Post Hoc Subgroup Analysis of the BCause Study Assessing the Effect of AbobotulinumtoxinA on Post-Stroke Shoulder Pain in Adults
Abstract
:Abstract
Plain Language Summary
1. Introduction
2. Results
2.1. Participants
2.2. Effectiveness
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Study Design
5.2. Participants
5.3. Endpoints
5.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Viana, R.; Pereira, S.; Mehta, S.; Miller, T.; Teasell, R. Evidence for therapeutic interventions for hemiplegic shoulder pain during the chronic stage of stroke: A review. Top. Stroke Rehabil. 2012, 19, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Walsh, K. Management of shoulder pain in patients with stroke. Postgrad. Med. J. 2001, 77, 645–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gamble, G.E.; Barberan, E.; Bowsher, D.; Tyrrell, P.J.; Jones, A.K. Post stroke shoulder pain: More common than previously realized. Eur. J. Pain 2000, 4, 313–315. [Google Scholar] [CrossRef] [PubMed]
- Gamble, G.E.; Barberan, E.; Laasch, H.U.; Bowsher, D.; Tyrrell, P.J.; Jones, A.K. Poststroke shoulder pain: A prospective study of the association and risk factors in 152 patients from a consecutive cohort of 205 patients presenting with stroke. Eur. J. Pain 2002, 6, 467–474. [Google Scholar] [CrossRef]
- Lindgren, I.; Jönsson, A.C.; Norrving, B.; Lindgren, A. Shoulder pain after stroke: A prospective population-based study. Stroke 2007, 38, 343–348. [Google Scholar] [CrossRef] [Green Version]
- Turner-Stokes, L.; Jackson, D. Shoulder pain after stroke: A review of the evidence base to inform the development of an integrated care pathway. Clin. Rehabil. 2002, 16, 276–298. [Google Scholar] [CrossRef]
- Nickel, R.; Lange, M.; Stoffel, D.P.; Navarro, E.J.; Zetola, V.F. Upper limb function and functional independence in patients with shoulder pain after stroke. Arq. Neuro-Psiquiatr. 2017, 75, 103–106. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Chang, M.C. Poststroke Pain. Semin. Neurol. 2021, 41, 67–74. [Google Scholar] [CrossRef]
- Dysport Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/125274s115lbl.pdf (accessed on 21 September 2021).
- Dysport Summary of Product Characteristics. Available online: https://www.medicines.org.uk/emc/product/7261/smpc (accessed on 21 September 2021).
- BOTOX Prescribing Information. Available online: https://www.rxabbvie.com/pdf/botox_pi.pdf (accessed on 21 September 2022).
- BOTOX Summary of Product Characteristics. Available online: https://www.medicines.org.uk/emc/product/859/smpc#gref (accessed on 21 September 2022).
- Chang, K.V.; Chiu, Y.H.; Wu, W.T.; Hsu, P.C.; Özçakar, L. Botulinum toxin injections for shoulder and upper limb pain: A narrative review. Pain Manag. 2020, 10, 411–420. [Google Scholar] [CrossRef]
- Wissel, J.; Müller, J.; Dressnandt, J.; Heinen, F.; Naumann, M.; Topka, H.; Poewe, W. Management of spasticity associated pain with botulinum toxin A. J. Pain Symptom Manag. 2000, 20, 44–49. [Google Scholar] [CrossRef]
- Jabbari, B. Botulinum neurotoxins in the treatment of refractory pain. Nat. Clin. Pract. Neurol. 2008, 4, 676–685. [Google Scholar] [CrossRef]
