Differentiated Effects of Allyl Isothiocyanate in Diabetic Rats: From Toxic to Beneficial Action
Abstract
:1. Introduction
2. Results
2.1. Effect of High-Fat Diet/STZ Injection and AITC on Carbohydrate and Lipid Parameters
2.2. Effect of High-Fat Diet/STZ Injection and AITC on Thyroid, Pancreatic and Incretin Hormones
2.3. Effect of High-Fat Diet/STZ Injection and AITC on Toxicity Biomarkers
2.4. Effect of High-Fat Diet/STZ Injection and AITC on Organ Mass and Body Weight Gains
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Induction of Type 2 Diabetes (T2DM)
5.2. AITC Administration
5.3. Analytical Methods
5.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kassie, F.; Knasmüller, S. Genotoxic effects of allyl isothiocyanate (AITC) and phenethyl isothiocyanate (PEITC). Chem. Biol. Interact. 2000, 127, 163–180. [Google Scholar] [CrossRef]
- Murata, M.; Yamashita, N.; Inoue, S.; Kawanishi, S. Mechanism of oxidative DNA damage induced by carcinogenic allyl isothiocyanate. Free Radic. Biol. Med. 2000, 28, 797–805. [Google Scholar] [CrossRef]
- Langer, P.; Greer, M.A. Antithyroid action of some naturally occurring isothiocyanates in vitro. Metabolism 1968, 17, 596–605. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Xiao, D.; Lew, K.L.; Hershberger, P.; Kokkinakis, D.M.; Johnson, C.J.; Trump, D.L.; Singh, S.V. Allyl isothiocyanate, a constituent of cruciferous vegetables, inhibits growth of PC-3 human prostate cancer xenografts in vivo. Carcinogenesis 2003, 24, 1665–1670. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, A.; Tang, L.; Li, Y.; Geng, F.; Paonessa, J.D.; Chen, S.C.; Wong, M.K.; Hang, Y. Inhibition of bladder cancer development by allyl isothiocyanate. Carcinogenesis 2010, 31, 281–286. [Google Scholar] [CrossRef]
- Zhang, Y. Allyl isothiocyanate as a cancer chemopreventive phytochemical. Mol. Nutr. Food Res. 2010, 54, 127–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munday, R.; Munday, C.M. Induction of phase II detoxification enzymes in rats by plant-derived isothiocyanates: Comparison of allyl isothiocyanate with sulforaphane and related compounds. J. Agric. Food Chem. 2004, 52, 1867–1871. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Hwang, Y.C.; Koo, S.H.; Park, K.S.; Lee, M.S.; Kim, K.W.; Lee, M.K. PPAR-γ activation increases insulin secretion through the up-regulation of the free fatty acid receptor GPR40 in pancreatic β-cells. PLoS ONE 2013, 8, 50128. [Google Scholar] [CrossRef] [Green Version]
- Bo, P.; Lien, J.-C.; Chen, Y.-Y.; Yu, F.-S.; Lu, H.-F.; Yu, C.-S.; Chou, Y.-C.; Yu, C.-C.; Chung, J.-G. Allyl isothiocyanate induces cell toxicity by multiple pathways in human breast cancer cells. Am. J. Chin. Med. 2016, 44, 415–437. [Google Scholar] [CrossRef]
- Imaizumi, K.; Sato, S.; Sakakibara, Y.; Mori, S.; Ohkuma, M.; Kawashima, Y.; Ban, T.; Sasaki, H.; Tachiyashiki, K. Allyl isothiocyanate-induced changes in the distribution of white blood cells in rats. J. Toxicol. Sci. 2010, 35, 583–589. [Google Scholar] [CrossRef] [Green Version]
- Manesh, C.; Kuttan, G. Effect of naturalny occurring isothiocyanates on the immune system. Immunopharmacol. Immunotoxicol. 2003, 25, 451–459. [Google Scholar] [CrossRef]
