Estimated Glomerular Filtration Rate in Chronic Kidney Disease: A Critical Review of Estimate-Based Predictions of Individual Outcomes in Kidney Disease
Abstract
:1. Introduction: History of a Concept with Assumptions Conveniently Forgotten
1.1. The Concept of Glomerular Filtration Rate and Its Estimation by Creatinine Clearance
1.2. The Concept of the Estimation of Glomerular Filtration Rate by Estimating the Clearance of a Marker: The Estimation of an Estimation
1.3. Summary of Historical Introduction
2. Renal Function vs. GFR: Fluid Status, Renal Blood Supply, and GFR Variability
3. Renal Function vs. GFR: Proteinuria
4. GFR Variability and Slopes
4.1. GFR Variability
4.2. eGFR Slopes with Renal Disease
4.3. GFR Slope with Ageing
5. Nutrition, Frailty, Metabolic Acidosis, Serum Phosphorus, and Chronic Inflammation
6. Residual Renal Function and Dialysis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Renkin, E.M.; Robinson, R.R. Glomerular filtration. N. Engl. J. Med. 1974, 290, 785–792. [Google Scholar] [CrossRef]
- Bradley, S.E. Clearance Concept in Renal Physiology. In Renal Physiology; Springer: Cham, Switzerland, 1987; pp. 63–100. [Google Scholar]
- Cohen, J.J.; Harrington, J.T.; Kassirer, J.P.; Madias, N.E. Measurement of renal function in chronic renal disease. Kidney Int. 1990, 38, 167–184. [Google Scholar]
- Rehberg, P.B. Studies on Kidney Function: The Rate of Filtration and Reabsorption in the Human Kidney. Biochem. J. 1926, 20, 447–460. [Google Scholar] [CrossRef] [PubMed]
- Smith, H. The Insulin Clearance in the Kidney. In The Kidney; Oxford University Press: New York, NY, USA, 1951; pp. 47–55. [Google Scholar]
- Carrie, B.J.; Golbetz, H.V.; Michaels, A.S.; Myers, B.D. Creatinine: An inadequate filtration marker in glomerular diseases. Am. J. Med. 1980, 69, 177–182. [Google Scholar] [CrossRef]
- Tseng, C.-L.; Lafrance, J.-P.; Lu, S.-E.; Soroka, O.; Miller, D.R.; Maney, M.; Pogach, L.M. Variability in estimated glomerular filtration rate values is a risk factor in chronic kidney disease progression among patients with diabetes. BMC Nephrol. 2015, 16, 34. [Google Scholar] [CrossRef]
- Palant, C.E.; Chawla, L.; Faselis, C.; Li, P.; Pallone, T.L.; Kimmel, P.L.; Amdur, R.L. High serum creatinine nonlinearity: A renal vital sign? Am. J. Physiol. Renal Physiol. 2016, 311, F305–F309. [Google Scholar] [CrossRef]
- Vervoort, G.; Willems, H.L.; Wetzels, J.F. Assessment of glomerular filtration rate in healthy subjects and normoalbuminuric diabetic patients: Validity of a new (MDRD) prediction equation. Nephrol. Dial. Transplant. 2002, 17, 1909–1913. [Google Scholar] [CrossRef]
- Levey, A.S.; Bosch, J.P.; Lewis, J.B.; Greene, T.; Rogers, N.; Roth, D. A More Accurate Method to Estimate Glomerular Filtration Rate from Serum Creatinine: A New Prediction Equation. Modification of diet in renal disease study group. Ann. Intern. Med. 1999, 130, 461–470. [Google Scholar] [CrossRef]
- Cockcroft, D.W.; Gault, M.H. Prediction of creatinine clearance from serum creatinine. Nephron 1976, 16, 31–41. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., III; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A New Equation to Estimate Glomerular Filtration Rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A. Estimating GFR using the CKD epidemiology collaboration (CKD-EPI) creatinine equation: More accurate GFR estimates, lower CKD prevalence estimates, and better risk predictions. Am. J. Kidney Dis. 2010, 55, 622. [Google Scholar] [CrossRef]
- Diao, J.A.; Powe, N.R.; Manrai, A.K. Race-Free Equations for eGFR: Comparing Effects on CKD Classification. J. Am. Soc. Nephrol. 2021, 32, 1868–1870. [Google Scholar] [CrossRef]
- Eknoyan, G.; Lameire, N.; Eckardt, K.; Kaskske, B.L.; Wheeler, D.C. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2013, 3, 5–14. [Google Scholar]
- Porrini, E.; Ruggenenti, P.; Luis-Lima, S.; Carrara, F.; Jiménez, A.; de Vries, A.P.; Torres, A.; Gaspari, F.; Remuzzi, G. Estimated GFR: Time for a critical appraisal. Nat. Rev. Nephrol. 2019, 15, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Rebholz, C.M.; Grams, M.E.; Matsushita, K.; Selvin, E.; Coresh, J. Change in Novel Filtration Markers and Risk of ESRD. Am. J. Kidney Dis. 2015, 66, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Inker, L.A.; Coresh, J. GFR Estimation: From Physiology to Public Health. Am. J. Kidney Dis. 2014, 63, 820–834. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.; Amabile, M.I.; Altieri, S.; Mastroluca, D.; Lai, C.; Aceto, P.; Crudo, M.; D’Angelo, A.R.; Muscaritoli, M.; Molfino, A. Effect of Underlying renal Disease on nutritional and Metabolic Profile of Older adults with reduced renal Function. Front. Nutr. 2017, 4. [Google Scholar] [CrossRef]
