Determination of Zearalenone and Its Derivatives in Feed by Gas Chromatography–Mass Spectrometry with Immunoaffinity Column Cleanup and Isotope Dilution
Abstract
:1. Introduction
2. Results and Discussion
2.1. Performance of Immunoaffinity Columns (IAC)
2.1.1. Elution Conditions
2.1.2. Column Capacity
2.1.3. Specificity
2.1.4. Comparison of Purification Efficiency between SPE and IAC
2.1.5. Acetonitrile Tolerance
2.1.6. The Adsorption Effect of IAC at Different pH Values
2.1.7. Reusage
2.2. Method Optimization
2.2.1. Optimization of Derivative Conditions
2.2.2. Optimization of Quantitative Ions
2.2.3. Matrix Effect
2.3. Method Validation
2.3.1. Method Performance
2.3.2. Linearity and Sensitivity
2.3.3. Recovery and Precision
2.3.4. Validation in Naturally Contaminated Feed
3. Conclusions
4. Material and Methods
4.1. Chemicals and Reagents
4.2. Preparation of Immunoaffinity Columns
4.3. Sample Preparation
4.4. GC-MS Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, W.; Feng, N.; Wang, Y.; Noll, L.; Xu, S.; Liu, X.; Lu, N.; Zou, H.; Gu, J.; Yuan, Y.; et al. Effects of zearalenone and its derivatives on the synthesis and secretion of mammalian sex steroid hormones: A review. Food Chem. Toxicol. 2019, 126, 262–276. [Google Scholar] [CrossRef] [PubMed]
- Rai, A.; Das, M.; Tripathi, A. Occurrence and toxicity of a fusarium mycotoxin, zearalenone. Crit. Rev. Food Sci. Nutr. 2020, 60, 2710–2729. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wong, T.Y.; Chan, F.L.; Chen, S.; Leung, L.K. Assessing the effect of food mycotoxins on aromatase by using a cell-based system. Toxicol. Vitr. Int. J. Publ. Assoc. BIBRA 2014, 28, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zheng, W.; Bian, X.; Yuan, Y.; Gu, J.; Liu, X.; Liu, Z.; Bian, J. Zearalenone induces apoptosis and cytoprotective autophagy in primary Leydig cells. Toxicol. Lett. 2014, 226, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Poór, M.; Kunsági-Máté, S.; Sali, N.; Kőszegi, T.; Szente, L.; Peles-Lemli, B. Interactions of zearalenone with native and chemically modified cyclodextrins and their potential utilization. J. Photochem. Photobiol. B Biol. 2015, 151, 63–68. [Google Scholar] [CrossRef]
- Yang, J.Y.; Wang, G.X.; Liu, J.L.; Fan, J.J.; Cui, S. Toxic effects of zearalenone and its derivatives alpha-zearalenol on male reproductive system in mice. Reprod. Toxicol. 2007, 24, 381–387. [Google Scholar] [CrossRef]
- He, J.; Wei, C.; Li, Y.; Liu, Y.; Wang, Y.; Pan, J.; Liu, J.; Wu, Y.; Cui, S. Zearalenone and alpha-zearalenol inhibit the synthesis and secretion of pig follicle stimulating hormone via the non-classical estrogen membrane receptor GPR30. Mol. Cell. Endocrinol. 2018, 461, 43–54. [Google Scholar] [CrossRef]
- Fushimi, Y.; Takagi, M.; Monniaux, D.; Uno, S.; Kokushi, E.; Shinya, U.; Kawashima, C.; Otoi, T.; Deguchi, E.; Fink-Gremmels, J. Effects of Dietary Contamination by Zearalenone and Its Metabolites on Serum Anti-Müllerian Hormone: Impact on the Reproductive Performance of Breeding Cows. Reprod. Domest. Anim. Zuchthyg. 2015, 50, 834–839. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, R.; Liu, M.; Shi, B.; Shan, A.; Cheng, B. Use of modified halloysite nanotubes in the feed reduces the toxic effects of zearalenone on sow reproduction and piglet development. Theriogenology 2015, 83, 932–941. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, D.; Sun, D.; Cui, S. Zearalenone affects reproductive functions of male offspring via transgenerational cytotoxicity on spermatogonia in mouse. Comp. Biochem. Physiol. Toxicol. Pharmacol. CBP 2020, 234, 108766. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, Y.; Yin, S.; Jia, Z.; Shan, A. Biochemical changes and oxidative stress induced by zearalenone in the liver of pregnant rats. Hum. Exp. Toxicol. 2015, 34, 65–73. [Google Scholar] [CrossRef] [PubMed]