- Yamada-Kato, T.; Momoi, S.; Okunishi, I.; Minami, M.; Oishi, Y.; Osawa, T.; Naito, M. Anti-obesity effects of wasabi leaf extract on rats fed a high-fat diet are related to upregulation of mRNA expression of β3-adrenergic receptors in interscapular brown adipose tissue. Food Sci. Technol. Res. 2016, 22, 665–671. [Google Scholar] [CrossRef]
- Ahn, J.; Lee, H.; Im, S.W.; Jung, C.H.; Ha, T.Y. Allyl isothiocyanate ameliorates insulin resistance through the regulation of mitochondrial function. J. Nutr. Biochem. 2014, 25, 1026–1034. [Google Scholar] [CrossRef]
- Mori, N.; Kawabata, F.; Matsumura, S.; Hosokawa, H.; Kobayashi, S.; Inoue, K.; Fushiki, T. Intragastric administration of allyl isothiocyanate reduces hyperglycemia in intraperitoneal glucose tolerance test (IPGTT) by enhancing blood glucose consumption in mice. J. Nutr. Sci. Vitaminol. 2013, 59, 56–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahin, N.; Orhan, C.; Erten, F.; Tuzcu, M.; Defo Deeh, P.B.; Ozercan, I.H.; Juturu, V.; Kazim, S. Effects of allyl isothiocyanate on insulin resistance, oxidative stress status, and transcription factors in high-fat diet/streptozotocin-induced type 2 diabetes mellitus in rats. J. Biochem. Mol. Toxicol. 2019, 33, e22328. [Google Scholar] [CrossRef]
- Kim, Y.J.; Lee, D.H.; Ahn, J.; Chung, W.J.; Jang, Y.J.; Seong, K.S.; Moon, J.H.; Ha, T.Y.; Jung, C.H. Pharmacokinetics, tissue distribution, and anti-lipogenic/adipogenic effects of allyl-isothiocyanate metabolites. PLoS ONE 2015, 10, e0132151. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.H.; Lee, B.H.; Li, C.H.; Hsu, Y.W.; Pan, T.M. Monascin and AITC attenuate methylglyoxal-induced PPARγ phosphorylation and degradation through inhibition of the oxidative stress/PKC pathway depending on Nrf2 activation. J. Agric. Food Chem. 2013, 61, 5996–6006. [Google Scholar] [CrossRef] [PubMed]
- Miyata, S.; Inoue, J.; Shimizu, M.; Sato, R. Allyl isothiocyanate suppresses the proteolytic activation of sterol regulatory element-binding proteins and de novo fatty acid and cholesterol synthesis. Biosci. Biotechnol. Biochem. 2016, 80, 1006–1011. [Google Scholar] [CrossRef] [Green Version]
- Muztar, A.J.; Ahmad, P.; Huque, T.; Slinger, S.J. A study of the chemical binding of allyl isothiocyanate with thyroxine and the effect of allyl isothiocyanate on lipid metabolism in the rat. Can. J. Physiol. Pharmacol. 1979, 57, 385–389. [Google Scholar] [CrossRef]
- Okulicz, M. Multidirectional time-dependent effect of sinigrin and allyl isothocyanate on metabolic parameters in rats. Plant Foods Hum. Nutr. 2010, 65, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Liberopoulos, E.N.; Elisaf, M.S. Dyslipidemia in patients with thyroid disorders. Hormones 2002, 4, 218–223. [Google Scholar] [CrossRef] [Green Version]
- Gibbons, G.F.; Islam, K.; Pease, R.J. Mobilisation of triacylglycerol stores. Biochim. Biophys. Acta 2000, 1483, 37–57. [Google Scholar] [CrossRef]