- Oh, H.M.; Chung, M.E. Botulinum Toxin for Neuropathic Pain: A Review of the Literature. Toxins 2015, 7, 3127–3154. [Google Scholar] [CrossRef] [Green Version]
- Winner, B.M.; Bodt, S.M.L.; McNutt, P.M. Special Delivery: Potential Mechanisms of Botulinum Neurotoxin Uptake and Trafficking within Motor Nerve Terminals. Int. J. Mol. Sci. 2020, 21, 8715. [Google Scholar] [CrossRef]
- Alvisi, E.; Serrao, M.; Conte, C.; Alfonsi, E.; Tassorelli, C.; Prunetti, P.; Cristina, S.; Perrotta, A.; Pierelli, F.; Sandrini, G. Botulinum toxin A modifies nociceptive withdrawal reflex in subacute stroke patients. Brain Behav. 2018, 8, e01162. [Google Scholar] [CrossRef] [Green Version]
- Luvisetto, S. Botulinum Toxin and Neuronal Regeneration after Traumatic Injury of Central and Peripheral Nervous System. Toxins 2020, 12, 434. [Google Scholar] [CrossRef]
- Yelnik, A.P.; Colle, F.M.; Bonan, I.V.; Vicaut, E. Treatment of shoulder pain in spastic hemiplegia by reducing spasticity of the subscapular muscle: A randomised, double blind, placebo controlled study of botulinum toxin A. J. Neurol. Neurosurg. Psychiatry 2007, 78, 845–848. [Google Scholar] [CrossRef]
- Wu, T.; Fu, Y.; Song, H.X.; Ye, Y.; Dong, Y.; Li, J.H. Effectiveness of Botulinum Toxin for Shoulder Pain Treatment: A Systematic Review and Meta-Analysis. Arch. Phys. Med. Rehabil. 2015, 96, 2214–2220. [Google Scholar] [CrossRef]
- Pedreira, G.; Cardoso, E.; Melo, A. Botulinum toxin type A for refractory post-stroke shoulder pain. Arq. Neuro-Psiquiatr. 2008, 66, 213–215. [Google Scholar] [CrossRef] [Green Version]
- Lejeune, T.; Khatkova, S.; Turner-Stokes, L.; Picaut, P.; Maisonobe, P.; Balcaitiene, J.; Boyer, F.C. Abobotulinumtoxina injections in shoulder muscles to improve adult upper limb spasticity: Results from a phase 4 real-world study and a phase 3 open-label trial. J. Rehabil. Med. 2020, 52, jrm00068. [Google Scholar] [CrossRef]
- Yan, L.L.; Li, C.; Chen, J.; Miranda, J.J.; Luo, R.; Bettger, J.; Zhu, Y.; Feigin, V.; O’Donnell, M.; Zhao, D.; et al. Prevention, management, and rehabilitation of stroke in low- and middle-income countries. eNeurologicalSci 2016, 2, 21–30. [Google Scholar] [CrossRef]
- Khan, P.; Riberto, M.; Frances, J.A.; Chueire, R.; Amorim, A.; Xerez, D.; Chung, T.M.; Mercuri, L.H.C.; Longo, A.L.; Lianza, S.; et al. The Effectiveness of Botulinum Toxin Type A (BoNT-A) Treatment in Brazilian Patients with Chronic Post-Stroke Spasticity: Results from the Observational, Multicenter, Prospective BCause Study. Toxins 2020, 12, 770. [Google Scholar] [CrossRef] [PubMed]
- Crema, C.M.T.; Santos, A.P.B.C.; Magário, L.P.T.; Caldas, C.A.C.T.; Riberto, M. Neuromuscular block practice in the treatment of spasticity in Brazil. Acta Fisiátrica 2016, 23, 150–154. [Google Scholar] [CrossRef]
- Fitterer, J.W.; Picelli, A.; Winston, P. A Novel Approach to New-Onset Hemiplegic Shoulder Pain with Decreased Range of Motion Using Targeted Diagnostic Nerve Blocks: The ViVe Algorithm. Front. Neurol. 2021, 12, 668370. [Google Scholar] [CrossRef] [PubMed]
- Liporaci, F.M.; Mourani, M.M.; Riberto, M. The myofascial component of the pain in the painful shoulder of the hemiplegic patient. Clinics 2019, 74, e905. [Google Scholar] [CrossRef] [PubMed]