- Obert, L.A.; Elmore, S.A.; Ennulat, D.; Frazier, K.S. A Review of Specific Biomarkers of Chronic Renal Injury and Their Potential Application in Nonclinical Safety Assessment Studies. Toxicol. Pathol. 2021, 49, 996–1023. [Google Scholar] [CrossRef]
- Alaini, A.; Malhotra, D.; Rondon-Berrios, H.; Argyropoulos, C.P.; Khitan, Z.J.; Raj, D.S.C.; Rohrscheib, M.; Shapiro, J.I.; Tzamaloukas, A.H. Establishing the presence or absence of chronic kidney disease: Uses and limitations of formulas estimating the glomerular filtration rate. World J. Methodol. 2017, 7, 73–92. [Google Scholar] [CrossRef]
- Madero, M.; Sarnak, M.J. Creatinine-based formulae for estimating glomerular filtration rate: Is it time to change to chronic kidney disease epidemiology collaboration equation? Curr. Opin. Nephrol. Hypertens 2011, 20, 622–630. [Google Scholar] [CrossRef]
- Eriksen, B.O.; Palsson, R.; Ebert, N.; Melsom, T.; van der Giet, M.; Gudnason, V.; Indridasson, O.S.; Inker, L.A.; Jenssen, T.G.; Levey, A.S.; et al. GFR in Healthy Aging: An Individual Participant Data Meta-Analysis of Iohexol Clearance in European Population-Based Cohorts. J. Am. Soc. Nephrol. 2020, 31, 1602–1615. [Google Scholar] [CrossRef] [PubMed]
- Delanaye, P.; Jager, K.J.; Bökenkamp, A.; Christensson, A.; Dubourg, L.; Eriksen, B.O.; Gaillard, F.; Gambaro, G.; van der Giet, M.; Glassock, R.J.; et al. CKD: A Call for an Age-Adapted Definition. J. Am. Soc. Nephrol. 2019, 30, 1785–1805. [Google Scholar] [CrossRef] [PubMed]
- Waas, T.; Schulz, A.; Lotz, J.; Rossmann, H.; Pfeiffer, N.; Beutel, M.E.; Schmidtmann, I.; Münzel, T.; Wild, P.S.; Lackner, K.J. Distribution of estimated glomerular filtration rate and determinants of its age dependent loss in a German population-based study. Sci. Rep. 2021, 11, 10165. [Google Scholar] [CrossRef]
- Skorecki, K.L.; Brenner, B.M. Body fluid homeostasis in man. A contemporary overview. Am. J. Med. 1981, 70, 77–88. [Google Scholar] [CrossRef]
- Ortega, O.; Gallar, P.; Muñoz, M.; Rodríguez, I.; Carreño, A.; Ortiz, M.; Molina, A.; Oliet, A.; Lozano, L.; Vigil, A. Association between C-Reactive Protein Levels and N-Terminal Pro-B-Type Natriuretic Peptide in Pre-Dialysis Patients. Nephron Exp. Nephrol. 2004, 97, c125–c130. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.O.; Duarte, R.; Dix-Peek, T.; Vachiat, A.; Naidoo, S.; Dickens, C.; Grinter, S.; Manga, P.; Naicker, S. Correlation between volume overload, chronic inflammation, and left ventricular dysfunction in chronic kidney disease patients. Clin. Nephrol. 2016, 86, 131. [Google Scholar] [CrossRef] [PubMed]
- Esmeray, K.; Dizdar, O.S.; Erdem, S.; Günal, A.I. Effect of Strict Volume Control on Renal Progression and Mortality in Non-Dialysis-Dependent Chronic Kidney Disease Patients: A Prospective Interventional Study. Med Princ. Pract. 2018, 27, 420–427. [Google Scholar] [CrossRef]
- Tsai, Y.-C.; Chiu, Y.-W.; Tsai, J.-C.; Kuo, H.-T.; Hung, C.-C.; Hwang, S.-J.; Chen, T.-H.; Kuo, M.-C.; Chen, H.-C. Association of Fluid Overload with Cardiovascular Morbidity and All-Cause Mortality in Stages 4 and 5 CKD. Clin. J. Am. Soc. Nephrol. 2015, 10, 39–46. [Google Scholar] [CrossRef]
- Zsom, L.; Zsom, M.; Fulop, T.; Flessner, M.F. Treatment time, chronic inflammation, and hemodynamic stability: The overlooked parameters in hemodialysis quantification. Semin Dial. 2008, 21, 395–400. [Google Scholar] [CrossRef]
- Dorairajan, S.; Chockalingam, A.; Misra, M. Myocardial stunning in hemodialysis: What is the overall message? Hemodial Int. 2010, 14, 447–450. [Google Scholar] [CrossRef]
- McIntyre, C.W. Haemodialysis-induced myocardial stunning in chronic kidney disease–a new aspect of cardiovascular disease. Blood Purif. 2010, 29, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Mathew, A.T.; Fishbane, S.; Obi, Y.; Kalantar-Zadeh, K. Preservation of residual kidney function in hemodialysis patients: Reviving an old concept. Kidney Int. 2016, 90, 262–271. [Google Scholar] [CrossRef]