- AbuZahra, H.M.; Rajendran, P.; Ismail, M.B. Zerumbone Exhibit Protective Effect against Zearalenone Induced Toxicity via Ameliorating Inflammation and Oxidative Stress Induced Apoptosis. Antioxidants 2021, 10, 1593. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.L.; Wu, R.Y.; Sun, X.F.; Cheng, S.F.; Zhang, R.Q.; Zhang, T.Y.; Zhang, X.F.; Zhao, Y.; Shen, W.; Li, L. Mycotoxin zearalenone exposure impairs genomic stability of swine follicular granulosa cells in vitro. Int. J. Biol. Sci. 2018, 14, 294–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karaman, E.F.; Zeybel, M.; Ozden, S. Evaluation of the epigenetic alterations and gene expression levels of HepG2 cells exposed to zearalenone and α-zearalenol. Toxicol. Lett. 2020, 326, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Marin, D.E.; Taranu, I.; Burlacu, R.; Tudor, D.S. Effects of zearalenone and its derivatives on the innate immune response of swine. Toxicon 2010, 56, 956–963. [Google Scholar] [CrossRef]
- Marin, D.E.; Taranu, I.; Burlacu, R.; Manda, G.; Motiu, M.; Neagoe, I.; Dragomir, C.; Stancu, M.; Calin, L. Effects of zearalenone and its derivatives on porcine immune response. Toxicol. Vitr. Int. J. Publ. Assoc. BIBRA 2011, 25, 1981–1988. [Google Scholar] [CrossRef]
- Tolosa, J.; Rodríguez-Carrasco, Y.; Ruiz, M.J.; Vila-Donat, P. Multi-mycotoxin occurrence in feed, metabolism and carry-over to animal-derived food products: A review. Food Chem. Toxicol. 2021, 158, 112661. [Google Scholar] [CrossRef]
- Tang, X.; Li, X.; Li, P.; Zhang, Q.; Li, R.; Zhang, W.; Ding, X.; Lei, J.; Zhang, Z. Development and application of an immunoaffinity column enzyme immunoassay for mycotoxin zearalenone in complicated samples. PLoS ONE 2014, 9, e85606. [Google Scholar] [CrossRef]
- Dong, G.; Pan, Y.; Wang, Y.; Ahmed, S.; Liu, Z.; Peng, D.; Yuan, Z. Preparation of a broad-spectrum anti-zearalenone and its primary analogues antibody and its application in an indirect competitive enzyme-linked immunosorbent assay. Food Chem. 2018, 247, 8–15. [Google Scholar] [CrossRef]
- Mao, X.; Wu, Y.; Chen, H.; Wang, Y.; Yu, B.; Shi, G. A mix-and-detect method based on colloidal gold immunochromatographic assay for on-site detection of zearalenone in edible oils. Anal. Methods Adv. Methods Appl. 2020, 12, 5628–5634. [Google Scholar] [CrossRef]
- Kong, W.J.; Shen, H.H.; Zhang, X.F.; Yang, X.L.; Qiu, F.; Ou-yang, Z.; Yang, M.H. Analysis of zearalenone and α-zearalenol in 100 foods and medicinal plants determined by HPLC-FLD and positive confirmation by LC-MS-MS. J. Sci. Food Agric. 2013, 93, 1584–1590. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.H.; Ge, W.; Liu, X.J.; Zhu, Y.L. Preconcentration and Determination of Zearalenone in Corn Oil by a One-Step Prepared Polydopamine-Based Magnetic Molecularly Imprinted Polymer (MIP) with High-Performance Liquid Chromatography with Fluorescence (HPLC-FLD) Detection. Anal. Lett. 2022, 55, 343–354. [Google Scholar] [CrossRef]
