- Gagiu, V.; Mateescu, E.; Cucu, M.E.; Dobre, A.A.; Oprea, O.A.; Smeu, I.; Pîrvu, G.P.; Vătuiu, I. Grain contamination with Fusarium sp. and deoxynivalenol under influence of the agro-climatic conditions from Romania in the year 2015–2016. In Proceedings of the Communication Summaries of The Food Integrity Conference, 30–31 August 2017; Editura Printech: București, Romania, 2017; p. 51, ISBN 978-606-23-0765-3. [Google Scholar]
- Gagiu, V.; Doja, L.; Mateescu, E.; Smeu, I.; Cucu, M.E.; Dobre, A.A.; Oprea, O.; Iorga, E.; Belc, N. Contamination with Deoxynivalenol in the Milling—Bakery Industry under the Influence of Climatic Conditions from Romania. J. Hyg. Eng. Des. 2016, 16, 38–44. Available online: https://keypublishing.org/jhed/jhed-volumes/jhed-volume-16-fqs-5-valeria-gagiu-livia-doja-elena-mateescu-irina-smeu-mirela-elena-cucu-alina-alexandra-dobre-oana-oprea-enuta-iorga-nastasia-belc-2016-contamination-with-deoxyni/ (accessed on 20 January 2022).
- Lenc, L.; Czecholiński, G.; Wyczling, D.; Turów, T.; Kaźmierczak, A. Fusarium head blight (FHB) and Fusarium spp. on grain of spring wheat cultivars grown in Poland. J. Plant Prot. Res. 2015, 55, 265–277. [Google Scholar] [CrossRef]
- Topi, D.; Babič, J.; Pavšič Vrtač, K.; Tavčar-Kalcher, G.; Jakovac-Strajn, B. Incidence of Fusarium Mycotoxins in Wheat and Maize from Albania. Molecules 2020, 26, 172. [Google Scholar] [CrossRef] [PubMed]
- Leggieri, M.C.; Lanubile, A.; Dall’Asta, C.; Pietri, A.; Battilani, P. The impact of seasonal weather variation on mycotoxins: Maize crop in 2014 in northern Italy as a case study. World Mycotoxin J. 2020, 13, 25–36. [Google Scholar] [CrossRef]
- Kos, J.; Hajnal, E.J.; Malachová, A.; Steiner, D.; Stranska, M.; Krska, R.; Poschmaier, B.; Sulyok, M. Mycotoxins in maize harvested in the Republic of Serbia in the period 2012–2015. Part 1: Regulated mycotoxins and its derivatives. Food Chem. 2020, 312, 126034. [Google Scholar] [CrossRef] [PubMed]
- Kos, J.; Hajnal, E.J.; Šarić, B.; Jovanov, P.; Nedeljković, N.; Milovanović, I.; Krulj, J. The influence of climate conditions on the occurrence of deoxynivalenol in maize harvested in Serbia during 2013–2015. Food Control 2017, 73, 734–740. [Google Scholar] [CrossRef]
- Svoboda, M.; Blahová, J.; Honzlová, A.; Kalinová, J.; Macharáčková, P.; Rosmus, J.; Mejzlík, V.; Kúkol, P.; Vlasáková, V.; Mikulková, K. Multiannual occurrence of mycotoxins in feed ingredients and complete feeds for pigs in the Czech Republic. Acta Vet. Brno 2019, 88, 291–301. [Google Scholar] [CrossRef] [Green Version]
- Udovicki, B.; Audenaert, K.; De Saeger, S.; Rajkovic, A. Overview on the Mycotoxins Incidence in Serbia in the Period 2004–2016. Toxins 2018, 10, 279. [Google Scholar] [CrossRef] [Green Version]
- Bryła, M.; Waśkiewicz, A.; Podolska, G.; Szymczyk, K.; Jęedrzejczak, R.; Damaziak, K.; Sułek, A. Occurrence of 26 Mycotoxins in the Grain of Cereals Cultivated in Poland. Toxins 2016, 8, 160. [Google Scholar] [CrossRef] [Green Version]
- Tima, H.; Berkics, A.; Hannig, Z.; Ittzés, A.; Nagy, E.K.; Mohácsi-Farkas, C.; Kiskó, G. Deoxynivalenol in wheat, maize, wheat flour and pasta: Surveys in Hungary in 2008–2015. Food Addit. Contam. Part B Surveill. 2017, 11, 37–42. [Google Scholar] [CrossRef]
