Variability of Microcystin-LR Standards Available from Seven Commercial Vendors
Abstract
1. Introduction
2. Results
2.1. Chemical Analysis of MCLR Standards
2.2. Toxicological Comparison of MCLR Standards
3. Discussion
4. Methods
4.1. Animals
4.2. Experimental Design
4.2.1. Microcystin-LR Standards Preparation
4.2.2. Animal Dosing, Observation and Necropsy
4.2.3. Clinical Chemistry
4.3. MCLR Analysis by UV-Vis at EPA, NC
4.4. MCLR Analysis by MS-TOF at EPA, NC
4.5. MCLR Analysis by LC-MS/MS at EPA NV
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouaicha, N.; Miles, C.O.; Beach, D.G.; Labidi, Z.; Djabri, A.; Benayache, N.Y.; Nguyen-Quang, T. Structural Diversity, Characterization and Toxicology of Microcystins. Toxins 2019, 11, 714. [Google Scholar] [CrossRef] [PubMed]
- Salmaso, N.; Akçaalan, R.; Bernard, C.; Elersek, T.; Krstić, S.; Pilkaityte, R.; Quesada, A.; Santos, R.; Törökné, A.; Vasas, G.; et al. Appendix 1: Cyanobacterial Species and Recent Synonyms. In Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis; Meriluoto, J., Spoof, L., Codd, G., Eds.; John Wiley & Sons: Chichester, UK, 2017. [Google Scholar]
- Buratti, F.M.; Manganelli, M.; Vichi, S.; Stefanelli, M.; Scardala, S.; Testai, E.; Funari, E. Cyanotoxins: Producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch. Toxicol. 2017, 91, 1049–1130. [Google Scholar] [CrossRef] [PubMed]
- Merel, S.; Walker, D.; Chicana, R.; Snyder, S.; Baures, E.; Thomas, O. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ. Int. 2013, 59, 303–327. [Google Scholar] [CrossRef] [PubMed]
- Paerl, H.W.; Otten, T.G. Harmful cyanobacterial blooms: Causes, consequences, and controls. Microb. Ecol. 2013, 65, 995–1010. [Google Scholar] [CrossRef] [PubMed]
- Fawell, J.K.; Mitchell, R.E.; Everett, D.J.; Hill, R.E. The toxicity of cyanobacterial toxins in the mouse: I microcystin-LR. Hum. Exp. Toxicol. 1999, 18, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Kondo, F.; Matsumoto, H.; Yamada, S.; Ishikawa, N.; Ito, E.; Nagata, S.; Ueno, Y.; Suzuki, M.; Harada, K. Detection and identification of metabolites of microcystins formed in vivo in mouse and rat livers. Chem. Res. Toxicol. 1996, 9, 1355–1359. [Google Scholar] [CrossRef]
- Rao, P.V.L.; Gupta, N.; Jayaraj, R.; Bhaskar, A.S.B.; Jatav, P.C. Age-dependent effects on biochemical variables and toxicity induced by cyclic peptide toxin microcystin-LR in mice. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2005, 140, 11–19. [Google Scholar] [CrossRef]
- Yoshida, T.; Makita, Y.; Nagata, S.; Tsutsumi, T.; Yoshida, F.; Sekijima, M.; Tamura, S.; Ueno, Y. Acute oral toxicity of microcystin-LR, a cyanobacterial hepatotoxin, in mice. Nat. Toxins 1997, 5, 91–95. [Google Scholar] [CrossRef]
- Chernoff, N.; Hill, D.; Lang, J.; Schmid, J.; Farthing, A.; Huang, H. Dose-Response Study of Microcystin Congeners MCLA, MCLR, MCLY, MCRR, and MCYR Administered Orally to Mice. Toxins 2021, 13, 86. [Google Scholar] [CrossRef]