- Okulicz, M.; Hertig, I.; Chichlowska, J. Benzyl isothiocyanate disturbs lipid metabolism in rats in a way independent of its thyroid impact following in vivo long-term treatment and in vitro adipocytes studies. J. Physiol. Biochem. 2013, 69, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Ahn, M.; Kim, J.; Bang, H.; Moon, J.; Kim, G.O.; Shin, T. Hepatoprotective effects of allyl isothiocyanate against carbon tetrachloride-induced hepatotoxicity in rat. Chem. Biol. Interact. 2016, 254, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Lewerenz, H.J.; Plass, R.; Bleyl, D.W.; Macholz, R. Short-term toxicity study of allyl isothiocyanate in rats. Nahrüng 1988, 32, 723–728. [Google Scholar] [CrossRef]
- Lewerenz, H.J.; Plass, R.; Macholz, R. Effect of allyl isothiocyanate on hepatic monooxygenases and serum transferases in rats. Toxicol. Lett. 1988, 44, 65–70. [Google Scholar] [CrossRef]
- NTP (National Toxicology Program). Carcinogenesis Bioassay of Allyl Isothiocyanate (CAS no. 57-06-7) in F344/N Rats and B6C3F1 Mice (Gavage Study). In Technical Report Series, NTP-81-36; NIH Publication 83-1790: Bethesda, MD, USA, 1982; Volume 234. [Google Scholar]
- Ernst, I.M.A.; Wagner, A.E.; Schuemann, C.; Storm, N.; Höppner, W.; Döring, F.; Stocker, A.; Rimbach, G. Allyl-, butyl- and phenylethyl-isothiocyanate activate Nrf2 in cultured fibroblasts. Pharmacolog. Res. 2011, 63, 233–240. [Google Scholar] [CrossRef]
- Wagner, A.E.; Boesch-Saadatmandi, C.; Dose, J.; Schultheiss, G.; Rimbach, G. Anti-inflammatory potential of allyl-isothiocyanate-role of Nrf2, NF-κB and microRNA-155. J. Cell Mol. Med. 2012, 16, 836–843. [Google Scholar] [CrossRef]
- Subedi, L.; Venkatesan, R.; Kim, S.Y. Neuroprotective and anti-inflammatory activities of allyl isothiocyanate through attenuation of JNK/NF-κB/TNF-α signaling. Int. J. Mol. Sci. 2017, 18, 1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, C.W.; Chen, C.S.; Chen, Y.C.; Hsu, Y.A.; Huang, C.C.; Chang, C.Y.; Lin, C.J.; Lin, C.W.; Lin, H.J.; Liu, F.T.; et al. Allyl isothiocyanate ameliorates obesity by inhibiting galectin-12. Mol. Nutr. Food Res. 2018, 62, e1700616. [Google Scholar] [CrossRef]
- Vernot, E.H.; MacEwen, J.D.; Haun, C.C.; Kinkead, E.R. Acute toxicity and skin corrosion data for some organic compounds and aqueous solutions. Toxicol. Apel. Pharmacol. 1977, 42, 417–423. [Google Scholar] [CrossRef]
- Iwasaki, Y.; Tanabe, M.; Kobata, K.; Watanabe, T. TRPA1 aganists—Allyl isothiocyanate and cinnamaldehyde-induce adrenaline secretion. Biosci. Biotechnol. Biochem. 2008, 72, 2608–2614. [Google Scholar] [CrossRef] [PubMed]
- Muztar, A.J.; Huque, T.; Ahmad, P.; Slinger, S.J. Effect of allyl isothiocyanate on plasma and urinary concentrations of some biochemical entities in the rat. Can. J. Physiol. Pharmacol. 1979, 57, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Mori, N.; Kawabata, F.; Matsumura, S.; Hosokawa, H.; Kobayashi, S.; Inoue, K.; Fushiki, T. Intragastric administration of allyl isothiocyanate increases carbohydrate oxidation via TRPV1 but not TRPA1 in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 300, 1494–1505. [Google Scholar] [CrossRef] [Green Version]