- Kalichman, L.; Ratmansky, M. Underlying pathology and associated factors of hemiplegic shoulder pain. Am. J. Phys. Med. Rehabil. 2011, 90, 768–780. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.L.S.; Mello, F.F.; Cocicov Neto, J.; Benedeti, M.C.; Modolo, L.F.M.; Riberto, M. Can the positions of the spastic upper limb in stroke survivors help muscle choice for botulinum toxin injections? Arq. Neuro-Psiquiatr. 2019, 77, 568–573. [Google Scholar] [CrossRef]
- Alter, K.E.; Karp, B.I. Ultrasound Guidance for Botulinum Neurotoxin Chemodenervation Procedures. Toxins 2017, 10, 18. [Google Scholar] [CrossRef] [Green Version]
- Elovic, E.P.; Esquenazi, A.; Alter, K.E.; Lin, J.L.; Alfaro, A.; Kaelin, D.L. Chemodenervation and nerve blocks in the diagnosis and management of spasticity and muscle overactivity. PMR 2009, 1, 842–851. [Google Scholar] [CrossRef]
- Turner-Stokes, L.; Fheodoroff, K.; Jacinto, J.; Maisonobe, P. Results from the Upper Limb International Spasticity Study-II (ULIS-II): A large, international, prospective cohort study investigating practice and goal attainment following treatment with botulinum toxin A in real-life clinical management. BMJ Open 2013, 3, e002771. [Google Scholar] [CrossRef] [Green Version]
- Turner-Stokes, L.; Jacinto, J.; Fheodoroff, K.; Brashear, A.; Maisonobe, P.; Lysandropoulos, A.; Ashford, S. Assessing the effectiveness of upper-limb spasticity management using a structured approach to goal-setting and outcome measurement: First cycle results from the ULIS-III Study. J. Rehabil. Med. 2021, 53, jrm00133. [Google Scholar] [CrossRef]
- Wissel, J.; Fheodoroff, K.; Hoonhorst, M.; Müngersdorf, M.; Gallien, P.; Meier, N.; Hamacher, J.; Hefter, H.; Maisonobe, P.; Koch, M. Effectiveness of AbobotulinumtoxinA in Post-stroke Upper Limb Spasticity in Relation to Timing of Treatment. Front. Neurol. 2020, 11, 104. [Google Scholar] [CrossRef]
- Gracies, J.M.; O’Dell, M.; Vecchio, M.; Hedera, P.; Kocer, S.; Rudzinska-Bar, M.; Rubin, B.; Timerbaeva, S.L.; Lusakowska, A.; Boyer, F.C.; et al. Effects of repeated abobotulinumtoxinA injections in upper limb spasticity. Muscle Nerve 2018, 57, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Marco, E.; Duarte, E.; Vila, J.; Tejero, M.; Guillen, A.; Boza, R.; Escalada, F.; Espadaler, J.M. Is botulinum toxin type A effective in the treatment of spastic shoulder pain in patients after stroke? A double-blind randomized clinical trial. J. Rehabil. Med. 2007, 39, 440–447. [Google Scholar] [CrossRef] [Green Version]
- Ghroubi, S.; Alila, S.; Elleuch, W.; Ayed, H.B.; Mhiri, C.; Elleuch, M.H. Efficacy of botulinum toxin A for the treatment of hemiparesis in adults with chronic upper limb spasticity. Pan Afr. Med. J. 2020, 35, 55. [Google Scholar] [CrossRef]
- Carod-Artal, F.J.; Medeiros, M.S.; Horan, T.A.; Braga, L.W. Predictive factors of functional gain in long-term stroke survivors admitted to a rehabilitation programme. Brain Inj. 2005, 19, 667–673. [Google Scholar] [CrossRef]