- Van Der Fels-Klerx, H.; Adamse, P.; Punt, A.; Van Asselt, E.D. Data Analyses and Modelling for Risk Based Monitoring of Mycotoxins in Animal Feed. Toxins 2018, 10, 54. [Google Scholar] [CrossRef] [Green Version]
- Pleadin, J.; Vasilj, V.; Petrovic, D.; Frece, J.; Vahcic, N.; Jahic, S.; Markov, K. Annual variations of Fusarium mycotoxins in unprocessed maize, wheat and barley from Bosnia and Herzegovina. Croat. J. Food Sci. Technol. 2017, 9, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Pleadin, J.; Frece, J.; Lešić, T.; Zadravec, M.; Vahčić, N.; Staver, M.M.; Markov, K. Deoxynivalenol and zearalenone in unprocessed cereals and soybean from different cultivation regions in Croatia. Food Addit. Contam. Part B Surveill. 2017, 10, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Vogelgsang, S.; Musa, T.; Bänziger, I.; Kägi, A.; Bucheli, T.D.; Wettstein, F.E.; Pasquali, M.; Forrer, H.-R. Fusarium Mycotoxins in Swiss Wheat: A Survey of Growers’ Samples between 2007 and 2014 Shows Strong Year and Minor Geographic Effects. Toxins 2017, 9, 246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sumíková, T.; Chrpová, J.; Džuman, Z.; Salava, J.; Štěrbová, L.; Palicová, J.; Slavíková, P.; Stránská-Zachariášová, M.; Hajslova, J. Mycotoxins content and its association with changing patterns of Fusarium pathogens in wheat in the Czech Republic. World Mycotoxin J. 2017, 10, 143–151. [Google Scholar] [CrossRef]
- Aureli, G.; Amoriello, T.; Belocchi, A.; D’Egidio, M.; Fornara, M.; Melloni, S.; Quaranta, F. Preliminary survey on the co-occurrence of DON and T2+HT2 toxins in durum wheat in Italy. Cereal Res. Commun. 2015, 43, 481–491. [Google Scholar] [CrossRef] [Green Version]
- Chrpová, J.; Šíp, V.; Sumíková, T.; Salava, J.; Palicová, J.; Štočková, L.; Džuman, Z.; Hajslova, J. Occurrence of Fusarium species and mycotoxins in wheat grain collected in the Czech Republic. World Mycotoxin J. 2016, 9, 317–327. [Google Scholar] [CrossRef]
- Šliková, S.; Gavurnikova, S.; Hašana, R.; Minarikova, M.; Gregova, E. Deoxynivalenol in Grains of Oats and Wheat Produced in Slovakia. J. Agric. For. 2016, 62, 343–348. [Google Scholar] [CrossRef] [Green Version]
- Mankeviciene, A.; Jablonskytė-Raščė, D.; Maiksteniene, S. Occurrence of mycotoxins in spelt and common wheat grain and their products. Food Addit. Contam. Part A 2014, 31, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Kovasky, P. Mycotoxin Survey 2014—Focus on Russian Poultry and Swine Feed. BIOMIN. 2015. Available online: https://www2.biomin.net/in-te/blog-posts/mycotoxin-survey-2014-focus-on-russian-poultry-and-swine-feed/ (accessed on 9 February 2021).
- Kochiieru, Y.; Mankevičienė, A.; Ceseviciene, J.; Semaškienė, R.; Dabkevičius, Z.; Janavičienė, S. The influence of harvesting time and meteorological conditions on the occurrence of Fusarium species and mycotoxin contamination of spring cereals. J. Sci. Food Agric. 2020, 100, 2999–3006. [Google Scholar] [CrossRef]
- Rapid Alert System for Food and Feed (RASFF). RASFF Annual Reports. Reports and Publications. European Commission. Available online: https://ec.europa.eu/food/safety/rasff/reports_publications_en (accessed on 9 December 2021).
