Heterologous Expression and Immunogenic Potential of the Most Abundant Phospholipase A2 from Coral Snake Micrurus dumerilii to Develop Antivenoms
Abstract
:1. Introduction
2. Results
2.1. Cloning Recombinant Toxin
2.2. His-rMdumPLA2-BL21 (DE3) Expression and Isolation
2.3. Biological Activities
2.4. Anti-His-rMdumPLA2 Titers in Serum and Cross Immunological Recognition
2.5. Neutralization of the Biological Activities of M. dumerilii Venom by Anti-His-rMdumPLA2-IgG
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Materials
5.2. Venoms and Animals
5.3. Optimization and Genetic Construction
5.4. Cloning His-rMdumPLA2
5.5. Expression of pET28a-His-rMdumPLA2
5.6. Protein Purification and Refolding
5.7. Purification of His-rMdumPLA2
5.8. Mass Spectrometry
5.9. Myotoxic Activity
5.10. Edema-Forming Activity
5.11. PLA2 Activity
5.12. Anticoagulant Activity
5.13. Lethal Activity
5.14. Antibodies Anti-His-rMdumPLA2 Production
5.15. Antibodies Anti-His-rMdumPLA2 Titers and Immunological Recognition in Serum by ELISA
5.16. Anti-His-rMdumPLA2-IgG Purification
5.17. Cross Immunological Recognition by Anti-His-rMdumPLA2-Serum and Anti-His-rMdumPLA2-IgG by ELISA
5.18. Neutralizing Ability of Anti-His-rMdumPLA2-IgG
5.19. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Campbell, J.A.; Lamar, W.W. The Venomous Reptiles of the Western Hemisphere; Cornell University Press: Ithaca, NY, USA, 2004; p. 528. [Google Scholar]
- da Silva, N.J.; Sites, J.W. Phylogeny of South American Triad Coral Snakes (Elapidae: Micrurus) Based on Molecular Characters. Herpetologica 2001, 57, 1–22. [Google Scholar]
- Slowinski, J.B. A Phylogenetic analysis of the New World coral snakes (Elapidae: Leptomicrurus, Micruroides, and Micrurus) based on allozymic and morphological characters. J. Herpetol. 1995, 29, 325–338. [Google Scholar] [CrossRef]
- Roze, J.A. Coral Snakes of the Americas: Biology, Identification, and Venoms; Krieger Publishing Company: Malabar, FL, USA, 1996; p. 328. [Google Scholar]
- Lomonte, B.; Rey-Suárez, P.; Fernández, J.; Sasa, M.; Pla, D.; Vargas, N.; Bénard-Valle, M.; Sanz, L.; Corrêa-Netto, C.; Núñez, V.; et al. Venoms of Micrurus coral snakes: Evolutionary trends in compositional patterns emerging from proteomic analyses. Toxicon 2016, 122, 7–25. [Google Scholar] [CrossRef] [PubMed]
- Calera, C.G.-M.; Gomez-Moreno; Sanz, J.S. Estructura de Proteínas; Editorial Ariel: Barcelona, Spain, 2003; pp. 38–39. [Google Scholar]
- Schaloske, R.H.; Dennis, E.A. The phospholipase A2 superfamily and its group numbering system. Biochim. Biophys. Acta 2006, 1761, 1246–1259. [Google Scholar] [CrossRef] [PubMed]
- Rey-Suárez, P.; Núñez, V.; Saldarriaga-Córdoba, M.; Lomonte, B. Primary structures and partial toxicological characterization of two phospholipases A2 from Micrurus mipartitus and Micrurus dumerilii coral snake venoms. Biochimie 2017, 137, 88–98. [Google Scholar] [CrossRef]
- Rey-Suárez, P.; Núñez, V.; Fernandez, J.; Lomonte, B. Integrative characterization of the venom of the coral snake Micrurus dumerilii (Elapidae) from Colombia: Proteome, toxicity, and cross-neutralization by antivenom. J. Proteom. 2016, 136, 262–273. [Google Scholar] [CrossRef]
- Xiao, H.; Pan, H.; Liao, K.; Yang, M.; Huang, C. Snake Venom PLA2, a Promising Target for Broad-Spectrum Antivenom Drug Development. BioMed Res. Int. 2017, 2017, 6592820. [Google Scholar] [CrossRef] [Green Version]