- Creamer, M.; Cloud, G.; Kossmehl, P.; Yochelson, M.; Francisco, G.E.; Ward, A.B.; Wissel, J.; Zampolini, M.; Abouihia, A.; Calabrese, A.; et al. Effect of Intrathecal Baclofen on Pain and Quality of Life in Poststroke Spasticity. Stroke 2018, 49, 2129–2137. [Google Scholar] [CrossRef]
- Golicki, D.; Niewada, M.; Buczek, J.; Karlińska, A.; Kobayashi, A.; Janssen, M.F.; Pickard, A.S. Validity of EQ-5D-5L in stroke. Qual. Life Res. 2015, 24, 845–850. [Google Scholar] [CrossRef] [Green Version]
- Gracies, J.M.; Brashear, A.; Jech, R.; McAllister, P.; Banach, M.; Valkovic, P.; Walker, H.; Marciniak, C.; Deltombe, T.; Skoromets, A.; et al. Safety and efficacy of abobotulinumtoxinA for hemiparesis in adults with upper limb spasticity after stroke or traumatic brain injury: A double-blind randomised controlled trial. Lancet Neurol. 2015, 14, 992–1001. [Google Scholar] [CrossRef]
- Gracies, J.M.; Esquenazi, A.; Brashear, A.; Banach, M.; Kocer, S.; Jech, R.; Khatkova, S.; Benetin, J.; Vecchio, M.; McAllister, P.; et al. Efficacy and safety of abobotulinumtoxinA in spastic lower limb: Randomized trial and extension. Neurology 2017, 89, 2245–2253. [Google Scholar] [CrossRef] [Green Version]
- Quinn, T.J.; Langhorne, P.; Stott, D.J. Barthel index for stroke trials: Development, properties, and application. Stroke 2011, 42, 1146–1151. [Google Scholar] [CrossRef] [Green Version]
- Turner-Stokes, L. Goal attainment scaling (GAS) in rehabilitation: A practical guide. Clin. Rehabil. 2009, 23, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Turner-Stokes, L. Upper limb international spasticity study: Rationale and protocol for a large, international, multicentre prospective cohort study investigating management and goal attainment following treatment with botulinum toxin A in real-life clinical practice. BMJ Open 2013, 3, e002230. [Google Scholar] [CrossRef] [PubMed]
Patients (N = 49) | ||
---|---|---|
Female, n (%) | 25 (51.0) | |
Age, mean (SD) years | 60.3 (9.1) | |
Handedness, n (%) | Left 5 (10.2) | Right 44 (89.8) |
Time since last CVA, median (range) months | 20.6 (12–240) | |
Time since onset of CVA, median (range) months | 21.2 (12–240) | |
Time since onset of spasticity, median (range) months (n) | 16.1 (0–193) (47)] | |
Time between first CVA and onset of spasticity, median (range) months (n) | 4.0 (0–237) (42)] | |
Upper limbs affected, n (%) | 49 (100.0) | |
Laterality, n (%) | Left 30 (61.2) | Right 18 (36.7) |
Bilateral 1 (2.0) | ||
Post-stroke complications, n (%) Cardiovascular disease Hypertension Hypercholesterolemia Pressure ulcer Urinary tract infection Bronchopulmonary infections Sleep disorder Loss of vision Depression/anxiety Dizziness Aphasia Fractures Falls | 35 (71.4) 5 (14.3) 26 (74.3) 13 (37.1) 1 (2.9) 2 (5.7) 3 (8.6) 6 (17.1) 5 (14.3) 14 (40.0) 3 (8.6) 10 (28.6) 2 (5.7) 7 (20.0) | |
Impairment of communication, n (%) None Mild Significant Total Not done | 24 (49.0) 8 (16.3) 7 (14.3) 2 (4.1) 8 (16.3) | |
Patients who had other conditions that could affect functional outcome, n (%) 1 Mood/emotional function Behavioral problems Fatigue Orientation Memory Attention | 30 (61.2) 24 (49.0) 4 (13.3) 9 (30.0) 8 (26.7) 16 (53.3) 13 (43.3) | |