- Wu, Y.-T.; Huang, C.-G.; Li, N.; Qi, J.-F.; Guo, Y.-Y.; Lu, B. Monitoring Seasonal Differences on Contamination and Carry-over of Zearalenone from Feedstuffs to Foods by Molecularly Imprinted Solid-phase Extraction and HPLC-FLD. Food Anal. Methods 2022, 15, 448–457. [Google Scholar] [CrossRef]
- Yang, S.; Luo, Y.; Mu, L.; Yang, Y.; Yang, Y. Risk screening of mycotoxins and their derivatives in dairy products using a stable isotope dilution assay and LC-MS/MS. J. Sep. Sci. 2021, 44, 782–792. [Google Scholar] [CrossRef]
- Lijalem, Y.G.; Gab-Allah, M.A.; Choi, K.; Kim, B. Development of isotope dilution-liquid chromatography/tandem mass spectrometry for the accurate determination of zearalenone and its metabolites in corn. Food Chem. 2022, 384, 132483. [Google Scholar] [CrossRef] [PubMed]
- Blokland, M.H.; Sterk, S.S.; Stephany, R.W.; Launay, F.M.; Kennedy, D.G.; van Ginkel, L.A. Determination of resorcylic acid lactones in biological samples by GC-MS. Discrimination between illegal use and contamination with fusarium toxins. Anal. Bioanal. Chem. 2006, 384, 1221–1227. [Google Scholar] [CrossRef] [Green Version]
- Echarte, J.M.; Fernández, D.C.; Chiacchio, C.A.; Torres Leedham, V.M. Comparison of a Validated LC/MS/MS Method with a Validated GC/MS Method for the Analysis of Zeranol and its Related Mycotoxin Residues in Bovine Urine Samples Collected During Argentina’s Residue Monitoring Control Program (2005–2012). J. AOAC Int. 2014, 97, 1470–1475. [Google Scholar] [CrossRef]
- Niknejad, F.; Escrivá, L.; Adel Rad, K.B.; Khoshnia, M.; Barba, F.J.; Berrada, H. Biomonitoring of Multiple Mycotoxins in Urine by GC-MS/MS: A Pilot Study on Patients with Esophageal Cancer in Golestan Province, Northeastern Iran. Toxins 2021, 13, 243. [Google Scholar] [CrossRef]
- Jin, Y.; Chen, Q.; Luo, S.; He, L.; Fan, R.; Zhang, S.; Yang, C.; Chen, Y. Dual near-infrared fluorescence-based lateral flow immunosensor for the detection of zearalenone and deoxynivalenol in maize. Food Chem. 2021, 336, 127718. [Google Scholar] [CrossRef]
- Majer-Baranyi, K.; Adányi, N.; Székács, A. Biosensors for Deoxynivalenol and Zearalenone Determination in Feed Quality Control. Toxins 2021, 13, 499. [Google Scholar] [CrossRef]
- Sohrabi, H.; Majidi, M.R.; Arbabzadeh, O.; Khaaki, P.; Pourmohammad, S.; Khataee, A.; Orooji, Y. Recent advances in the highly sensitive determination of zearalenone residues in water and environmental resources with electrochemical biosensors. Environ. Res. 2022, 204, 112082. [Google Scholar] [CrossRef] [PubMed]
- Cunha, S.C.; Fernandes, J.O. Development and validation of a method based on a QuEChERS procedure and heart-cutting GC-MS for determination of five mycotoxins in cereal products. J. Sep. Sci. 2010, 33, 600–609. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Yao, K.; Zhao, S.; Zheng, P.; Wang, S.; Zeng, Y.; Liang, D.; Ke, Y.; Jiang, H. Determination of aflatoxin and zearalenone analogs in edible and medicinal herbs using a group-specific immunoaffinity column coupled to ultra-high-performance liquid chromatography with tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1092, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Greaves, A.; Maddison, K.; Doran, M.; Lin, S.; Geiling, B. Single-Laboratory Validation of an Immunoaffinity Column Cleanup LC Method for the Analysis of Aflatoxins and Ochratoxin A in Cannabis Plant Material, Resins, Vapes, Isolates, and Edible Products. J. AOAC Int. 2021, 104, 1264–1271. [Google Scholar] [CrossRef] [PubMed]