- Guzmán-Pérez, V.; Bumke-Vogt, C.; Schreiner, M.; Mewis, I.; Borchert, A.; Pfeiffer, A.F.H. Gluconeogenic benzylglucosinolate derived isothiocyanate from Tropaeolum majus reduces gene and protein expression in human cells. PLoS ONE 2016, 11, e0162397. [Google Scholar] [CrossRef] [PubMed]
- Waterman, C.; Rojas-Silva, P.; Boyunegmez Tumer, T.; Kuhn, P.; Richard, A.J.; Wicks, S.; Stephens, J.M.; Wang, Z.; Mynatt, R.; Cefalu, W.; et al. Isothiocyanate-rich Moringa oleifera extract reduces weight gain, insulin resistance, and hepatic gluconeogenesis in mice. Mol. Nutr. Food Res. 2015, 59, 1013–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiang, J.H.; Tsai, F.J.; Hsu, Y.M.; Yin, M.C.; Chiu, H.Y.; Yang, J.S. Sensitivity of allyl isothiocyanate to induce apoptosis via ER stress and mitochondrial pathway upon ROS production in colorectal adenocarcinoma cells. Oncol. Rep. 2020, 44, 1415–1424. [Google Scholar] [CrossRef]
- Groschner, L.N.; Alam, M.R.; Graier, W.F. Metabolism-secretion coupling and mitochondrial calcium activities in clonal pancreatic beta-cells. Vitam. Horm. 2014, 95, 63–86. [Google Scholar] [PubMed]
- Lenzen, S. Oxidative stress: The vulnerable beta-cell. Biochem. Soc. Trans. 2008, 36, 343–347. [Google Scholar] [CrossRef]
- Vater, A.; Sell, S.; Kaczmarek, P.; Maasch, C.; Buchner, K.; Pruszynska-Oszmalek, E.; Kołodziejski, P.; Purschke, W.G.; Nowak, K.W.; Strowski, M.Z.; et al. A mixed mirror-image DNA/RNA aptamer inhibits glucagon and acutely improves glucose tolerance in models of type 1 and type 2 diabetes. J. Biol. Chem. 2013, 288, 21136–21147. [Google Scholar] [CrossRef] [Green Version]
- Gault, V.A. Incretins: The inteligent hormones in diabetes. Diab. Med. 2018, 35, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Stanley, G.S.H. A simple method of the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Duncombe, D. The colorimetric micro-determination of nonesterified fatty acids in plasma. Clin. Chim. Acta 1964, 9, 122–125. [Google Scholar] [CrossRef]
Parameters | Control | T2DM | T2DM with AITC 2.5 mg/kg b.w. | T2DM with AITC 5 mg/kg b.w. | T2DM with AITC 25 mg/kg b.w. |
---|---|---|---|---|---|
Serum triacylglycerols (mmol/L) | 0.87 ± 0.11 | 1.88 ± 0.25 ** | 2.55 ± 0.47 † | 2.26 ± 0.90 | 2.23 ± 0.30 |
Serum cholesterol (mmol/L) | 1.95 ± 0.16 | 1.61 ± 0.11 | 2.08 ± 0.36 | 1.67 ± 0.15 | 1.82 ± 0.28 |
HDL cholesterol (mmol/L) | 1.12 ± 0.15 | 1.23 ± 0.16 | 1.89 ± 0.22 † | 1.13 ± 0.06 | 1.10 ± 0.37 |
LDL cholesterol (mmol/L) | 0.74 ± 0.05 | 0.49 ± 0.05 ** | 0.67 ± 0.03 †† | 0.61 ± 0.08 † | 0.60 ± 0.08 † |
Free fatty acids (mmol/L) | 0.23 ± 0.07 | 0.17 ± 0.04 | 0.24 ± 0.04 | 0.21 ± 0.06 | 0.28 ± 0.07 †† |
Liver glycogen (mg/g w.t.) | 62.63 ± 7.65 | 77.31 ± 7.64 * | 74.01 ± 7.95 | 74.76 ± 8.27 | 70.42 ± 7.85 |
Muscle glycogen (mg/g w.t.) | 6.94 ± 0.91 | 7.29 ± 1.14 | 6.76 ± 1.02 | 7.06 ± 1.49 | 7.57 ± 1.10 |
Liver triacylglycerols (mg/g w.t.) | 10.59 ± 2.18 | 11.42 ± 3.11 | 26.63 ± 7.51 †† | 22.99 ± 6.07 †† | 19.11 ± 3.38 † |
Liver cholesterol (mg/g w.t.) | 2.73 ± 0.13 | 2.78 ± 0.32 | 2.46 ± 0.25 | 2.26 ± 0.27 † | 2.59 ± 0.23 |
