Snake Venom Proteomics, Immunoreactivity and Toxicity Neutralization Studies for the Asiatic Mountain Pit Vipers, Ovophis convictus, Ovophis tonkinensis, and Hime Habu, Ovophis okinavensis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Gel Electrophoretic Profiling of Ovophis Pit Viper Venoms
2.2. Venom Proteomics of Ovophis Pit Viper Venoms
2.3. Immunoreactivity of Antivenoms toward Ovophis Pit Viper Venoms
2.4. Procoagulant Effect of Ovophis Venoms and Its Neutralization by Antivenoms
3. Conclusions
4. Methods and Materials
4.1. Venoms and Antivenoms
4.2. Chemicals and Materials
4.3. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)
4.4. In-Solution Tryptic Digestion and Tandem Mass Spectrometry (Nano-ESI-LCMS/MS)
4.5. Data Availability
4.6. Enzyme-Linked Immunosorbent Assay (ELISA)
4.7. Procoagulant Activity of Venom and Neutralization by Antivenom
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Prevalence of Snakebite Envenoming. Available online: https://www.who.int/snakebites/epidemiology/en/ (accessed on 2 June 2021).
- World Health Organization. Guidelines for the Management of Snakebites, 2nd ed.; WHO Regional Office for Southeast Asia: Geneva, Switzerland, 2016. [Google Scholar]
- Gutierrez, J.M.; Calvete, J.J.; Habib, A.G.; Harrison, R.A.; Williams, D.J.; Warrell, D.A. Snakebite envenoming. Nat. Rev. Dis. Primers 2017, 3, 17079. [Google Scholar] [CrossRef]
- Kasturiratne, A.; Wickremasinghe, A.R.; de Silva, N.; Gunawardena, N.K.; Pathmeswaran, A.; Premaratna, R.; Savioli, L.; Lalloo, D.G.; de Silva, H.J. The global burden of snakebite: A literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 2008, 5, e218. [Google Scholar] [CrossRef] [Green Version]
- Chippaux, J.P. Snakebite envenomation turns again into a neglected tropical disease! J. Venom. Anim. Toxins Incl. Trop. Dis. 2017, 23, 38. [Google Scholar] [CrossRef]
- Casewell, N.R.; Jackson, T.N.W.; Laustsen, A.H.; Sunagar, K. Causes and Consequences of Snake Venom Variation. Trends Pharmacol. Sci. 2020, 41, 570–581. [Google Scholar] [CrossRef]
- Tan, K.Y.; Ng, T.S.; Bourges, A.; Ismail, A.K.; Maharani, T.; Khomvilai, S.; Sitprija, V.; Tan, N.H.; Tan, C.H. Geographical variations in king cobra (Ophiophagus hannah) venom from Thailand, Malaysia, Indonesia and China: On venom lethality, antivenom immunoreactivity and in vivo neutralization. Acta Trop. 2020, 203, 105311. [Google Scholar] [CrossRef]
- Pla, D.; Sanz, L.; Quesada-Bernat, S.; Villalta, M.; Baal, J.; Chowdhury, M.A.W.; Leon, G.; Gutierrez, J.M.; Kuch, U.; Calvete, J.J. Phylovenomics of Daboia russelii across the Indian subcontinent. Bioactivities and comparative in vivo neutralization and in vitro third-generation antivenomics of antivenoms against venoms from India, Bangladesh and Sri Lanka. J. Proteom. 2019, 207, 103443. [Google Scholar] [CrossRef]
- Williams, D.; Gutiérrez, J.; Calvete, J.; Wüster, W.; Ratanabanangkoon, K.; Paiva, O.; Brown, N.; Casewell, N.; Harrison, R.; Rowley, P.; et al. Ending the drought: New strategies for improving the flow of affordable, effective antivenoms in Asia and Africa. J. Proteom. 2011, 74, 1735–1767. [Google Scholar] [CrossRef] [PubMed]
- Tan, N.H.; Tan, K.Y.; Tan, C.H. Snakebite in Southeast Asia: Envenomation and Clinical Management. In Handbook of Venoms and Toxins of Reptiles, 2nd ed.; Mackessy, S.P., Ed.; CRC Press: Boca Raton, FL, USA, 2021; p. 22. [Google Scholar]
- Malhotra, A.; Dawson, K.; Guo, P.; Thorpe, R.S. Phylogenetic structure and species boundaries in the mountain pitviper Ovophis monticola (Serpentes: Viperidae: Crotalinae) in Asia. Mol. Phylogenet. Evol. 2011, 59, 444–457. [Google Scholar] [CrossRef] [PubMed]
- Uetz, P.; Freed, P.; Aguilar, R.; Hošek, J. The Reptile Database. Available online: http://www.reptile-database.org (accessed on 2 June 2021).
- Tan, C.H.; Tan, N.H. Toxinology of Snake Venoms: The Malaysian Context. In Snake Venoms; Gopalakrishnakone, P., Inagaki, H., Mukherjee, A.K., Rahmy, T.R., Vogel, C.-W., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 1–37. [Google Scholar] [CrossRef]
- Sivaganabalan, R.; Ismail, A.K.; Salleh, M.S.; Mohan, K.; Choo, T.C.; Adnan, A.; Ariff, A.M.; Mohamed, Z.; Thevarajah, N.; Daud, R.; et al. Guideline: Management of Snakebite Ministry of Health Malaysia, 1st ed.; Ministry of Health Malaysia: Putrajaya, Malaysia, 2017.