- Jedziniak, P.; Panasiuk, L.; Pietruszka, K.; Posyniak, A. Multiple mycotoxins analysis in animal feed with LC-MS/MS: Comparison of extract dilution and immunoaffinity clean-up. J. Sep. Sci. 2019, 42, 1240–1247. [Google Scholar] [CrossRef] [PubMed]
- McMaster, N.; Acharya, B.; Harich, K.; Grothe, J.; Mehl, H.L.; Schmale, D.G., III. Quantification of the Mycotoxin Deoxynivalenol (DON) in Sorghum Using GC-MS and a Stable Isotope Dilution Assay (SIDA). Food Anal. Methods 2019, 12, 2334–2343. [Google Scholar] [CrossRef]
- Kinani, S.; Bouchonnet, S.; Bourcier, S.; Porcher, J.M.; Aït-Aïssa, S. Study of the chemical derivatization of zearalenone and its metabolites for gas chromatography-mass spectrometry analysis of environmental samples. J. Chromatogr. A 2008, 1190, 307–315. [Google Scholar] [CrossRef]
- Gab-Allah, M.A.; Choi, K.; Kim, B. Development of isotope dilution-liquid chromatography/tandem mass spectrometry for the accurate determination of type-A trichothecenes in grains. Food Chem. 2021, 344, 128698. [Google Scholar] [CrossRef]
- Hu, X.F.; Wang, J.N.; Yao, W.A. A size independent enriched finite element for the modeling of bimaterial interface cracks. Comput. Struct. 2016, 172, 1–10. [Google Scholar] [CrossRef]
- Hu, X.F.; Hu, R.; Zhang, Z.W.; Li, P.W.; Zhang, Q.; Wang, M. Development of a multiple immunoaffinity column for simultaneous determination of multiple mycotoxins in feeds using UPLC-MS/MS. Anal. Bioanal. Chem. 2016, 408, 6027–6036. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, H.; Xi, C.; Wang, G.; Chen, D.; Ding, S. Determination of chloramphenicol and zeranols in pig muscle by immunoaffinity column clean-up and LC-MS/MS analysis. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2014, 31, 1177–1186. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.Z.; Zhang, S.X.; Wu, C.M.; Jiang, H.Y.; Wang, Z.H.; Cheng, L.L. Determination of Six Resorcylic Acid Lactones in Feed by GC-MS. Chromatographia 2010, 71, 163–165. [Google Scholar] [CrossRef]
- Andrade, P.D.; Dantas, R.R.; Moura-Alves, T.; Caldas, E.D. Determination of multi-mycotoxins in cereals and of total fumonisins in maize products using isotope labeled internal standard and liquid chromatography/tandem mass spectrometry with positive ionization. J. Chromatogr. A 2017, 1490, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Hu, X.; Zhang, Q.; Li, P. Determination for multiple mycotoxins in agricultural products using HPLC-MS/MS via a multiple antibody immunoaffinity column. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1021, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Reverberi, R.; Reverberi, L. Factors affecting the antigen-antibody reaction. Blood Transfus. 2007, 5, 227–240. [Google Scholar] [CrossRef]
- Delaunay, N.; Combes, A.; Pichon, V. Immunoaffinity Extraction and Alternative Approaches for the Analysis of Toxins in Environmental, Food or Biological Matrices. Toxins 2020, 12, 795. [Google Scholar] [CrossRef]