- National Sanitary Veterinary and Food Safety Authority (NSVFSA). Reports on the Implementation of the Single Multiannual National Plan for Integrated Control for Romania (2007–2019). Available online: http://www.ansvsa.ro/informatii-pentru-public/planul-national-multianual-unic-de-control-integrat-pentru-romania/# (accessed on 9 February 2021).
- Tamba-Berehoiu, R.M.; Popa, C.N.; Popescu, S.; Suciu, A. The effect of the Fusarium sp. attack on the quality parameters of Romanian wheat. Sci. Bull. Ser. F Biotechnol. 2012, 16, 73–76. Available online: http://biotechnologyjournal.usamv.ro/index.php/scientific-papers/88-art13 (accessed on 8 April 2021).
- Messmer, M.; Gómez-Navarro, J.J.; Raible, C. Climatology of Vb cyclones, physical mechanisms and their impact on extreme precipitation over Central Europe. Earth Syst. Dyn. 2015, 6, 541–553. [Google Scholar] [CrossRef] [Green Version]
- AgroAtlas Project. Project “Interactive Agricultural Ecological Atlas of Russia and Neighboring Countries. Economic Plants and their Diseases”. 2003. Available online: http://www.agroatlas.ru/en/content/diseases/Tritici/Tritici_Fusarium_graminiarum/index.html (accessed on 9 December 2021).
- Gagkaeva, T.; Gavrilova, O.; Orina, A.; Lebedin, Y.; Shanin, I.; Petukhov, P.; Eremin, S. Analysis of Toxigenic Fusarium Species Associated with Wheat Grain from Three Regions of Russia: Volga, Ural, and West Siberia. Toxins 2019, 11, 252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nugmanov, A.; Beishova, I.; Kokanov, S.; Lozowicka, B.; Kaczynski, P.; Konecki, R.; Snarska, K.; Wołejko, E.; Sarsembayeva, N.; Abdigaliyeva, T. Systems to reduce mycotoxin contamination of cereals in the agricultural region of Poland and Kazakhstan. Crop Prot. 2018, 106, 64–71. [Google Scholar] [CrossRef]
- Cornea, C.P.; Israel-Roming, F.; Ciuca, M.; Voaides, C. Natural occurrence of Fusarium species and corresponding chemotypes in wheat scab complex from Romania. Rom. Biotechnol. Lett. 2013, 18, 8787–8795. Available online: http://www.rombio.eu/vol18nr6/7%20Cornea_Israel.pdf (accessed on 9 December 2021).
- Ittu, M.; Cană, L.; Ciucă, M.; Voaideș, C.; Cornea, P. Phenotypic and marker assisted evaluation of aggressiveness versus wheat in some Romanian Fusarium populations. Rom. Agric. Res. 2012, 29, 289–296. Available online: https://www.incda-fundulea.ro/rar/nr29/rar29.36.pdf (accessed on 9 December 2021).
- Ittu, M.; Cană, L.; Voica, M.; Lupu, C. Multi-environment evaluation od disease occurence, aggressiveness and wheat resistance in wheat/Fusarium pathosystem. Rom. Agric. Res. 2010, 27, 17–26. Available online: https://www.incda-fundulea.ro/rar/nr27/rar27.3.pdf (accessed on 9 December 2021).
- Bozac, P.; Botău, D.; Popescu, S.; Boldura, O.; Alexa, E. Distribution of Fusarium species in Timis County (Western Romania) in relation with environmental conditions. J. Hortic. For. Biotechnol. 2014, 18, 137–140. Available online: https://www.semanticscholar.org/paper/Distribution-of-Fusarium-species-in-Timis-County-in-Bozac-Bot%C4%83u/3fb734a8d2bc5fae0191e577dad7d95a2bf4efe8 (accessed on 9 December 2021).
- Mateescu, E. The Romanian agrometeorological services and products—Current status and challenges in the context of climate change. In Proceedings of the Workshop Agrometeorologists for Farmers in Hotter, Drier, Wetter Future, Ljubljana, Slovenia, 9–10 November 2016; Available online: http://www.dmcsee.org/uploads/file/405_6_elenamateescu.pdf (accessed on 9 December 2021).