Parameters | Normal Control | HFD/STZ | T2DM with AITC 2.5 mg/kg b.w. | T2DM with AITC 5 mg/kg b.w. | T2DM with AITC 25 mg/kg b.w. |
---|---|---|---|---|---|
Glucagon (pg/mL) | 177.9 ± 14.70 | 173.7 ± 17.19 | 157.7 ± 6.67 | 145.1 ± 11.95 †† | 157.7 ± 6.48 |
T4 (nmol/L) | 121.1 ± 24.91 | 113.2 ± 11.50 | 101.3 ± 25.08 | 105.8 ±15.42 | 96.08 ± 28.00 |
fT4 (pmol/L) | 19.93 ± 1.68 | 13.93 ± 0.57 ** | 13.25 ± 1.75 | 11.29 ± 1.61 †† | 14.08 ± 1.0 |
T3 (nmol/L) | 1.66 ± 0.52 | 1.72 ± 0.41 | 1.58 ± 0.32 | 1.64 ± 0.40 | 1.66 ± 0.44 |
fT3 (pmol/L) | 4.65 ± 0.57 | 4.18 ± 0.35 | 3.53 ± 0.37 † | 3.71 ± 0.07 | 3.31 ± 0.89 †† |
GIP (mIU/L) | 27.22 ± 5.35 | 18.66 ± 1.24 * | 22.71 ± 3.14 | 22.23 ± 1.19 | 21.30 ± 6.10 |
GLP-1 (ng/mL) | 0.72 ± 0.15 | 0.70 ± 0.16 | 0.51 ± 0.15 | 0.46 ± 0.15 | 0.19 ± 0.05 †† |
Parameters | Control | T2DM | T2DM with AITC 2.5 mg/kg b.w. | T2DM with AITC 5 mg/kg b.w. | T2DM with AITC 25 mg/kg b.w. |
---|---|---|---|---|---|
Beta-hydroxybutyric acids (mmol/L) | 0.52 ± 0.16 | 3.34 ± 0.34 ** | 2. 06 ± 0.43 †† | 1.39 ± 0.23 †† | 3.07 ± 0.57 † |
ALT (IU/L) | 20.86 ± 4.55 | 27.58 ± 4.13 * | 19.89 ± 1.53 † | 18.12 ± 2.10 † | 17.02 ± 4.29 † |
AST (IU/L) | 63.65 ± 8.42 | 45.79 ± 7.08 * | 43.98 ± 0.85 | 40.00 ± 5.56 | 51.63 ± 7.30 |
De Ritis ratio (AST/ALT) | 3.12 ± 0.72 | 1.68 ± 0.17 ** | 2.48 ± 0.26 †† | 2.23 ± 0.24 † | 2.7 ± 0.17 †† |
Direct bilirubin (µmol/L) | 0.78 ± 0.25 | 2.85 ± 0.43 ** | 4.80 ± 0.36 †† | 6.200 ± 0.19 †† | 10.24 ± 1.69 †† |
Alkaline phosphatase (U/L) | 39.78 ± 16.22 | 235.1 ± 61.67 ** | 282.9 ± 64.64 | 287.9 ± 27.58 | 153.8 ± 55.54 † |
Urea (mmol/L) | 7.12 ± 0.69 | 4.78 ± 0.92 * | 4.45 ± 0.56 | 4.74 ± 1.32 | 5.42 ± 0.30 |
Creatinine (µmol/L) | 58.09 ± 7.47 | 44.20 ± 6.25 ** | 42.43 ± 6.85 | 34.02 ± 1.55 † | 44.20 ± 11.57 |
Uric acid (mmol/L) | 1.87 ± 0.22 | 1.88 ± 0.11 | 1.82 ± 0.26 | 1.76 ± 0.09 | 2.06 ± 0.30 |
Pancreatic amylase (U/L) | 410.2 ± 61.65 | 410.0 ± 77.92 | 392.2 ± 99.81 | 338.9 ± 63.46 † | 307.1 ± 51.54 †† |
Pancreatic lipase (U/L) | 20.12 ± 8.73 | 22.85 ± 7.09 | 20.80 ± 6.08 | 18.33 ± 8.40 | 6.82 ± 3.12 † |
Thyroid gland mass (mg/100 g b.w.) | 2.78 ± 0.52 | 2.67 ± 0.20 | 3.30 ± 0.64 | 3.53 ± 0.23 | 3.65 ± 0.25 † |
Liver mass (g/100 g b.w.) | 2.71 ± 0.26 | 2.94 ± 0.23 | 2.96 ± 0.20 | 2.96 ± 0.17 | 3.08 ± 0.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okulicz, M.; Hertig, I.; Szkudelski, T. Differentiated Effects of Allyl Isothiocyanate in Diabetic Rats: From Toxic to Beneficial Action. Toxins 2022, 14, 3. https://doi.org/10.3390/toxins14010003
Okulicz M, Hertig I, Szkudelski T. Differentiated Effects of Allyl Isothiocyanate in Diabetic Rats: From Toxic to Beneficial Action. Toxins. 2022; 14(1):3. https://doi.org/10.3390/toxins14010003
Chicago/Turabian StyleOkulicz, Monika, Iwona Hertig, and Tomasz Szkudelski. 2022. "Differentiated Effects of Allyl Isothiocyanate in Diabetic Rats: From Toxic to Beneficial Action" Toxins 14, no. 1: 3. https://doi.org/10.3390/toxins14010003
APA StyleOkulicz, M., Hertig, I., & Szkudelski, T. (2022). Differentiated Effects of Allyl Isothiocyanate in Diabetic Rats: From Toxic to Beneficial Action. Toxins, 14(1), 3. https://doi.org/10.3390/toxins14010003