- Li, Y.S.; Lin, S.X.; Wang, Y.H.; Mao, X.; Wu, Y.N.; Liu, Y.G.; Chen, D.Q. Broad-specific monoclonal antibody based IACs purification coupled UPLC-MS/MS method for T-2 and HT-2 toxin determination in maize and cherry samples. Food Agric. Immunol. 2020, 31, 291–302. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.J.; Zhang, J.N.; Ding, K.; Chen, N.; Han, T. The development and characterisation of an immunoaffinity column used for the simultaneous selective extraction of Fusarium toxins from grain products. Qual. Assur. Saf. Crops Foods 2019, 11, 325–331. [Google Scholar] [CrossRef]
- Toda, K.; Kokushi, E.; Uno, S.; Shiiba, A.; Hasunuma, H.; Fushimi, Y.; Wijayagunawardane, M.P.B.; Zhang, C.; Yamato, O.; Taniguchi, M.; et al. Gas Chromatography-Mass Spectrometry for Metabolite Profiling of Japanese Black Cattle Naturally Contaminated with Zearalenone and Sterigmatocystin. Toxins 2017, 9, 294. [Google Scholar] [CrossRef] [Green Version]
- Qian, M.; Zhang, H.; Wu, L.; Jin, N.; Wang, J.; Jiang, K. Simultaneous determination of zearalenone and its derivatives in edible vegetable oil by gel permeation chromatography and gas chromatography-triple quadrupole mass spectrometry. Food Chem. 2015, 166, 23–28. [Google Scholar] [CrossRef]
- Pack, E.; Stewart, J.; Rhoads, M.; Knight, J.; De Vita, R.; Clark-Deener, S.; Schmale, D.G., III. Quantification of zearalenone and α-zearalenol in swine liver and reproductive tissues using GC-MS. Toxicon X 2020, 8, 100058. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.; Fernandes, J.O.; Cunha, S.C. Optimization and validation of a method based in a QuEChERS procedure and gas chromatography-mass spectrometry for the determination of multi-mycotoxins in popcorn. Food Control 2012, 27, 188–193. [Google Scholar] [CrossRef]
Methanol Concentration in Aqueous Solution (%) | Mean Elution Rate (%) |
---|---|
50 | 40.1 |
60 | 63.6 |
70 | 81.2 |
80 | 92.5 |
90 | 100.0 |
100 | 100.0 |
Analyte | Matrix | Mean Recoveries | |
---|---|---|---|
SPE (%) | IAC (%) | ||
ZAN | Standard solution | 72.7 | 97.2 |
Compound feed | 41.7 | 94.3 | |
α-ZAL | Standard solution | 58.5 | 98.2 |
Compound feed | 44.9 | 93.7 | |
β-ZAL | Standard solution | 70.4 | 97.6 |
Compound feed | 46.7 | 92.9 | |
ZEN | Standard solution | 62.6 | 99.1 |
Compound feed | 50.6 | 91.6 | |
α-ZEL | Standard solution | 69.1 | 96.7 |
Compound feed | 35.9 | 89.7 | |
β-ZEL | Standard solution | 56.3 | 98.9 |
Compound feed | 53.3 | 91.5 |
Analyte | Linear Range (ng/mL) | Standard Curve | R2 | LOD (μg/kg) | LOQ (μg/kg) |
---|---|---|---|---|---|
ZAN | 2–500 | y = 0.0549x + 0.3195 | 0.9974 | 0.50–0.60 | 1.67–1.99 |
α-ZAL | 2–500 | y = 0.0658x + 0.7828 | 0.9935 | 0.70–1.21 | 2.33–4.02 |
β-ZAL | 2–500 | y = 0.0747x + 0.7135 | 0.9937 | 0.60–1.34 | 2.00–4.46 |
ZEN | 2–500 | y = 0.0562x + 0.3509 | 0.9982 | 0.49–0.63 | 1.63–2.10 |
α-ZEL | 2–500 | y = 0.0577x + 0.5182 | 0.9973 | 0.40–0.72 | 1.33–2.39 |
β-ZEL | 2–500 | y = 0.0632x + 0.4289 | 0.9964 | 0.57–0.90 | 1.90–3.00 |
Analyte | Matrix | Mean Recoveries (%) (n = 4) | Intraday RSD (%) (n = 4) | Interday RSD (%) (n = 3) |
---|---|---|---|---|
ZAN | Chicken formula feed | 97.3–104.6 | 2.9–3.4 | 3.6–7.7 |
Chicken concentrate feed | 104.2–108.4 | 2.1–3.0 | 5.9–6.9 | |
Chicken premix | 102.9–110.3 | 5.3–9.3 | 3.6–5.1 | |
Pig compound feed | 94.6–101.0 | 4.1–7.0 | 0.8–8.3 | |
Pig premix | 97.1–106.4 | 0.4–9.5 | 5.8–10.0 | |
Beef concentrate supplement | 92.1–98.4 | 3.0–3.6 | 2.3–9.3 | |
α-ZAL | Chicken formula feed | 93.9–104.4 | 2.5–6.1 | 4.3–6.8 |
Chicken concentrate feed | 102.1–106.3 | 1.6–6.7 | 5.5–6.9 | |
Chicken premix | 97.2–104.5 | 1.2–2.7 | 4.8–9.0 | |
Pig compound feed | 94.3–109.8 | 2.6–2.9 | 3.2–11.7 | |