- Dekker, M.J.; Marcelli, D.; Canaud, B.J.; Carioni, P.; Wang, Y.; Grassmann, A.; Konings, C.J.; Kotanko, P.; Leunissen, K.M.; Levin, N.W.; et al. Impact of fluid status and inflammation and their interaction on survival: A study in an international hemodialysis patient cohort. Kidney Int. 2017, 91, 1214–1223. [Google Scholar] [CrossRef]
- Zsom, L.; Faludi, M.; Fulop, T.; Dossabhoy, N.R.; Rosivall, L.; Tapolyai, M.B. The association of overhydration with chronic inflammation in chronic maintenance hemodiafiltration patients. Hemodial. Int. 2019, 23, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Vaziri, N.D. CKD impairs barrier function and alters microbial flora of the intestine: A major link to inflammation and uremic toxicity. Curr. Opin. Nephrol. Hypertens. 2012, 21, 587–592. [Google Scholar] [CrossRef]
- Barreto, F.C.; Barreto, D.V.; Liabeuf, S.; Meert, N.; Glorieux, G.; Temmar, M.; Choukroun, G.; Vanholder, R.; Massy, Z.A.; European Uremic Toxin Work, Group (EUTox). Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin. J. Am. Soc. Nephrol. 2009, 4, 1551–1558. [Google Scholar] [CrossRef]
- Gonçalves, S.; Pecoits-Filho, R.; Perreto, S.; Barberato, S.H.; Stinghen, A.E.M.; Lima, E.G.A.; Fuerbringer, R.; Sauthier, S.M.; Riella, M.C. Associations between renal function, volume status and endotoxaemia in chronic kidney disease patients. Nephrol. Dial. Transplant. 2006, 21, 2788–2794. [Google Scholar] [CrossRef] [PubMed]
- Kooman, J.P.; Van Der Sande, F.M.; Leunissen, K.M.L. Sodium, blood pressure and cardiovascular pathology: Is it all volaemia? Nephrol. Dial. Transpl. 2004, 19, 1046–1049. [Google Scholar] [CrossRef]
- Anker, S.D.; von Haehling, S. Inflammatory mediators in chronic heart failure: An overview. Heart 2004, 90, 464–470. [Google Scholar] [CrossRef]
- Zimmermann, J.; Herrlinger, S.; Pruy, A.; Metzger, T.; Wanner, C. Inflammation enhances cardiovascular risk and mortality in hemodialysis patients. Kidney Int. 1999, 55, 648–658. [Google Scholar] [CrossRef]
- Stenvinkel, P.; Wanner, C.; Metzger, T.; Heimbürger, O.; Mallamaci, F.; Tripepi, G.; Malatino, L.; Zoccali, C. Inflammation and outcome in end-stage renal failure: Does female gender constitute a survival advantage? Kidney Int. 2002, 62, 1791–1798. [Google Scholar] [CrossRef]
- Vlatković, V.; Trbojević-Stanković, J.; Stojimirović, B. Relationship between malnutritioninflammation complex syndrome and fluid balance in maintenance hemodialysis patients. Urol. Nephrol. Open Access J. 2017, 4, 00144. [Google Scholar]
- Kalantar-Zadeh, K.; Ikizler, T.; Block, G.; Avram, M.M.; Kopple, J.D. Malnutrition-inflammation complex syndrome in dialysis patients: Causes and consequences. Am. J. Kidney Dis. 2003, 42, 864–881. [Google Scholar] [CrossRef]
- de Sequera, P.; Corchete, E.; Bohorquez, L.; Albalate, M.; Perez-Garcia, R.; Alique, M.; Marques, M.; Garcia-Menendez, E.; Portoles, J.; Ramirez, R. Residual Renal Function in Hemodialysis and Inflammation. Ther. Apher. Dial. 2017, 21, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Hung, S.-C.; Kuo, K.-L.; Peng, C.-H.; Wu, C.-H.; Lien, Y.-C.; Wang, Y.-C.; Tarng, D.-C. Volume overload correlates with cardiovascular risk factors in patients with chronic kidney disease. Kidney Int. 2014, 85, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Palmer, S.C.; Ruospo, M.; Teixeira-Pinto, A.; Craig, J.C.; Macaskill, P.; Strippoli, G.F. The Validity of Drug Effects on Proteinuria, Albuminuria, Serum Creatinine, and Estimated GFR as Surrogate End Points for ESKD: A Systematic Review. Am. J. Kidney Dis. 2018, 72, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Ku, E.; Sarnak, M.J.; Toto, R.; McCulloch, C.E.; Lin, F.; Smogorzewski, M.; Hsu, C. Effect of Blood Pressure Control on Long-Term Risk of End-Stage Renal Disease and Death Among Subgroups of Patients with Chronic Kidney Disease. J. Am. Hear. Assoc. 2019, 8, e012749. [Google Scholar] [CrossRef]
- Greene, S.J.; Gheorghiade, M.; Vaduganathan, M.; Ambrosy, A.P.; Mentz, R.J.; Subacius, H.; Maggioni, A.P.; Nodari, S.; Konstam, M.A.; Butler, J.; et al. Haemoconcentration, renal function, and post-discharge outcomes among patients hospitalized for heart failure with reduced ejection fraction: Insights from the EVEREST trial. Eur. J. Hear. Fail. 2013, 15, 1401–1411. [Google Scholar] [CrossRef]