- Chippaux, J.P.; Stock, R.P.; Massougbodji, A. Antivenom Safety and Tolerance for the Strategy of Snake Envenomation Management. In Snake Venoms; Inagaki, H., Vogel, C.-W., Mukherjee, A.K., Rahmy, T.R., Gopalakrishnakone, P., Eds.; Springer: Dordrecht, The Netherlands, 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Henao, A.M.; Núñez, V. Maintenance of red-tail coral snake (Micrurus mipartitus) in captivity and evaluation of individual venom variability. Acta Biol. Colomb. 2016, 21, 539–600. [Google Scholar] [CrossRef] [Green Version]
- Mendes, G.F.; Stuginski, D.R.; Loibel, S.M.C.; Morais-Zani, K.; da Rocha, M.M.T.; Fernandes, W.; Sant’Anna, S.S.; Grego, K.F. Factors that can influence the survival rates of coral snakes (Micrurus corallinus) for antivenom production. J. Anim. Sci. 2019, 97, 972–980. [Google Scholar] [CrossRef]
- Kalil, J.; Fan, H.W. Production and Utilization of Snake Antivenoms in South America. In Toxins and Drug Discovery; Gopalakrishnakone, P., Ed.; Springer: Dordrecht, The Netherlands, 2016; pp. 1–22. [Google Scholar] [CrossRef]
- León, G.; Vargas, M.; Segura, Á.; Herrera, M.; Villalta, M.; Sánchez, A.; Solano, G.; Gómez, A.; Sánchez, M.; Estrada, R.; et al. Current technology for the industrial manufacture of snake antivenoms. Toxicon 2018, 151, 63–73. [Google Scholar] [CrossRef]
- Laustsen, A.H.; Johansen, K.H.; Engmark, M.; Andersen, M.R. Recombinant snakebite antivenoms: A cost-competitive solution to a neglected tropical disease? PLoS Negl. Trop. Dis. 2017, 11, e0005361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laustsen, A.H.; Gutiérrez, J.M.; Knudsen, C.; Johansen, K.H.; Bermúdez-Méndez, E.; Cerni, F.A.; Jürgensen, J.A.; Øhlenschlæger, M.; Ledsgaard, L.; Esteban, A.M.; et al. Pros and cons of different therapeutic antibody formats for recombinant antivenom development. Toxicon 2018, 146, 151–175. [Google Scholar] [CrossRef] [PubMed]
- Laustsen, A.H. Toxin synergism in snake venoms. Toxin Rev. 2016, 35, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Tasoulis, T.; Isbister, G. A review and database of snake venom proteomes. Toxins 2017, 9, 290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clement, H.; Corrales-García, L.; Bolaños, D.; Corzo, G.; Villegas, E. Immunogenic Properties of Recombinant Enzymes from Bothrops ammodytoides towards the Generation of Neutralizing Antibodies against Its Own Venom. Toxins 2019, 11, 702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clement, H.; Flores, V.; De la Rosa, G.; Zamudio, F.; Alagon, A.; Corzo, G. Heterologous expression, protein folding and antibody recognition of a neurotoxin from the Mexican coral snake Micrurus laticorallis. J. Venom. Anim. Toxins Incl. Trop. Dis. 2016, 22, 25. [Google Scholar] [CrossRef] [Green Version]
- Russo, R.; dos Santos, N.; Oliveira, A.; Moraes, L.; Vilela, S.; Aquino, H. Expression, purifcation and virucidal activity of two recombinant isoforms of phospholipase A2 from Crotalus durissus terrifcus venom. Arch. Virol. 2019, 164, 1159–1171. [Google Scholar] [CrossRef]
- Shimokawa-Falcão, L.; Caporrino, M.; Barbaro, K.; Della-Casa, M.; Magalhães, G. Toxin Fused with SUMO Tag: A New Expression Vector Strategy to Obtain Recombinant Venom Toxins with Easy Tag Removal inside the Bacteria. Toxins 2017, 9, 82. [Google Scholar] [CrossRef] [Green Version]
- Wen-Li, Y.; Li-Sheng, P.; Xiao-Fen, Z.; Jian-Wen, W.; Xiao-Yu, J.; Lan-Ting, Y.; Lan, Z.; Hong-Bin, T.; Wen-Yan, W. An-long Xu Functional expression and characterization of a recombinant phospholipase A2 from sea snake Lapemis hardwickii as a soluble protein in E. coli. Toxicon 2003, 41, 713–721. [Google Scholar] [CrossRef]