- Ministerul Agriculturii, Padurilor si Dezvoltarii Rurale. Calitatea Granelor din Recolta 2011, Nr. 16 (The Quality of the Grains in the Harvest 2011, No. 16); Institutul de Bioresurse Alimentare: București, Romania, 2011; p. 141. ISBN 978-606-521-747-8. [Google Scholar]
- Ministerul Agriculturii, Padurilor si Dezvoltarii Rurale. Calitatea Granelor din Recolta 2010, Nr. 15 (The Quality of the Grains in the harvest 2010, No. 15); Institutul de Bioresurse Alimentare: București, Romania, 2010; p. 136. [Google Scholar]
- Ministerul Agriculturii, Padurilor si Dezvoltarii Rurale. Calitatea granelor din recolta 2008, Nr. 13 (The quality of the grains in the harvest 2008, No. 13); Institutul de Bioresurse Alimentare: București, Romania, 2008; p. 130. ISBN 978-973-88314-8-3. [Google Scholar]
- Mulder, C.; Van Wijnen, H.J.; Van Wezel, A.P. Numerical abundance and biodiversity of below-ground taxocenes along pH gradient across the Netherlands. J. Biogeogr. 2005, 32, 1775–1790. [Google Scholar] [CrossRef]
- European Spatial Planning Observation Network (ESPON). Flood Recurrence in Europe, Based on the Frequency of Floods in the Time Span of 1987–2002. ESPON Data Base. 2019. Available online: https://www.preventionweb.net/files/3827_Floodhazard8702N3.jpg (accessed on 28 October 2020).
- Micu, D. Snow pack in the Romanian Carpathian under changing climatic conditions. Meteorol. Atmos. Phys. 2009, 105, 1–16. [Google Scholar] [CrossRef]
- National Meteorological Administration (NMA). Annual Report. 2014. Available online: https://www.meteoromania.ro/wp-content/uploads/raport/Raport-2014.pdf (accessed on 9 December 2021).
- Flint, A.E.; Flint, A.L.; Thorne, J.H. Climate Change: Evaluating Your Local and Regional Water Resources. U.S. Geol. Surv. (USGS) Fact Sheet 2014, 3098, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Paltineanu, C.; Mihailescu, I.F.; Seceleanu, I.; Dragota, C.; Vasenciuc, F. Using aridity indices to describe some climate and soil features in Eastern Europe: A Romanian case study. Theor. Appl. Climatol. 2007, 90, 263–274. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration. In Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; p. 301. Available online: https://www.fao.org/3/X0490E/X0490E00.htm#Contents (accessed on 9 December 2021).
- Furtak, K.; Grządziel, J.; Gałązka, A.; Gawryjołek, K.; Niedźwiecki, J. Fungal biodiversity and metabolic potential of selected fluvisols from the Vistula River valley in Lubelskie, Poland. Appl. Soil Ecol. 2021, 160, 103866. [Google Scholar] [CrossRef]
- Siebielec, S.; Siebielec, G.; Klimkowicz-Pawlas, A.; Gałązka, A.; Grządziel, J.; Stuczyński, T. Impact of Water Stress on Microbial Community and Activity in Sandy and Loamy Soils. Agronomy 2020, 10, 1429. [Google Scholar] [CrossRef]
- Argiroff, W.A.; Zak, D.; Lanser, C.M.; Wiley, M.J. Microbial Community Functional Potential and Composition Are Shaped by Hydrologic Connectivity in Riverine Floodplain Soils. Microb. Ecol. 2016, 73, 630–644. [Google Scholar] [CrossRef] [PubMed]
- Ponnamperuma, F.N. Effects of flooding on soils. In Flooding and Plant Growth; Chapter 2; Academic Press: Orlando, FL, USA, 1984; pp. 9–45. Available online: https://books.google.ro/books?hl=en&lr=&id=3BlEjXFGae8C&oi=fnd&pg=PA9&ots=QRAVY5iVsg&sig=3XhzSV7WnbNhvbpAKs-RiqgkPGU&redir_esc=y#v=onepage&q&f=false (accessed on 14 January 2021).