- Testani, J.M.; Chen, J.; McCauley, B.; Kimmel, S.E.; Shannon, R.P. Potential Effects of Aggressive Decongestion During the Treatment of Decompensated Heart Failure on Renal Function and Survival. Circulation 2010, 122, 265–272. [Google Scholar] [CrossRef]
- Chen, C.-H.; Wu, H.-Y.; Wang, C.-L.; Yang, F.-J.; Wu, P.-C.; Hung, S.-C.; Kan, W.-C.; Yang, C.-W.; Chiang, C.-K.; Huang, J.-W.; et al. Proteinuria as a Therapeutic Target in Advanced Chronic Kidney Disease: A Retrospective Multicenter Cohort Study. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef]
- Delles, C.; Currie, G. Proteinuria and its relation to cardiovascular disease. Int. J. Nephrol. Renov. Dis. 2013, 7, 13. [Google Scholar] [CrossRef] [PubMed]
- Ruggenenti, P.; Perna, A.; Benini, R.; Bertani, T.; Zoccali, C.; Maggiore, Q.; Salvadori, M.; Remuzzi, G. In chronic nephropathies prolonged ACE inhibition can induce remission: Dynamics of time-dependent changes in GFR. Investigators of the GISEN Group. Gruppo Italiano Studi Epidemiologici in Nefrologia. J. Am. Soc. Nephrol. 1999, 10, 997–1006. [Google Scholar] [CrossRef] [PubMed]
- Damman, K.; Navis, G.; Smilde, T.D.J.; Voors, A.A.; Van Der Bij, W.; Van Veldhuisen, D.J.; Hillege, H.L. Decreased cardiac output, venous congestion and the association with renal impairment in patients with cardiac dysfunction. Eur. J. Hear. Fail. 2007, 9, 872–878. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Coresh, J.; Bolton, K. K/DOQI clinical practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Am. J. Kidney Dis. 2002, 39, S1–S266. [Google Scholar]
- Levey, A.S.; Eckardt, K.U.; Tsukamoto, Y.; Levin, A.; Coresh, J.; Rossert, J.; Zeeuw, D.D.; Hostetter, T.H.; Lameire, N.; Eknoyan, G. Definition and classification of chronic kidney disease: A position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2005, 67, 2089–2100. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; de Jong, P.E.; Coresh, J.; Nahas, M.E.; Astor, B.C.; Matsushita, K.; Gansevoort, R.T.; Kasiske, B.L.; Eckardt, K.U. The definition, classification, and prognosis of chronic kidney disease: A KDIGO Controversies Conference report. Kidney Int. 2011, 80, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Consortium CKDP. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: A collaborative meta-analysis. Lancet 2010, 375, 2073–2081. [Google Scholar] [CrossRef]
- Consortium CKDP. Association of estimated glomerular filtration rate and albuminuria with mortality and end-stage renal disease: A collaborative meta-analysis of kidney disease cohorts. Kidney Int. 2011, 79, 1331. [Google Scholar] [CrossRef] [PubMed]
- Iseki, K.; Ikemiya, Y.; Iseki, C.; Takishita, S. Proteinuria and the risk of developing end-stage renal disease. Kidney Int. 2003, 63, 1468–1474. [Google Scholar] [CrossRef]
- Lewis, E.J.; Hunsicker, L.G.; Bain, R.P.; Rohde, R.D. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N. Engl. J. Med. 1993, 329, 1456–1462. [Google Scholar] [CrossRef]
- Zannad, F.; Ferreira, J.P.; Pocock, S.J.; Anker, S.D.; Butler, J.; Filippatos, G.; Brueckmann, M.; Ofstad, A.P.; Pfarr, E.; Jamal, W.; et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: A meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet 2020, 396, 819–829. [Google Scholar] [CrossRef]
- Cherney, D.Z.; Dekkers, C.C.; Barbour, S.J.; Cattran, D.; Gafor, A.H.; Greasley, P.J.; Laverman, G.D.; Lim, S.K.; Di Tanna, G.L.; Reich, H.N.; et al. Effects of the SGLT2 inhibitor dapagliflozin on proteinuria in non-diabetic patients with chronic kidney disease (DIAMOND): A randomised, double-blind, crossover trial. Lancet Diabetes Endocrinol. 2020, 8, 582–593. [Google Scholar] [CrossRef]
- Górriz, J.L.; Navarro-González, J.F.; Ortiz, A.; Vergara, A.; Nunez, J.; Jacobs-Cachá, C.; Martínez-Castelao, A.; Soler, M.J. Sodium-glucose cotransporter 2 inhibition: Towards an indication to treat diabetic kidney disease. Nephrol. Dial. Transpl. 2020, 35, i13–i23. [Google Scholar] [CrossRef]
- Fernandez-Fernandez, B.; Fernandez-Prado, R.; Górriz, J.L.; Martinez-Castelao, A.; Navarro-González, J.F.; Porrini, E.; Soler, M.J.; Ortiz, A. Canagliflozin and Renal Events in Diabetes with Established Nephropathy Clinical Evaluation and Study of Diabetic Nephropathy with Atrasentan: What was learned about the treatment of diabetic kidney disease with canagliflozin and atrasentan? Clin. Kidney J. 2019, 12, 313–321. [Google Scholar] [CrossRef]
- Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N. Engl. J. Med. 2019, 380, 2295–2306. [Google Scholar] [CrossRef] [PubMed]
- Ruggenenti, P.; Perna, A.; Remuzzi, G. Investigators GG. Retarding progression of chronic renal disease: The neglected issue of residual proteinuria. Kidney Int. 2003, 63, 2254–2261. [Google Scholar] [CrossRef] [PubMed]
- Glassock, R.J.; Winearls, C. An epidemic of chronic kidney disease: Fact or fiction? Nephrol. Dial. Transpl. 2008, 23, 1117–1121. [Google Scholar] [CrossRef] [PubMed]
- de Jong, P.E.; Gansevoort, R.T. Fact or fiction of the epidemic of chronic kidney disease—let us not squabble about estimated GFR only, but also focus on albuminuria. Nephrol. Dial. Transpl. 2008, 23, 1092–1095. [Google Scholar] [CrossRef] [PubMed]
- Turin, T.C.; Coresh, J.; Tonelli, M.; Stevens, P.E.; De Jong, P.E.; Farmer, C.K.; Matsushita, K.; Hemmelgarn, B.R. Short-term change in kidney function and risk of end-stage renal disease. Nephrol. Dial. Transpl. 2012, 27, 3835–3843. [Google Scholar] [CrossRef]
- Oshima, M.; Jun, M.; Ohkuma, T.; Toyama, T.; Wada, T.; Cooper, M.E.; Hadjadj, S.; Hamet, P.; Harrap, S.; Mancia, G.; et al. The relationship between eGFR slope and subsequent risk of vascular outcomes and all-cause mortality in type 2 diabetes: The ADVANCE-ON study. Diabetologia 2019, 62, 1988–1997. [Google Scholar] [CrossRef]
- Kovesdy, C.P.; Coresh, J.; Ballew, S.H.; Woodward, M.; Levin, A.; Naimark, D.M.; Nally, J.; Rothenbacher, D.; Stengel, B.; Iseki, K. Past Decline Versus Current eGFR and Subsequent ESRD Risk. J. Am. Soc. Nephrol. 2016, 27, 2447–2455. [Google Scholar] [CrossRef]
- Turin, T.C.; Jun, M.; James, M.T.; Tonelli, M.; Coresh, J.; Manns, B.J.; Hemmelgarn, B. R Magnitude of rate of change in kidney function and future risk of cardiovascular events. Int. J. Cardiol. 2016, 202, 657–665. [Google Scholar] [CrossRef]
- Turin, T.C.; Coresh, J.; Tonelli, M.; Stevens, P.E.; De Jong, P.E.; Farmer, C.; Matsushita, K.; Hemmelgarn, B.R. Change in the estimated glomerular filtration rate over time and risk of all-cause mortality. Kidney Int. 2013, 83, 684–691. [Google Scholar] [CrossRef]
- Al-Aly, Z.; Zeringue, A.; Fu, J.; Rauchman, M.I.; McDonald, J.R.; El-Achkar, T.M.; Balasubramanian, S.; Nurutdinova, D.; Xian, H.; Stroupe, K.; et al. Rate of kidney function decline associates with mortality. J. Am. Soc. Nephrol. 2010, 21, 1961–1969. [Google Scholar] [CrossRef] [PubMed]
- Imai, E.; Horio, M.; Yamagata, K.; Iseki, K.; Hara, S.; Ura, N.; Kiyohara, Y.; Makino, H.; Hishida, A.; Matsuo, S. Slower decline of glomerular filtration rate in the Japanese general population: A longitudinal 10-year follow-up study. Hypertens. Res. 2008, 31, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Coresh, J.; Turin, T.C.; Matsushita, K.; Sang, Y.; Ballew, S.H.; Appel, L.J.; Arima, H.; Chadban, S.J.; Cirillo, M.; Djurdjev, O.; et al. Decline in estimated glomerular filtration rate and subsequent risk of end-stage renal disease and mortality. JAMA 2014, 311, 2518–2531. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, H.J.; Tighiouart, H.; Sang, Y.; Ballew, S.; Mondal, H.; Matsushita, K.; Coresh, J.; Levey, A.S.; Inker, L.A. GFR decline and subsequent risk of established kidney outcomes: A meta-analysis of 37 randomized controlled trials. Am. J. Kidney Dis. 2014, 64, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Baba, M.; Shimbo, T.; Horio, M.; Ando, M.; Yasuda, Y.; Komatsu, Y.; Masuda, K.; Matsuo, S.; Maruyama, S. Longitudinal Study of the Decline in Renal Function in Healthy Subjects. PLoS ONE 2015, 10, e0129036. [Google Scholar] [CrossRef]
- Fontsere, N.; Salinas, I.; Bonal, J.; Bayes, B.; Riba, J.; Torres, F.; Rios, J.; Sanmartí, A. Romero, R Are prediction equations for glomerular filtration rate useful for the long-term monitoring of type 2 diabetic patients? Nephrol. Dial. Transpl. 2006, 21, 2152–2158. [Google Scholar] [CrossRef]
- Rule, A.D.; Sasiwimonphan, K.; Lieske, J.C.; Keddis, M.T.; Torres, V.E.; Vrtiska, T.J. Characteristics of renal cystic and solid lesions based on contrast-enhanced computed tomography of potential kidney donors. Am. J. Kidney Dis. 2012, 59, 611–618. [Google Scholar] [CrossRef]