Pig premix | 98.6–103.4 | 3.3–3.4 | 2.1–4.6 | |
Beef concentrate supplement | 92.6–105.2 | 3.9–6.1 | 5.2–12.4 | |
β-ZAL | Chicken formula feed | 93.6–98.8 | 1.5–2.0 | 7.1–9.7 |
Chicken concentrate feed | 98.3–105.7 | 2.2–2.3 | 3.4–4.2 | |
Chicken premix | 97.5–100.3 | 0.8–2.9 | 1.5–6.9 | |
Pig compound feed | 101.2–107.1 | 4.1–6.1 | 5.1–7.3 | |
Pig premix | 97.3–100.3 | 1.9–3.5 | 1.9–8.6 | |
Beef concentrate supplement | 92.4–103.7 | 0.6–7.5 | 5.2–10.0 | |
ZEN | Chicken formula feed | 97.8–103.6 | 1.4–5.4 | 3.8–7.6 |
Chicken concentrate feed | 98.6–103.7 | 4.8–4.9 | 2.9–7.9 | |
Chicken premix | 101.2–104.6 | 1.3–5.4 | 2.6–5.7 | |
Pig compound feed | 102.6–110.4 | 4.8–10.7 | 0.8–8.8 | |
Pig premix | 94.3–98.9 | 3.1–10.0 | 5.2–10.2 | |
Beef concentrate supplement | 96.2–103.2 | 2.4–3.1 | 2.7–9.0 | |
α-ZEL | Chicken formula feed | 91.5–101.1 | 0.6–4.9 | 6.9–11.8 |
Chicken concentrate feed | 98.6–101.3 | 0.4–4.6 | 4.7–9.1 | |
Chicken premix | 91.4–97.6 | 0.3–5.9 | 2.9–7.1 | |
Pig compound feed | 93.6–110.2 | 1.6–9.7 | 2.1–9.2 | |
Pig premix | 89.6–94.9 | 3.4–5.2 | 6.5–10.5 | |
Beef concentrate supplement | 91.3–102.6 | 1.8–3.6 | 5.7–5.8 | |
β-ZEL | Chicken formula feed | 96.3–112.3 | 1.4–7.7 | 7.6–9.8 |
Chicken concentrate feed | 97.8–99.6 | 1.9–3.7 | 4.4–8.6 | |
Chicken premix | 93.6–99.3 | 1.9–5.2 | 3.2–11.5 | |
Pig compound feed | 94.0–105.2 | 3.8–6.2 | 8.9–10.4 | |
Pig premix | 95.1–98.3 | 2.0–6.1 | 2.5–6.0 | |
Beef concentrate supplement | 90.4–104.1 | 0.5–11.3 | 6.3–10.3 |
Analyte | Detection Rate 1 (%) | Minimum 2/Maximum (μg/kg) |
---|---|---|
ZAN | 30 | 5.2/8.9 |
α-ZAL | 0 | - |
β-ZAL | 0 | - |
ZEN | 100 | 19.8/620.5 |
α-ZEL | 45 | 9.1/111.4 |
β-ZEL | 50 | 5.8/118.6 |
Analyte | Retention Time (min) | Qualitative Ion (m/z) | Quantitative Ion (m/z) |
---|---|---|---|
ZAN | 13.943 | 449, 450, 335, 307 | 307 |
α-ZAL | 14.024 | 523, 433, 335, 307 | 307 |
β-ZAL | 14.158 | 523, 433, 335, 307 | 307 |
ZEN | 14.441 | 462, 429, 333, 305 | 333 |
α-ZEL | 14.677 | 536, 431, 333, 305 | 305 |
β-ZEL | 14.885 | 536, 431, 333, 305 | 305 |
13C18-ZEN | 14.441 | 344, 316, 447, 480 | 344 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, S.; Liu, Y.; Guo, Q.; Wang, X.; Tian, Y.; Yang, W.; Li, J.; Chen, Y. Determination of Zearalenone and Its Derivatives in Feed by Gas Chromatography–Mass Spectrometry with Immunoaffinity Column Cleanup and Isotope Dilution. Toxins 2022, 14, 764. https://doi.org/10.3390/toxins14110764
Luo S, Liu Y, Guo Q, Wang X, Tian Y, Yang W, Li J, Chen Y. Determination of Zearalenone and Its Derivatives in Feed by Gas Chromatography–Mass Spectrometry with Immunoaffinity Column Cleanup and Isotope Dilution. Toxins. 2022; 14(11):764. https://doi.org/10.3390/toxins14110764
Chicago/Turabian StyleLuo, Sunlin, Ying Liu, Qi Guo, Xiong Wang, Ying Tian, Wenjun Yang, Juntao Li, and Yiqiang Chen. 2022. "Determination of Zearalenone and Its Derivatives in Feed by Gas Chromatography–Mass Spectrometry with Immunoaffinity Column Cleanup and Isotope Dilution" Toxins 14, no. 11: 764. https://doi.org/10.3390/toxins14110764
APA StyleLuo, S., Liu, Y., Guo, Q., Wang, X., Tian, Y., Yang, W., Li, J., & Chen, Y. (2022). Determination of Zearalenone and Its Derivatives in Feed by Gas Chromatography–Mass Spectrometry with Immunoaffinity Column Cleanup and Isotope Dilution. Toxins, 14(11), 764. https://doi.org/10.3390/toxins14110764