- Chernoff, N.; Hill, D.; Lang, J.; Schmid, J.; Le, T.; Farthing, A.; Huang, H. The Comparative Toxicity of 10 Microcystin Congeners Administered Orally to Mice: Clinical Effects and Organ Toxicity. Toxins 2020, 12, 403. [Google Scholar] [CrossRef]
- Bengis, R.; Govender, D.; Lane, E.; Myburgh, J.; Oberholster, P.; Buss, P.; Prozesky, L.; Keet, D. Eco-epidemiological and pathological features of wildlife mortality events related to cyanobacterial bio-intoxication in the Kruger National Park, South Africa. J. S. Afr. Vet. Assoc. 2016, 87, e1–e9. [Google Scholar] [CrossRef]
- Foss, A.J.; Miles, C.O.; Samdal, I.A.; Lovberg, K.E.; Wilkins, A.L.; Rise, F.; Jaabaek, J.A.H.; McGowan, P.C.; Aubel, M.T. Analysis of free and metabolized microcystins in samples following a bird mortality event. Harmful Algae 2018, 80, 117–129. [Google Scholar] [CrossRef]
- Backer, L.C.; Landsberg, J.H.; Miller, M.; Keel, K.; Taylor, T.K. Canine cyanotoxin poisonings in the United States (1920s-2012): Review of suspected and confirmed cases from three data sources. Toxins 2013, 5, 1597–1628. [Google Scholar] [CrossRef]
- Foss, A.J.; Aubel, M.T.; Gallagher, B.; Mettee, N.; Miller, A.; Fogelson, S.B. Diagnosing Microcystin Intoxication of Canines: Clinicopathological Indications, Pathological Characteristics, and Analytical Detection in Postmortem and Antemortem Samples. Toxins 2019, 11, 456. [Google Scholar] [CrossRef]
- Roberts, V.A.; Vigar, M.; Backer, L.; Veytsel, G.E.; Hilborn, E.D.; Hamelin, E.I.; Vanden Esschert, K.L.; Lively, J.Y.; Cope, J.R.; Hlavsa, M.C.; et al. Surveillance for Harmful Algal Bloom Events and Associated Human and Animal Illnesses—One Health Harmful Algal Bloom System, United States, 2016–2018. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 1889–1894. [Google Scholar] [CrossRef]
- Fitzgerald, S.D.; Poppenga, R.H. Toxicosis due to microcystin hepatotoxins in three Holstein heifers. J. Vet. Diagn. Investig. 1993, 5, 651–653. [Google Scholar] [CrossRef]
- Puschner, B.; Galey, F.D.; Johnson, B.; Dickie, C.W.; Vondy, M.; Francis, T.; Holstege, D.M. Blue-green algae toxicosis in cattle. J. Am. Vet. Med. Assoc. 1998, 213, 1605–1607, 1571. [Google Scholar]
- Campos, A.; Vasconcelos, V. Molecular Mechanisms of Microcystin Toxicity in Animal Cells. Int. J. Mol. Sci. 2010, 11, 268–287. [Google Scholar] [CrossRef]
- Cantor, G.H.; Beckonert, O.; Bollard, M.E.; Keun, H.C.; Ebbels, T.M.; Antti, H.; Wijsman, J.A.; Bible, R.H.; Breau, A.P.; Cockerell, G.L.; et al. Integrated histopathological and urinary metabonomic investigation of the pathogenesis of microcystin-LR toxicosis. Vet. Pathol. 2013, 50, 159–171. [Google Scholar] [CrossRef]