- Gagiu, V.; Mateescu, E.; Belc, N. Risk Assessment of Cereal Crops Contamination with Deoxynivalenol in Romania, in 2012; Editura Printech: Bucharest, Romania, 2013; p. 149. ISBN 978-606-23-0053-1. (In Romanian) [Google Scholar]
- Gagiu, V.; Cucu, M.; Dobre, A.; Mateescu, E.; Oprea, O.; Belc, N. Contamination of the Wheat Crop with Deoxynivalenol Mycotoxin in the 2012–2013 Agricultural Year; Editura Inovativ Media: Bucharest, Romania, 2013; p. 200. (In Romanian) [Google Scholar]
- Gagiu, V.; Cucu, M.; Dobre, A.; Mateescu, E.; Oprea, O.; Belc, N. Contamination of Grain Crops with Deoxynivalenol in Romania, in Agricultural Year 2013–2014; Editura Inovativ Media: Bucharest, Romania, 2014; p. 113. ISBN 978-973-0-18158-6. (In Romanian) [Google Scholar]
- National Phytosanitary Authority. Regulatory Service for the Plant Protection—Pestexpert. Available online: https://www.anfdf.ro/ (accessed on 9 April 2022).
- De Martonne, E. Une nouvelle fonction climatologique: L’ indice d’aridité. Meteorologie 1926, 2, 449–458. [Google Scholar]
- Environmental Systems Research Institute (ESRI). ArcGIS. Discover Your Power with ArcGIS. Redlands, CA, USA. Available online: https://www.esri.com/en-us/arcgis/about-arcgis/overview (accessed on 9 December 2021).
Agricultural Region | Geographic Coordinates | Aridity Indices, 1900–2000 | Soil (% Counties) | Fusarium-Damaged Kernels (FDKs) in Common Wheat by Geographic Coordinates, Soil, Aridity Indices and County in Romania in 2015 and 2016 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2015 | 2016 | ||||||||||||||
No. of Samples, Incidence | Interval of FDKs in Common Wheat, Mean ± SD (Median), % | No. of Samples, Incidence | Interval of FDKs in Common Wheat, Mean ± SD (Median), % | ||||||||||||
Latitude, ° N | Longitude, ° E | Iar–dM, mm °C−1 | CWD, mm H2O | Chernozem | Phaeozem | Luvisol | Total | ≥0.01% | ≥1% | Total | ≥0.01% | ≥1% | |||
Dobrogea | 44.6 | 28.5 | 20 | –375 | 100 | 0 | 0 | 2 | 0 0% | 0 0% | 0.00 | 4 | 2 50% | 0 0% | 0.00–0.15 0.06 ± 0.07 (0.04) |
Southern Plain | 44.3 | 26.6 | 26 | –258 | 83.33 | 0 | 16.67 | 7 | 1 14% | 0 0% | 0.00–0.08 0.01 ± 0.03 (0.00) | 14 | 10 71% | 0 0% | 0.00–0.85 0.20 ± 0.25 (0.12) |
Moldavia | 46.8 | 26.9 | 28 | –194 | 12.20 | 0.00 | 7.32 | 14 | 5 36% | 0 0% | 0.00–0.22 0.11 ± 0.25 (0.00) | 17 | 14 82% | 0 0% | 0.02–0.31 0.11 ± 0.09 (0.09) |
Oltenia Plain | 44.4 | 23.7 | 37 | –167 | 33.33 | 23.33 | 33.33 | 9 | 6 67% | 0 0% | 0.00–0.21 0.10 ± 0.09 (0.11) | 10 | 7 70% | 0 0% | 0.07–0.52 0.25 ± 0.18 (0.21) |
Western Plain | 46.5 | 22.1 | 33 | –150 | 4.88 | 0.00 | 4.88 | 37 | 24 65% | 7 19% | 0.00–3.08 0.21 ± 0.58 (0.00) | 20 | 19 95% | 5 14% | 0.02–2.04 0.62 ± 0.58 (0.43) |