- Rule, A.D.; Amer, H.; Cornell, L.D.; Taler, S.J.; Cosio, F.G.; Kremers, W.K.; Textor, S.C.; Stegall, M.D. The association between age and nephrosclerosis on renal biopsy among healthy adults. Ann. Intern. Med. 2010, 152, 561–567. [Google Scholar] [CrossRef]
- Denic, A.; Lieske, J.C.; Chakkera, H.A.; Poggio, E.D.; Alexander, M.P.; Singh, P.; Kremers, W.K.; Lerman, L.O.; Rule, A.D. The Substantial Loss of Nephrons in Healthy Human Kidneys with Aging. J. Am. Soc. Nephrol. 2017, 28, 313–320. [Google Scholar] [CrossRef]
- Anupama, S.H.; Abraham, G.; Alex, M.; Vijayan, M.; Subramanian, K.K.; Fernando, E.; Nagarajan, V.; Rao, P.K. A multicenter study of malnutrition status in chronic kidney disease stages I–VD from different socioeconomic groups. Saudi J. Kidney Dis. Transpl. 2020, 31, 614. [Google Scholar]
- Zsom, L.; Zsom, M.; Abdul Salim, S.; Fülöp, T. Subjective global assessment of nutrition, dialysis quality, and the theory of the scientific method in Nephrology practice. Artif. Organs. 2020, 44, 1021–1030. [Google Scholar] [CrossRef] [PubMed]
- Kalantar-Zadeh, K.; Mehrotra, R.; Fouque, D.; Kopple, J.D. Poor Nutritional Status and Inflammation: Metabolic Acidosis and Malnutrition-Inflammation Complex Syndrome in Chronic Renal Failure. Semin. Dial. 2004, 17, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.L. Metabolic acidosis and protein catabolism: Mechanisms and clinical implications. Miner. Electrolyte Metab. 1998, 24, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Chubb, S.P.; Davis, W.A.; Peters, K.E.; Davis, T.M. Serum bicarbonate concentration and the risk of cardiovascular disease and death in type 2 diabetes: The Fremantle Diabetes Study. Cardiovas. Diab. 2016, 15, 1–10. [Google Scholar]
- Dobre, M.; Yang, W.; Chen, J.; Drawz, P.; Hamm, L.L.; Horwitz, E.; Hostetter, T.; Jaar, B.; Lora, C.M.; Nessel, L.; et al. Association of serum bicarbonate with risk of renal and cardiovascular outcomes in CKD: A report from the Chronic Renal Insufficiency Cohort (CRIC) study. Am. J. Kidney Dis. 2013, 62, 670–678. [Google Scholar] [CrossRef]
- Wong, M.M.; Tu, C.; Li, Y.; Perlman, R.L.; Pecoits-Filho, R.; Lopes, A.A.; Narita, I.; Reichel, H.; Port, F.K.; Sukul, N.; et al. Anemia and iron deficiency among chronic kidney disease Stages 3–5ND patients in the Chronic Kidney Disease Outcomes and Practice Patterns Study: Often unmeasured, variably treated. Clin. Kidney J. 2020, 13, 613–624. [Google Scholar] [CrossRef]
- Martin, K.J.; Gonzalez, E.A. Metabolic bone disease in chronic kidney disease. J. Am. Soc. Nephrol. 2007, 18, 875–885. [Google Scholar] [CrossRef]
- Astor, B.C.; Coresh, J.; Heiss, G.; Pettitt, D.; Sarnak, M.J. Kidney function and anemia as risk factors for coronary heart disease and mortality: The Atherosclerosis Risk in Communities (ARIC) Study. Am. Heart J. 2006, 151, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Slinin, Y.; Foley, R.N.; Collins, A.J. Calcium, phosphorus, parathyroid hormone, and cardiovascular disease in hemodialysis patients: The USRDS waves 1, 3, and 4 study. J. Am. Soc. Nephrol. 2005, 16, 1788–1793. [Google Scholar] [CrossRef] [PubMed]
- Lameire, N.; Van Biesen, W. The initiation of renal-replacement therapy-just-in-time delivery. N. Engl. J. Med. 2010, 363, 678–680. [Google Scholar] [CrossRef]
- Dai, L.; Mukai, H.; Lindholm, B.; Heimbürger, O.; Barany, P.; Stenvinkel, P.; Qureshi, A.R. Clinical global assessment of nutritional status as predictor of mortality in chronic kidney disease patients. PLoS ONE 2017, 12, e0186659. [Google Scholar] [CrossRef] [PubMed]
- Zsom, L.; Zsom, M.; Fülöp, T.; Wells, C.; Flessner, M.F.; Eller, J.; Wollheim, C.; Hegbrant, J.; Strippoli, G.F. Correlation Correlation of treatment time and ultrafiltration rate with serum albumin and C-reactive protein levels in patients with end-stage kidney disease receiving chronic maintenance hemodialysis: A cross-sectional study. Blood Purif. 2010, 30, 8–15. [Google Scholar] [CrossRef]
- Termorshuizen, F.; Korevaar, J.C.; Dekker, F.W.; van Manen, J.G.; Boeschoten, E.W.; Krediet, R.T.; NECOSAD Study Group. The relative importance of residual renal function compared with peritoneal clearance for patient survival and quality of life: An analysis of the Netherlands Cooperative Study on the Adequacy of Dialysis (NECOSAD)-2. Am. J. Kidney Dis. 2003, 41, 1293–1302. [Google Scholar] [CrossRef]