- Backer, L.C.; Carmichael, W.; Kirkpatrick, B.; Williams, C.; Irvin, M.; Zhou, Y.; Johnson, T.B.; Nierenberg, K.; Hill, V.R.; Kieszak, S.M.; et al. Recreational exposure to low concentrations of microcystins during an algal bloom in a small lake. Mar. Drugs 2008, 6, 389–406. [Google Scholar] [CrossRef]
- Backer, L.C.; McNeel, S.V.; Barber, T.; Kirkpatrick, B.; Williams, C.; Irvin, M.; Zhou, Y.; Johnson, T.B.; Nierenberg, K.; Aubel, M.; et al. Recreational exposure to microcystins during algal blooms in two California lakes. Toxicon 2010, 55, 909–921. [Google Scholar] [CrossRef]
- Giannuzzi, L.; Sedan, D.; Echenique, R.; Andrinolo, D. An acute case of intoxication with cyanobacteria and cyanotoxins in recreational water in Salto Grande Dam, Argentina. Mar. Drugs 2011, 9, 2164–2175. [Google Scholar] [CrossRef]
- Vidal, F.; Sedan, D.; D’Agostino, D.; Cavalieri, M.L.; Mullen, E.; Parot Varela, M.M.; Flores, C.; Caixach, J.; Andrinolo, D. Recreational Exposure during Algal Bloom in Carrasco Beach, Uruguay: A Liver Failure Case Report. Toxins 2017, 9, 267. [Google Scholar] [CrossRef]
- Falconer, I.R. Cyanobacterial Toxins of Drinking Water Supplies, 1st ed.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar] [CrossRef]
- McCarty, C.L.; Nelson, L.; Eitniear, S.; Zgodzinski, E.; Zabala, A.; Billing, L.; DiOrio, M. Community Needs Assessment After Microcystin Toxin Contamination of a Municipal Water Supply—Lucas County, Ohio, September 2014. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 925–929. [Google Scholar] [CrossRef]
- Greer, B.; Maul, R.; Campbell, K.; Elliott, C.T. Detection of freshwater cyanotoxins and measurement of masked microcystins in tilapia from Southeast Asian aquaculture farms. Anal. Bioanal. Chem. 2017, 409, 4057–4069. [Google Scholar] [CrossRef]
- Poste, A.E.; Hecky, R.E.; Guildford, S.J. Evaluating microcystin exposure risk through fish consumption. Environ. Sci. Technol. 2011, 45, 5806–5811. [Google Scholar] [CrossRef]
- Rios, V.; Moreno, I.; Prieto, A.I.; Puerto, M.; Gutierrez-Praena, D.; Soria-Diaz, M.E.; Camean, A.M. Analysis fo MC-LR and MC-RR in tissue from freshwater fish (Tinca tinca) and crayfish (Procambarus clarkii) in tenchponds (Caceres, Spain) by liquid chromatography-mass spectrometry (LC-MS). Food Chem. Toxicol. 2013, 57, 170–178. [Google Scholar] [CrossRef]
- Xiang, L.; Li, Y.W.; Liu, B.L.; Zhao, H.M.; Li, H.; Cai, Q.Y.; Mo, C.H.; Wong, M.H.; Li, Q.X. High ecological and human health risks from microcystins in vegetable fields in southern China. Environ. Int. 2019, 133, 105142. [Google Scholar] [CrossRef]