- Guerrero-Garzon, J.; Bénard-Valle, B.; Restano-Cassulini, R.; Zamudio, F.; Corzo, G.; Alagon, A.; Olvera-Rodríguez, A. Cloning and sequencing of three-finger toxins from the venom glands of four Micrurus species from Mexico and heterologous expression of an alpha-neurotoxin from Micrurus diastema. Biochimie 2018, 147, 114–121. [Google Scholar] [CrossRef]
- de la Rosa, G.; Corrales-García, L.; Rodriguez-Ruiz, X.; López-Vera, E.; Corzo, G. Short-chain consensus alpha-neurotoxin: A synthetic 60-mer peptide with generic traits and enhanced immunogenic properties. Amino Acids 2018, 50, 885–895. [Google Scholar] [CrossRef] [PubMed]
- Shilling, P.J.; Mirzadeh, K.; Cumming, A.J.; Widesheim, M.; Köck, Z.; Daley, D.O. Improved designs for pET expression plasmids increase protein production yield in Escherichia coli. Commun. Biol. 2020, 3, 214. [Google Scholar] [CrossRef] [PubMed]
- Roberto, P.; Kashima, S.; Marcussi, S.; Pereira, J.; Astolfi-Filho, S.; Nomizo, A.; Giglio, J.; Fontes, M.; Soares, A.; França, S. Cloning and Identification of a Complete cDNA Coding for a Bactericidal and Antitumoral Acidic Phospholipase A2 from Bothrops jararacussu Venom. Protein J. 2004, 23, 273–285. [Google Scholar] [CrossRef]
- Alape-Girón, A.; Persson, B.; Cederlund, E.; Flores-Díaz, M.; Gutiérrez, J.M.; Thelestam, M.; Bergman, T.; Jörnvall, H. Elapid venom toxins: Multiple recruitments of ancient scaffolds, Eur. J. Biochem. 1999, 259, 225–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez, J.M.; Lomonte, B. Phospholipases A2: Unveiling the secrets of a functionally 443 versatile group of snake venom toxins. Toxicon 2013, 62, 27–39. [Google Scholar] [CrossRef]
- Kini, R.M. Excitement ahead: Structure, function and mechanism of snake venom 435 phospholipase A2 enzymes. Toxicon 2003, 42, 827–840. [Google Scholar] [CrossRef]
- Rosano, G.; Ceccarelli, E. Recombinant protein expression in Escherichia coli: Advances and challenges. Front. Microbiol. 2014, 5, 172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imran, M.; Asad, S.; Barboza, A.; Galeano, E.; Carrer, H.; Mukhtar, Z. Genetically transformed tobacco plants expressing synthetic EPSPS gene confer tolerance against glyphosate herbicide. Physiol. Mol. Biol. Plants 2017, 23, 453–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Muhanna, S.; Al-Muhanna, A. Construction and transformation of recombinant pet28a expression vector in bl21 (de3) cells with basic bioinformatics analysis. Biochem. Cell. Arch. 2018, 18, 147–151. [Google Scholar]
- Rudolph, R.; Lilie, H. In vitro folding of inclusion body proteins. FASEB J. 1996, 10, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Packiam, K.A.R.; Ooi, C.W.; Li, F.; Mei, S.; Tey, B.T.; Ong, H.F.; Song, J.; Ramanan, R.N. PERISCOPE-Opt: Machine learning-based prediction of optimal fermentation conditions and yields of recombinant periplasmic protein expressed in Escherichia coli. Comput. Struct. Biotechnol. J. 2022, 20, 2909–2920. [Google Scholar] [CrossRef] [PubMed]
- Affonso, R.; Fussae, M.; Santana, G.; Bartolini, P. Influence of the expression vector and its elements on recombinant human prolactin synthesis in Escherichia coli; co-directional orientation of replication and transcription is highly critical. J. Microbiol. Methods 2021, 191, 106340. [Google Scholar] [CrossRef]
- Woestenenk, E.; HammarstrÖm, M.; Van den Berg, S.; Härd, T.; Berghind, H. His tag effect on solubility of human proteins produced in Escherichia coli: A comparison between four expression vectors. J. Struct. Fund. Genom. 2004, 5, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, A.; Wiener, M. Membrane protein expression and purification: Effects of polyhistidine tag length and position. Protein Expr. Purif. 2003, 33, 311–325. [Google Scholar] [CrossRef]