Southern Hilly Area | 45.1 | 24.7 | 39 | –93 | 2.44 | 0 | 14.63 | 34 | 13 38% | 1 3% | 0.00–1.37 0.11 ± 0.25 (0.00) | 35 | 32 91% | 3 9% | 0.03–1.70 0.38 ± 0.47 (0.17) |
Transylvania | 46.4 | 24.3 | 46 | –32 | 0 | 4.88 | 21.95 | 32 | 27 84% | 10 31% | 0.00–21.84 2.23 ± 5.40 (0.38) | 37 | 35 95% | 9 24% | 0.04–4.92 0.87 ± 0.99 (0.66) |
Romania | 45.7 | 25.2 | 33 | –181 | 39.02 | 7.32 | 53.66 | 135 | 76 56% | 18 13% | 0.00–21.84 0.45 ± 2.03 (0.00) | 137 | 119 87% | 17 12% | 0.00–4.92 0.82 ± 0.98 (0.50) |
Soil (Scale 1:1,500,000) | Fusarium–Damaged Kernels (FDKs) in Common Wheat by Soil and Agricultural Year in Romania in 2015 and 2016. FDKs (%): Interval, Average ± SD (Median); Sample Incidence (%): Positive Samples (≥0.01%); Samples with FDK ≥1% | ||
---|---|---|---|
2015 | 2016 | 2015–2016 | |
Chernozem | 0.00–5.63 0.40 ± 1.01 (0.00) 23/52 (44.23%) 6/52 (11.54%) | 0.00–4.92 0.38 ± 0.81 (0.09) 36/46 (78.26%) 5/46 (10.87%) | 0.00–5.63 0.39 ± 0.92 (0.06) 59/98 (60.20%) 11/98 (11.22%) |
Phaeozem (Luvic–Phaeozem) | 0.02–21.84 3.19 ± 7.56 (0.46) 8/8 (100%) 2/8 (25%) | 0.00–0.56 0.21 ± 0.19 (0.15) 5/6 (83.33%) 0/6 (0%) | 0.00–21.84 1.91 ± 5.76 (0.23) 13/14 (92.86%) 2/14 (14.29%) |
Luvisol | 0.00–6.33 0.41 ± 0.97 (0.05) 45/75 (60%) 10/75 (13.33%) | 0.00–2.80 0.50 ± 0.59 (0.27) 79/85 (92.94%) 12/85 (14.12%) | 0.00–6.33 0.46 ± 0.79 (0.18) 124/160 (77.50%) 22/160 (13.75%) |
Romania | 0.00–21.84 0.57 ± 2.08 (0.05) 76/135 (56.30%) 18/135 (13.33%) | 0.00–4.92 0.45 ± 0.66 (0.18) 120/137 (87.59%) 17/137 (12.41%) | 0.00–21.84 0.51 ± 1.54 (0.13) 196/272 (72.06%) 35/272 (12.87%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gagiu, V.; Mateescu, E.; Belc, N.; Oprea, O.-A.; Pîrvu, G.-P. Assessment of Fusarium-Damaged Kernels in Common Wheat in Romania in the Years 2015 and 2016 with Extreme Weather Events. Toxins 2022, 14, 326. https://doi.org/10.3390/toxins14050326
Gagiu V, Mateescu E, Belc N, Oprea O-A, Pîrvu G-P. Assessment of Fusarium-Damaged Kernels in Common Wheat in Romania in the Years 2015 and 2016 with Extreme Weather Events. Toxins. 2022; 14(5):326. https://doi.org/10.3390/toxins14050326
Chicago/Turabian StyleGagiu, Valeria, Elena Mateescu, Nastasia Belc, Oana-Alexandra Oprea, and Gina-Pușa Pîrvu. 2022. "Assessment of Fusarium-Damaged Kernels in Common Wheat in Romania in the Years 2015 and 2016 with Extreme Weather Events" Toxins 14, no. 5: 326. https://doi.org/10.3390/toxins14050326
APA StyleGagiu, V., Mateescu, E., Belc, N., Oprea, O. -A., & Pîrvu, G. -P. (2022). Assessment of Fusarium-Damaged Kernels in Common Wheat in Romania in the Years 2015 and 2016 with Extreme Weather Events. Toxins, 14(5), 326. https://doi.org/10.3390/toxins14050326