- Xiang, L.; Li, Y.W.; Wang, Z.R.; Liu, B.L.; Zhao, H.M.; Li, H.; Cai, Q.Y.; Mo, C.H.; Li, Q.X. Bioaccumulation and Phytotoxicity and Human Health Risk from Microcystin-LR under Various Treatments: A Pot Study. Toxins 2020, 12, 523. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.L.; Rodrigues, J.A.; Azevedo, J.; Vasconcelos, V.; Eiras, E.; Campos, M.G. Hepatotoxicity induced by paclitaxel interaction with turmeric in association with a microcystin from a contaminated dietary supplement. Toxicon 2018, 150, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, D.; Hoeger, S. Guidance values for microcystins in water and cyanobacterial supplement products (blue-green algal supplements): A reasonable or misguided approach? Toxicol. Appl. Pharmacol. 2005, 203, 273–289. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency (USEPA). 2009. National Lakes Assessment: A Collaborative Survey of the Nation’s Lakes; EPA 841-R-09-001; U.S. Environmental Protection Agency, Office of Water and Office of Research and Development: Washington, DC, USA, 2009. [Google Scholar]
- Loftin, K.A.; Graham, J.L.; Hilborn, E.D.; Lehmann, S.C.; Meyer, M.T.; Dietze, J.E.; Griffith, C.B. Cyanotoxins in inland lakes of the United States: Occurrence and potential recreational health risks in the EPA National Lakes Assessment 2007. Harmful Algae 2016, 56, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Svircev, Z.; Lalic, D.; Bojadzija Savic, G.; Tokodi, N.; Drobac Backovic, D.; Chen, L.; Meriluoto, J.; Codd, G.A. Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Arch. Toxicol. 2019, 93, 2429–2481. [Google Scholar] [CrossRef]
- Shoemaker, J.; Tettenhorst, D.; Delacruz, A. USEPA Methodd 544 Determination of Microcystins and Nodularin in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS), 1st ed.; U.S. Environmental Protection Agency: Washington, DC, USA, 2015. [Google Scholar]
- US EPA Office of Water. The Fourth Unregulated Contaminant Monitoring Rule (UCMR 4); U.S. Environmental Protection Agency: Washington, DC, USA, 2016. [Google Scholar]
- Lovell, R.A.; Schaeffer, D.J.; Hooser, S.B.; Haschek, W.M.; Dahlem, A.M.; Carmichael, W.W.; Beasley, V.R. Toxicity of intraperitoneal doses of microcystin-LR in two strains of male mice. J. Environ. Pathol. Toxicol. Oncol. 1989, 9, 221–237. [Google Scholar]
- Fontanillo, M.; Kohn, M. Microcystins: Synthesis and structure-activity relationship studies toward PP1 and PP2A. Bioorg. Med. Chem. 2018, 26, 1118–1126. [Google Scholar] [CrossRef]
- Harada, K.-I.; Suzuki, M.; Dahlem, A.M.; Beasley, V.R.; Carmichael, W.W.; Rinehart, K.L. Improved method for purification of toxic peptides produced by cyanobacteria. Toxicon 1988, 26, 433–439. [Google Scholar] [CrossRef]
- Massey, I.Y.; Wu, P.; Wei, J.; Luo, J.; Ding, P.; Wei, H.; Yang, F. A Mini-Review on Detection Methods of Microcystins. Toxins 2020, 12, 641. [Google Scholar] [CrossRef]
- Guo, Y.; Giovanni, G.; Jia, A.; Vanderford, B.; Eaton, A. Refinement and Standardization of Cyanotoxin Analytical Techniques for Drinking Water; Project 4716; The Water Research Foundation: Alexandria, VA, USA, 2022. [Google Scholar]