Patients who underwent nondrug therapies, n (%) 1 Splinting Orthotics Physical therapies Home exercises Electrical stimulation | 43 (87.8) 16 (33.3) 19 (39.6) 34 (70.8) 29 (60.4) 6 (12.5) |
Patients (N = 49) | |
---|---|
Total dose administered in upper limb median (range) units (n) Visit 1 (start of cycle 1) Visit 2 (start of cycle 2) | 600.0 (100.0–1200.0) (49) 600.0 (100.0–1500.0) (46) 1 |
Number of muscles injected in upper limb mean (SD) (n) Visit 1 (start of cycle 1) Visit 2 (start of cycle 2) | 5.8 (2.6) (49) 5.7 (2.5) (46) 1 |
Muscles injected, n (%) Visit 1 (start of cycle 1) Pectoralis major Latissimus dorsi Subscapularis Teres major Visit 2 (start of cycle 2) Pectoralis major Latissimus dorsi Subscapularis Teres major | n = 49 44 (89.8) 27 (55.1) 13 (26.5) 1 (2.0) N = 46 1 35 (76.1) 26 (56.5) 12 (26.1) 1 (2.2) |
Injection guidance technique used, n (%) 2 Visit 1 (start of cycle 1) Palpation/anatomic landmarks Electrical stimulation Visit 2 (start of cycle 2) Palpation/anatomic landmarks Electrical stimulation | n = 49 41 (83.7) 9 (18.4) n = 46 1 39 (84.8) 9 (19.6) |
Time in months between first and second treatment mean (SD) | n = 46 4.63 (0.74) |
Baseline | Visit 2 | Visit 3 | Change from Baseline to Visit 3 | |
---|---|---|---|---|
Barthel Index score, mean (SD) (n) | 56.5 (28.1) (49) | NA | 65.8 (27.8) (42) | 4.3 (10.5) (42) |
EQ VAS score, mean (SD) (n) | 51.0 (26.4) (31) | 59.6 (26.7) (25) | 64.7 (24.1) (23) | 16.7 (28.7) (23) |
Pain/discomfort, n (%) 1 No pain Slight Moderate Severe Extreme Missing | 3 (9.7) 7 (22.6) 12 (38.7) 5 (16.1) 4 (12.9) 18 | 6 (24.0) 10 (40.0) 5 (20.0) 3 (12.0) 1 (4.0) 24 | 9 (39.1) 9 (39.1) 3 (13.0) 2 (8.7) 0 26 | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riberto, M.; Frances, J.A.; Chueire, R.; Amorim, A.C.F.G.; Xerez, D.; Chung, T.M.; Mercuri, L.H.C.; Lianza, S.; Rocha, E.C.d.M.; Maisonobe, P.; et al. Post Hoc Subgroup Analysis of the BCause Study Assessing the Effect of AbobotulinumtoxinA on Post-Stroke Shoulder Pain in Adults. Toxins 2022, 14, 809. https://doi.org/10.3390/toxins14110809
Riberto M, Frances JA, Chueire R, Amorim ACFG, Xerez D, Chung TM, Mercuri LHC, Lianza S, Rocha ECdM, Maisonobe P, et al. Post Hoc Subgroup Analysis of the BCause Study Assessing the Effect of AbobotulinumtoxinA on Post-Stroke Shoulder Pain in Adults. Toxins. 2022; 14(11):809. https://doi.org/10.3390/toxins14110809
Chicago/Turabian StyleRiberto, Marcelo, João Amaury Frances, Regina Chueire, Ana Cristina Ferreira Garcia Amorim, Denise Xerez, Tae Mo Chung, Lucia Helena Costa Mercuri, Sérgio Lianza, Eduardo Carvalho de Melo Rocha, Pascal Maisonobe, and et al. 2022. "Post Hoc Subgroup Analysis of the BCause Study Assessing the Effect of AbobotulinumtoxinA on Post-Stroke Shoulder Pain in Adults" Toxins 14, no. 11: 809. https://doi.org/10.3390/toxins14110809
APA StyleRiberto, M., Frances, J. A., Chueire, R., Amorim, A. C. F. G., Xerez, D., Chung, T. M., Mercuri, L. H. C., Lianza, S., Rocha, E. C. d. M., Maisonobe, P., Cuperman-Pohl, T., & Khan, P. (2022). Post Hoc Subgroup Analysis of the BCause Study Assessing the Effect of AbobotulinumtoxinA on Post-Stroke Shoulder Pain in Adults. Toxins, 14(11), 809. https://doi.org/10.3390/toxins14110809