- Bargman, J.M.; Thorpe, K.E.; Churchill, D.N. Relative contribution of residual renal function and peritoneal clearance to adequacy of dialysis: A reanalysis of the CANUSA study. J. Am. Soc. Nephrol. 2001, 12, 2158–2162. [Google Scholar] [CrossRef]
- Shemin, D.; Bostom, A.G.; Laliberty, P.; Dworkin, L.D. Residual renal function and mortality risk in hemodialysis patients. Am. J. Kidney Dis. 2001, 38, 85–90. [Google Scholar] [CrossRef]
- Termorshuizen, F.; Dekker, F.W.; van Manen, J.G.; Korevaar, J.C.; Boeschoten, E.W.; Krediet, R.T. Relative contribution of residual renal function and different measures of adequacy to survival in hemodialysis patients: An analysis of the Netherlands Cooperative Study on the Adequacy of Dialysis (NECOSAD)-2. J. Am. Soc. Nephrol. 2004, 15, 1061–1070. [Google Scholar] [CrossRef]
- Krediet, R.T. Preservation of residual kidney function and urine volume in patients on dialysis. Clin. J. Am. Soc. Nephrol. 2017, 12, 377–379. [Google Scholar] [CrossRef]
- Suda, T.; Hiroshige, K.; Ohta, T.; Watanabe, Y.; Iwamoto, M.; Kanegae, K.; Ohtani, A.; Nakashima, Y. The contribution of residual renal function to overall nutritional status in chronic haemodialysis patients. Nephrol. Dial. Transpl. 2000, 15, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Girndt, M.; Trojanowicz, B.; Ulrich, C. Monocytes in uremia. Toxins 2020, 12, 340. [Google Scholar] [CrossRef]
- Li, Q.; Wu, X.; Tu, W. Risk of intradialytic hypotension in haemodialysis patients with different residual urine volume. J. Cardiovasc. Dis. Diagn. S 2016, 1, 1–6. [Google Scholar]
- Rhee, H.; Yang, J.Y.; Jung, W.J.; Shin, M.J.; Yang, B.Y.; Song, S.H.; Kwak, I.S.; Seong, E.Y. Significance Significance of residual renal function for phosphate control in chronic hemodialysis patients. Kidney Res. Clin. Pract. 2014, 33, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Lowenstein, J.; Grantham, J.J. Residual renal function: A paradigm shift. Kidney Int. 2017, 91, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Jansz, T.T.; Noordzij, M.; Kramer, A.; Laruelle, E.; Couchoud, C.; Collart, F.; Cases, A.; Arici, M.; Helve, J.; Waldum-Grevbo, B.; et al. Survival of patients treated with extended-hours haemodialysis in Europe: An analysis of the ERA-EDTA Registry. Nephrol. Dial Transpl. 2020, 35, 488–495. [Google Scholar] [CrossRef]
- Miller, J.E.; Kovesdy, C.P.; Nissenson, A.R.; Mehrotra, R.; Streja, E.; Van Wyck, D.; Greenland, S.; Kalantar-Zadeh, K. Association of hemodialysis treatment time and dose with mortality and the role of race and sex. Am. J. Kidney Dis. 2010, 55, 100–112. [Google Scholar] [CrossRef]
- Charra, B.; Calemard, E.; Cuche, M.; Laurent, G. Control of hypertension and prolonged survival on maintenance hemodialysis. Nephron 1983, 33, 96–99. [Google Scholar] [CrossRef]
- Saran, R.; Bragg-Gresham, J.L.; Levin, N.W.; Twardowski, Z.J.; Wizemann, V.; Saito, A.; Kimata, N.; Gillespie, B.W.; Combe, C.; Bommer, J.; et al. Longer treatment time and slower ultrafiltration in hemodialysis: Associations with reduced mortality in the DOPPS. Kidney Int. 2006, 69, 1222–1228. [Google Scholar] [CrossRef]
- Flythe, J.E.; Kimmel, S.E.; Brunelli, S.M. Rapid fluid removal during dialysis is associated with cardiovascular morbidity and mortality. Kidney Int. 2011, 79, 250–257. [Google Scholar] [CrossRef]
- Brunet, P.; Saingra, Y.; Leonetti, F.; Vacher-Coponat, H.; Ramananarivo, P.; Berland, Y. Tolerance of haemodialysis: A randomized cross-over trial of 5-h versus 4-h treatment time. Nephrol. Dial. Transpl. 1996, 11 (Suppl. 8), 46–51. [Google Scholar] [CrossRef] [PubMed]
- Katzarski, K.S.; Charra, B.; Luik, A.J.; Nisell, J.; Divino Filho, J.C.; Leypoldt, J.K.; Leunissen, K.M.; Laurent, G.; Bergström, J. luid state and blood pressure control in patients treated with long and short haemodialysis. Nephrol. Dial. Transpl. 1999, 14, 369–375. [Google Scholar] [CrossRef] [PubMed]