- McCord, J.P.; Strynar, M.J.; Washington, J.W.; Bergman, E.L.; Goodrow, S.M. Emerging Chlorinated Polyfluorinated Polyether Compounds Impacting the Waters of Southwestern New Jersey Identified by Use of Nontargeted Analysis. Environ. Sci. Technol. Lett. 2020, 7, 903–908. [Google Scholar] [CrossRef]
- Fastner, J.; Codd, G.A.; Metcalf, J.S.; Woitke, P.; Wiedner, C.; Utkilen, H. An international intercomparison exercise for the determination of purified microcystin-LR and microcystins in cyanobacterial field material. Anal. Bioanal. Chem. 2002, 374, 437–444. [Google Scholar] [CrossRef]
- Hollingdale, C.; Thomas, K.; Lewis, N.; Bekri, K.; McCarron, P.; Quilliam, M.A. Feasibility study on production of a matrix reference material for cyanobacterial toxins. Anal. Bioanal. Chem. 2015, 407, 5353–5363. [Google Scholar] [CrossRef]
- Altaner, S.; Puddick, J.; Wood, S.A.; Dietrich, D.R. Adsorption of Ten Microcystin Congeners to Common Laboratory-Ware Is Solvent and Surface Dependent. Toxins 2017, 9, 129. [Google Scholar] [CrossRef]
- Hosten, A.O. BUN and Creatinine. In Clinical Methods: The History, Physical, and Laboratory Examinations, 3rd ed.; Walker, H.K., Hall, W.D., Hurst, J.W., Eds.; Butterworths: Boston, MA, USA, 1990; Chapter 193. [Google Scholar]
- Salazar, J. Overview of Urea and Creatinine. Lab. Med. 2014, 45, e19–e20. [Google Scholar] [CrossRef]
- Busher, J.T. Serum Albumin and Globulin. In Clinical Methods: The History, Physical, and Laboratory Examinations, 3rd ed.; Walker, H.K., Hall, W.D., Hurst, J.W., Eds.; Butterworths: Boston, MA, USA, 1990; Chapter 101. [Google Scholar]
- Raoufinia, R.; Mota, A.; Keyhanvar, N.; Safari, F.; Shamekhi, S.; Abdolalizadeh, J. Overview of Albumin and Its Purification Methods. Adv. Pharm. Bull. 2016, 6, 495–507. [Google Scholar] [CrossRef]
- Viswanathan, C.T.; Bansal, S.; Booth, B.; DeStefano, A.J.; Rose, M.J.; Sailstad, J.; Shah, V.P.; Skelly, J.P.; Swann, P.G.; Weiner, R. Quantitative bioanalytical methods validation and implementation: Best practices for chromatographic and ligand binding assays. Pharm. Res. 2007, 24, 1962–1973. [Google Scholar] [CrossRef]
- Tang, X.; Madronich, S.; Wallington, T.; Calamari, D. Changes in tropospheric composition and air quality. J. Photochem. Photobiol. B Biol. 1998, 46, 83–95. [Google Scholar] [CrossRef]
- Blake, D.A.; Cascorbi, H.F.; Rozman, R.S.; Meyer, F.J. Animal toxicity of 2,2,2-trifluoroethanol. Toxicol. Appl. Pharm. 1969, 15, 83–91. [Google Scholar] [CrossRef]
- Rosenberg, P.H.; Wahlstrom, T. Hepatotoxicity of halothane metabolites in vivo and inhibition of fibroblast growth in vitro. Acta Pharmacol. Toxicol. 1971, 29, 9–19. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Guide for the Care and Use of Laboratory Animals, 8th ed.; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services; National Institutes of Health Office of Laboratory Animal Welfare. Public Health Service (PHS) Policy on Humane Care and Use of Laboratory Animals (Policy). Lab. Anim. Sci. 2015, 41, 91. [Google Scholar]