- Filkin, S.Y.; Lipkin, A.V.; Fedoro, A.N. Phospholipase Superfamily: Structure, Functions, and Biotechnological Applications. Biochemistry 2020, 85, S177–S195. [Google Scholar] [CrossRef]
- Tsumoto, K.; Ejima, D.; Kumagai, I.; Arakawac, T. Practical considerations in refolding proteins from inclusion bodies. Protein Expr. Purif. 2003, 28, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bhavesh, N.; Panchal, S.; Mittal, R.; Hosur, R. NMR identification of local structure preferences IHIV protease tethered heterodimer in 6M guanidine hydrochloride. FEBS Lett. 2001, 509, 218–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Montalban, N.; Garcia-Fruitos, E.; Villaverde, A. Recombinant protein solubility-does more mean better? Nat. Biotechnol. 2007, 25, 718–720. [Google Scholar] [CrossRef]
- Martinez-Alonso, M.; Gonzalez-Montalban, N.; Garcia-Fruitos, E.; Villaverde, A. The functional quality of soluble recombinant polypeptides produced in Escherichia coli is defined by a wide conformational spectrum. Appl. Environ. Microbiol. 2008, 74, 7431–7433. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, A.K.; Singh, A.; Mukherjee, K.J.; Panda, A.K. Refolding and purification of recombinant L-asparaginase from inclusion bodies of E. coli into active tetrameric protein. Front. Microbiol. 2014, 5, 486. [Google Scholar] [CrossRef] [PubMed]
- Abuhammad, A.; Lack, N.; Schweichler, J.; Staunton, D.; Sim, R.B.; Sim, E. Improvement of the expression and purification of Mycobacterium tuberculosis arylamine N-acetyltransferase (TBNAT) a potential target for novel anti-tubercular agents. Protein Expr. Purif. 2011, 80, 246–252. [Google Scholar] [CrossRef]
- Lomonte, B.; Tarkowski, A.; Hanson, L.A. Host response to Bothrops asper snake venom. Analysis of edema formation, inflammatory cells, and cytokine release in a mouse model. Inflammation 1993, 17, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Kini, R.M. Phospholipase A2—A complex multifunctional protein puzzle. In Venom Phospholipase A2 Enzymes: Structure, Function and Mechanism; Kini, R.M., Ed.; John Wiley: Chichester, UK, 1997; pp. 1–28. [Google Scholar]
- Stills, H.F. Adjuvants and Antibody Production: Dispelling the Myths Associated with Freund’s Complete and Other Adjuvants. ILAR J. 2005, 46, 280–293. [Google Scholar] [CrossRef] [Green Version]
- Verheij, H.M.; Boffa, M.C.; Rothen, C.; Bryckaert, M.C.; Verger, R.; de Haas, G.H. Correlation of Enzymatic Activity and Anticoagulant Properties of Phospholipase A2. Eur. J. Biochem. 1980, 112, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Gourinath, S.; Sharma, S.; Paramasivam, M.; Srinivasan, A.; Singh, T.P. Sequence and crystal structure determination of a basic phospholipase A2 from common krait (Bungarus caeruleus) at 2.4 A resolution: Identification and characterization of its pharmacological sites. J. Mol. Biol. 2001, 307, 1049–1059. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.; Legler, P.M.; Mease, R.M.; Duncan, E.H.; Bergmann-Leitner, E.S.; Angov, E. Histidine affinity tags affect MSP1(42) structural stability and immunedominance in mice. Biotechnol. J. 2012, 7, 133–147. [Google Scholar] [CrossRef]
- Doley, R.; Kini, R.M. Protein complexes in snake venom. Cell. Mol. Life Sci. 2009, 66, 2851–2871. [Google Scholar] [CrossRef] [PubMed]