- McGregor, D.O.; Buttimore, A.L.; Lynn, K.L.; Nicholls, M.G.; Jardine, D.L. A Comparative Study of Blood Pressure Control with Short In-Center versus Long Home Hemodialysis. Blood Purif. 2001, 19, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Troidle, L.; Hotchkiss, M.; Finkelstein, F. A thrice weekly in-center nocturnal hemodialysis program. Adv. Chronic Kidney Dis. 2007, 14, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Lacson, E., Jr.; Wang, W.; Lester, K.; Ofsthun, N.; Lazarus, J.M.; Hakim, R.M. Outcomes associated with in-center nocturnal hemodialysis from a large multicenter program. Clin. J. Am. Soc. Nephrol. 2010, 5, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.T.; Floras, J.S.; Miller, J.A.; Richardson, R.M.; Pierratos, A. Regression of left ventricular hypertrophy after conversion to nocturnal hemodialysis. Kidney Int. 2002, 61, 2235–2239. [Google Scholar] [CrossRef]
- Mercadal, L.; Franck, J.E.; Metzger, M.; Torres, P.U.; de Cornelissen, F.; Edet, S.; Béchade, C.; Vigneau, C.; Drüeke, T.; Jacquelinet, C.; et al. Hemodiafiltration Versus Hemodialysis and Survival in Patients With ESRD: The French Renal Epidemiology and Information Network (REIN) Registry. Am. J. Kidney Dis. 2016, 68, 247–255. [Google Scholar] [CrossRef]
- See, E.J.; Hedley, J.; Agar, J.W.; Hawley, C.M.; Johnson, D.W.; Kelly, P.J.; Lee, V.W.; Mac, K.; Polkinghorne, K.R.; Rabindranath, K.S.; et al. Patient survival on haemodiafiltration and haemodialysis: A cohort study using the Australia and New Zealand Dialysis and Transplant Registry. Nephrol. Dial. Transpl. 2019, 34, 326–338. [Google Scholar] [CrossRef]
- Locatelli, F.; Karaboyas, A.; Pisoni, R.L.; Robinson, B.M.; Fort, J.; Vanholder, R.; Rayner, H.C.; Kleophas, W.; Jacobson, S.H.; Combe, C.; et al. Mortality risk in patients on hemodiafiltration versus hemodialysis: A ‘real-world’comparison from the DOPPS. Nephrol. Dial. Transpl. 2018, 33, 683–689. [Google Scholar] [CrossRef]
- Canaud, B.; Bragg-Gresham, J.L.; Marshall, M.R.; Desmeules, S.; Gillespie, B.W.; Depner, T.; Klassen, P.; Port, F.K. Mortality risk for patients receiving hemodiafiltration versus hemodialysis: European results from the DOPPS. Kidney Int. 2006, 69, 2087–2093. [Google Scholar] [CrossRef]
- Ritz, E. Intestinal-renal syndrome: Mirage or reality? Blood Purif. 2011, 31, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Chen, X.; Li, Y.; Wang, Y.; Cao, X.; Liu, Z.; Shen, B.; Zou, J.; Ding, X. Pro-inflammatory cytokines as potential predictors for intradialytic hypotension. Ren. Fail. 2021, 43, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Ning, X.; Liu, B.; Dong, R.; Bai, M.; Sun, S. Specific alterations in gut microbiota in patients with chronic kidney disease: An updated systematic review. Ren. Fail. 2021, 43, 102–112. [Google Scholar] [CrossRef] [PubMed]
Theoretical: |
-eGFR reflects only one of the many functions of the human kidney |
-eGFR correlates only loosely with important predictors such as proteinuria, fluid status, blood pressure, metabolic acidosis, anemia, metabolic bone disease, iron deficiency, inflammation, tubular function |
Clinical: |
-eGFR has intrinsic day-to-day variability depending on dietary intake, cardiac output, fluid status, blood pressure, and medication use including RAS inhibitors |
-eGFR has a unique non-linear pattern of decline with age and without renal pathology |
-eGFR variability and slope may themselves be predictors of outcome |
Methodical: |
-under-represented populations when validating eGFR as a clinical marker |
-variable correlation with clinical outcomes in certain glomerulopathies and diabetic kidney disease |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zsom, L.; Zsom, M.; Salim, S.A.; Fülöp, T. Estimated Glomerular Filtration Rate in Chronic Kidney Disease: A Critical Review of Estimate-Based Predictions of Individual Outcomes in Kidney Disease. Toxins 2022, 14, 127. https://doi.org/10.3390/toxins14020127
Zsom L, Zsom M, Salim SA, Fülöp T. Estimated Glomerular Filtration Rate in Chronic Kidney Disease: A Critical Review of Estimate-Based Predictions of Individual Outcomes in Kidney Disease. Toxins. 2022; 14(2):127. https://doi.org/10.3390/toxins14020127
Chicago/Turabian StyleZsom, Lajos, Marianna Zsom, Sohail Abdul Salim, and Tibor Fülöp. 2022. "Estimated Glomerular Filtration Rate in Chronic Kidney Disease: A Critical Review of Estimate-Based Predictions of Individual Outcomes in Kidney Disease" Toxins 14, no. 2: 127. https://doi.org/10.3390/toxins14020127
APA StyleZsom, L., Zsom, M., Salim, S. A., & Fülöp, T. (2022). Estimated Glomerular Filtration Rate in Chronic Kidney Disease: A Critical Review of Estimate-Based Predictions of Individual Outcomes in Kidney Disease. Toxins, 14(2), 127. https://doi.org/10.3390/toxins14020127