- Meriluoto, J.; Codd, G.; Reilly, M.; Metcalf, J.S.; Spoof, L.; Sjövall, O.; Hall, T.; Hiskia, A.; Kaloudis, T.; Baptista Pereira, P.; et al. Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis; John Wiley & Sons: Chichester, UK, 2005. [Google Scholar]
- Meriluoto, J.A.; Spoof, L.E. Cyanotoxins: Sampling, sample processing and toxin uptake. Adv. Exp. Med. Biol. 2008, 619, 483–499. [Google Scholar] [CrossRef]
Suggested Formula | Monoisotopic Mass of Unknown (Da) | Ratio of Unknown Compound to MCLR Peak Area | ||||||
---|---|---|---|---|---|---|---|---|
Vendor | ||||||||
A | B | C | D | E | F | G | ||
C2HF3O2—TFA 1 | 113.993 | 11.3 | 17.8 | |||||
SO4 Sulfate Cluster | 195.936 | 0.83 | ||||||
C48H72N10O12- d-meth MCLR | 980.533 | 0.02 | ||||||
C50H76N10O12—MCLR-Methyl Ester | 1008.564 | 0.01 |
Number of Animals | Liver Wt (g) | Liver/Bwt % | Weight Change (g) | Liver Score | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Vendor (µg/kg MCLR) | Male | Female | Male | Female | Male | Female | Male | Female | Male | Female |
Control | 18 | 18 | 2.1 ± 0.1 | 1.4 ± 0.1 | 6.1 ± 0.15 | 5.4 ± 0.14 | −0.09 ± 0.08 | −0.19 ± 0.16 | 1.9 ± 0.35 | 1.2 ± 0.35 |
A (13.2) | 12 | 12 | 2.0 ± 0.1 | 1.4 ± 0.0 | 5.7 ± 0.19 | 5.5 ± 0.17 | −0.41 ± 0.13 | −0.20 ± 0.15 | 3.0 ± 0.51 | 2.8 ± 0.52 a |
B (25.6) | 12 | 12 | 2.1 ± 0.1 | 1.5 ± 0.1 | 6.0 ± 0.19 | 5.7 ± 0.17 | −0.20 ± 0.14 | −0.49 ± 0.11 | 4.3 ± 0.45 c | 2.9 ± 0.34 b |
C (34.0) | 12 | 12 | 2.0 ± 0.1 | 1.5 ± 0.1 | 6.0 ± 0.19 | 5.9 ± 0.17 a | −0.12 ± 0.17 | −0.41 ± 0.19 | 5.7 ± 0.53 c | 3.1 ± 0.67 a |
D (35.6) | 12 | 12 | 2.0 ± 0.1 | 1.5 ± 0.1 | 6.0 ± 0.20 | 5.9 ± 0.18 a | −0.44 ± 0.13 | −0.68 ± 0.34 a | 6.3 ± 0.57 c | 4.0 ± 0.62 c |
E (39.6) | 12 | 12 | 1.9 ± 0.1 | 1.7 ± 0.1 c | 5.9 ± 0.19 | 6.2 ± 0.17 c | −0.17 ± 0.34 | −0.65 ± 0.25 | 7.3 ± 0.66 c | 4.5 ± 1.12 b |
F (38.4) | 12 | 12 | 2.3 ± 0.1 a | 1.6 ± 0.1 | 7.0 ± 0.21 c | 6.2 ± 0.2 c | −0.18 ± 0.15 | −0.27 ± 0.27 | 5.6 ± 0.97 c | 6.6 ± 1.05 c |
G (44.8) | 12 | 12 | 2.2 ± 0.1 | 2.0 ± 0.1 c | 6.6 ± 0.19 | 7.8 ± 0.20 c | −0.53 ± 0.22 | −0.24 ± 0.13 | 7.6 ± 0.94 c | 9.4 ± 0.43 c |
ALT (IU/L) | AST (IU/L) | GLDH (IU/L) | BUN (mg/dL) | Creatinine (mg/dL) | ||||||
Vendor (µg/kg MCLR) | Male | Female | Male | Female | Male | Female | Male | Female | Male | Female |
Control | 33.4 ± 2.2 | 43.4 ± 6.7 | 69.0 ± 7.7 | 98.2 ± 10.9 | 13 ± 1.7 | 10.7 ± 1.2 | 11.1 ± 0.22 | 9.6 ± 0.27 | 0.48 ± 0.01 | 0.6 ± 0.06 |
A (13.2) | 42.9 ± 3.9 | 89.2 ± 40.3 | 72.5 ± 9.1 | 142.1 ± 43.7 | 22.7 ± 5.2 | 13 ± 2.2 | 9.6 ± 0.46 a | 8.1 ± 0.39 a | 0.5 ± 0.00 | 0.5 ± 0.03 a |
B (25.6) | 145.9 ± 22.3 b | 104.5 ± 27.8 b | 124 ± 2.5 | 140.8 ± 26.4 | 37.3 ± 8.1 a | 27.9 ± 5.0 b | 10.7 ± 0.87 | 9.2 ± 0.50 | 0.4 ± 0.01 a | 0.6 ± 0.05 |