- Zaitsev, S. Dynamic surface tension measurements as general approach to the analysis of animal blood plasma and serum. Adv. Colloid Interface Sci. 2016, 235, 201–213. [Google Scholar] [CrossRef] [PubMed]
- Lomonte, B. Manual de Métodos Inmunológicos; Universidad de Costa Rica: San José, Costa Rica, 2007; p. 138. [Google Scholar]
- Laustsen, A.H.; Engmark, M.; Clouser, C.; Timberlake, S.; Vigneault, F.; Gutiérrez, J.M.; Lomonte, B. Exploration of immunoglobulin transcriptomes from mice immunized with three-finger toxins and phospholipases A2 from the Central American coral snake, Micrurus nigrocinctus. PeerJ 2017, 5, e2924. [Google Scholar] [CrossRef] [Green Version]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1974, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Schägger, H.; von Jagow, G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 1987, 166, 368–379. [Google Scholar] [CrossRef] [PubMed]
- Lomonte, B.; Fernández, J. Solving the microheterogeneity of Bothrops asper myotoxin-II by high-resolution mass spectrometry: Insights into C-terminal region variability in Lys49-phospholipase A2 homologs. Toxicon 2022, 210, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.M.; Rojas, G.; Lomonte, B.; Gené, J.A.; Cerdas, L. Comparative study of the edema-forming activity of Costa Rican snake venoms and its neutralization by a polyvalent antivenom. Comp. Biochem. Physiol. C Comp. Pharmacol. Toxicol. 1986, 85, 171–175. [Google Scholar] [CrossRef]
- Cho, W.; Kézdy, F.J. Chromogenic substrates and assay of phospholipases A2. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1991; Volume 197, pp. 75–79. [Google Scholar] [CrossRef]
- Mora-Obando, D.; Fernández, J.; Montecucco, C.; Gutiérrez, J.M.; Lomonte, B. Synergism between basic Asp49 and Lys49 phospholipase A2 myotoxins of viperid snake venom in vitro and in vivo. PLoS ONE 2014, 9, e109846. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, J.M.; Avila, C.; Rojas, E.; Cerdas, L. An alternative in vitro method for testing the potency of the polyvalent antivenom produced in Costa Rica. Toxicon 1988, 26, 411–413. [Google Scholar] [CrossRef]
- Steinbuch, M.; Audran, R. Isolation of IgG immunoglobulin from human plasma using caprylic acid. Rev. Fr. Etud. Clin. Biol. 1969, 14, 1054–1058. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero-Giraldo, L.E.; Pulido, S.; Berrío, M.A.; Flórez, M.F.; Rey-Suárez, P.; Nuñez, V.; Pereañez, J.A. Heterologous Expression and Immunogenic Potential of the Most Abundant Phospholipase A2 from Coral Snake Micrurus dumerilii to Develop Antivenoms. Toxins 2022, 14, 825. https://doi.org/10.3390/toxins14120825
Romero-Giraldo LE, Pulido S, Berrío MA, Flórez MF, Rey-Suárez P, Nuñez V, Pereañez JA. Heterologous Expression and Immunogenic Potential of the Most Abundant Phospholipase A2 from Coral Snake Micrurus dumerilii to Develop Antivenoms. Toxins. 2022; 14(12):825. https://doi.org/10.3390/toxins14120825
Chicago/Turabian StyleRomero-Giraldo, Luz E., Sergio Pulido, Mario A. Berrío, María F. Flórez, Paola Rey-Suárez, Vitelbina Nuñez, and Jaime A. Pereañez. 2022. "Heterologous Expression and Immunogenic Potential of the Most Abundant Phospholipase A2 from Coral Snake Micrurus dumerilii to Develop Antivenoms" Toxins 14, no. 12: 825. https://doi.org/10.3390/toxins14120825
APA StyleRomero-Giraldo, L. E., Pulido, S., Berrío, M. A., Flórez, M. F., Rey-Suárez, P., Nuñez, V., & Pereañez, J. A. (2022). Heterologous Expression and Immunogenic Potential of the Most Abundant Phospholipase A2 from Coral Snake Micrurus dumerilii to Develop Antivenoms. Toxins, 14(12), 825. https://doi.org/10.3390/toxins14120825