C (34.0) | 820.6 ± 395.1 c | 567.3 ± 431.2 b | 372.4 ± 218.0 a | 535.2 ± 407.7 | 108.2 ± 29.9 b | 28.6 ± 8.1 a | 9.9 ± 0.41 | 8.0 ± 0.40 b | 0.5 ± 0.01 | 0.7 ± 0.09 |
D (35.6) | 743.1 ± 224.5 c | 676.5 ± 423.8 c | 276 ± 83.5 | 479.8 ± 283.7 a | 152.1 ± 32.6 c | 64.3 ± 7.6 c | 9.8 ± 0.25 a | 9.1 ± 0.34 | 0.5 ± 00 | 0.8 ± 0.10 |
E (39.6) | 435.8 ± 166.4 c | 750.3 ± 403.7 c | 725.9 ± 553.2 b | 678.1 ± 441.2 b | 78.8 ± 23.8 b | 62.3 ± 16.0 c | 11.4 ± 1.08 | 9.1 ± 0.60 | 0.6 ± 0.08 | 0.6 ± 0.06 |
F (38.4) | 864.1 ± 314.9 c | 715.4 ± 153.5 c | 328.1 ± 105.4 c | 681.2 ± 341.8 c | No data | 198.8 ± 44.3 c | 11.7 ± 0.67 | 9.6 ± 0.42 | 0.5 ± 0.05 | 0.4 ± 0.03 a |
G (44.8) | 2467.2 ± 1089.4 c | 2997.4 ± 806.8 c | 962.6 ± 403.8 c | 2191.1 ± 1140.6 c | 81.1 ± 31.4 b | 72 ± 23.0 c | 10.3 ± 0.88 | 15.3 ± 1.76 c | 0.5 ± 0.02 | 0.8 ± 0.10 |
Albumin (g/dL) | Globulin (g/dL) | Total Protein (g/dL) | Early Deaths | |||||||
Vendor (µg/kg MCLR) | Male | Female | Male | Female | Male | Female | Male | Female | ||
Control | 3.1 ± 0.04 | 3.6 ± 0.10 | 2.1 ± 0.03 | 2.1 ± 0.06 | 5.2 ± 0.06 | 5.3 ± 0.13 | 0 | 0 | ||
A (13.2) | 3.1 ± 0.05 | 3.6 ± 0.14 | 2.2 ± 0.04 | 2.0 ± 0.05 | 5.2 ± 0.07 | 5.0 ± 0.18 | 0 | 0 | ||
B (25.6) | 3.1 ± 0.06 | 3.8 ± 0.12 | 2.2 ± 0.11 | 2.2 ± 0.04 a | 5.2 ± 0.11 | 5.4 ± 0.19 | 0 | 0 | ||
C (34.0) | 3.1 ± 0.05 | 3.7 ± 0.14 | 2.3 ± 0.03 b | 2.2 ± 0.07 | 5.4 ± 0.07 | 5.1 ± 0.19 | 0 | 0 | ||
D (35.6) | 3.1 ± 0.06 | 3.6 ± 0.11 | 2.3 ± 0.04 | 2.5 ± 0.10 b | 5.3 ± 0.05 | 5.8 ± 0.10 | 0 | 0 | ||
E (39.6) | 3.2 ± 0.05 a | 3.4 ± 0.12 | 2.3 ± 0.03 b | 1.9 ± 0.11 | 5.1 ± 0.17 | 5.0 ± 0.17 | 1 | 2 | ||
F (38.4) | 2.9 ± 0.06 a | 3.5 ± 0.11 | 2.2 ± 0.08 | 2.3 ± 0.12 | 5.4 ± 0.11 a | 5.5 ± 0.16 | 3 | 1 | ||
G (44.8) | 3.0 ± 0.06 | 3.1 ± 0.11 c | 2.2 ± 0.06 a | 1.7 ± 0.14 b | 5.0 ± 0.15 | 4.8 ± 0.33 | 2 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hill, D.; Lang, J.; McCord, J.; Strynar, M.; Rosal, C.; Schmid, J.; Le, T.-T.; Chernoff, N. Variability of Microcystin-LR Standards Available from Seven Commercial Vendors. Toxins 2022, 14, 705. https://doi.org/10.3390/toxins14100705
Hill D, Lang J, McCord J, Strynar M, Rosal C, Schmid J, Le T-T, Chernoff N. Variability of Microcystin-LR Standards Available from Seven Commercial Vendors. Toxins. 2022; 14(10):705. https://doi.org/10.3390/toxins14100705
Chicago/Turabian StyleHill, Donna, Johnsie Lang, James McCord, Mark Strynar, Charlita Rosal, Judith Schmid, Thanh-Thao Le, and Neil Chernoff. 2022. "Variability of Microcystin-LR Standards Available from Seven Commercial Vendors" Toxins 14, no. 10: 705. https://doi.org/10.3390/toxins14100705
APA StyleHill, D., Lang, J., McCord, J., Strynar, M., Rosal, C., Schmid, J., Le, T.-T., & Chernoff, N. (2022). Variability of Microcystin-LR Standards Available from Seven Commercial Vendors. Toxins, 14(10), 705. https://doi.org/10.3390/toxins14100705