- Slagboom, J.; Kool, J.; Harrison, R.A.; Casewell, N.R. Haemotoxic snake venoms: Their functional activity, impact on snakebite victims and pharmaceutical promise. Br. J. Haematol. 2017, 177, 947–959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, D.P.; Chaudhary, B.; Ram Shrestha, B. Documentation of a proven Mountain Pitviper (Ovophis monticola) envenomation in Kathmandu, Nepal, with its distribution ranges: Implications for prevention and control of pitviper bites in Asia. J. Venom Res. 2021, 11, 1–6. [Google Scholar] [PubMed]
- Nielsen, V.G.; Frank, N.; Matika, R.W. Effects of Heme Modulation on Ovophis and Trimeresurus Venom Activity in Human Plasma. Toxins 2018, 10, 322. [Google Scholar] [CrossRef] [Green Version]
- Hirosh, U.; Masatosh, N. Skin injuries due to poisonous snake bites. Ryukyu Med. J. 2004, 23, 11–20. [Google Scholar]
- Aird, S.D.; Watanabe, Y.; Villar-Briones, A.; Roy, M.C.; Terada, K.; Mikheyev, A.S. Quantitative high-throughput profiling of snake venom gland transcriptomes and proteomes (Ovophis okinavensis and Protobothrops flavoviridis). BMC Genom. 2013, 14, 790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parry, M.A.; Jacob, U.; Huber, R.; Wisner, A.; Bon, C.; Bode, W. The crystal structure of the novel snake venom plasminogen activator TSV-PA: A prototype structure for snake venom serine proteinases. Structure 1998, 6, 1195–1206. [Google Scholar] [CrossRef] [Green Version]
- Matsui, T.; Fujimura, Y.; Titani, K. Snake venom proteases affecting hemostasis and thrombosis. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 2000, 1477, 146–156. [Google Scholar] [CrossRef]
- Mukherjee, A.K.; Mackessy, S.P. Biochemical and pharmacological properties of a new thrombin-like serine protease (Russelobin) from the venom of Russell’s Viper (Daboia russelii russelii) and assessment of its therapeutic potential. Biochim. Biophys. Acta 2013, 1830, 3476–3488. [Google Scholar] [CrossRef] [PubMed]
- Swenson, S.; Markland, F.S., Jr. Snake venom fibrin(ogen)olytic enzymes. Toxicon 2005, 45, 1021–1039. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.M.; Lomonte, B. Phospholipases A2: Unveiling the secrets of a functionally versatile group of snake venom toxins. Toxicon 2013, 62, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Saikia, D.; Mukherjee, A.K. Anticoagulant and Membrane Damaging Properties of Snake Venom Phospholipase A2 Enzymes. In Snake Venoms; Inagaki, H., Vogel, C.-W., Mukherjee, A.K., Rahmy, T.R., Gopalakrishnakone, P., Eds.; Springer: Dordrecht, The Netherlands, 2017; pp. 87–104. [Google Scholar] [CrossRef]
- Damico, D.C.; Vassequi-Silva, T.; Torres-Huaco, F.D.; Nery-Diez, A.C.; de Souza, R.C.; Da Silva, S.L.; Vicente, C.P.; Mendes, C.B.; Antunes, E.; Werneck, C.C.; et al. LmrTX, a basic PLA(2) (D49) purified from Lachesis muta rhombeata snake venom with enzymatic-related antithrombotic and anticoagulant activity. Toxicon 2012, 60, 773–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tonello, F.; Rigoni, M. Cellular Mechanisms of Action of Snake Phospholipase A2 Toxins. In Snake Venoms; Inagaki, H., Vogel, C.-W., Mukherjee, A.K., Rahmy, T.R., Gopalakrishnakone, P., Eds.; Springer: Dordrecht, The Netherlands, 2017; pp. 49–65. [Google Scholar] [CrossRef]
- Tan, K.K.; Bay, B.H.; Gopalakrishnakone, P. L-amino acid oxidase from snake venom and its anticancer potential. Toxicon 2018, 144, 7–13. [Google Scholar] [CrossRef]
- Paloschi, M.V.; Pontes, A.S.; Soares, A.M.; Zuliani, J.P. An Update on Potential Molecular Mechanisms Underlying the Actions of Snake Venom L-amino Acid Oxidases (LAAOs). Curr. Med. Chem. 2018, 25, 2520–2530. [Google Scholar] [CrossRef] [PubMed]
- Izidoro, L.F.; Sobrinho, J.C.; Mendes, M.M.; Costa, T.R.; Grabner, A.N.; Rodrigues, V.M.; da Silva, S.L.; Zanchi, F.B.; Zuliani, J.P.; Fernandes, C.F.; et al. Snake venom L-amino acid oxidases: Trends in pharmacology and biochemistry. BioMed. Res. Int. 2014, 2014, 196754. [Google Scholar] [CrossRef] [Green Version]
- Liew, J.L.; Tan, N.H.; Tan, C.H. Proteomics and preclinical antivenom neutralization of the mangrove pit viper (Trimeresurus purpureomaculatus, Malaysia) and white-lipped pit viper (Trimeresurus albolabris, Thailand) venoms. Acta Trop. 2020, 209, 105528. [Google Scholar] [CrossRef]
- Tan, C.H.; Tan, K.Y.; Ng, T.S.; Quah, E.S.H.; Ismail, A.K.; Khomvilai, S.; Sitprija, V.; Tan, N.H. Venomics of Trimeresurus (Popeia) nebularis, the Cameron Highlands Pit Viper from Malaysia: Insights into Venom Proteome, Toxicity and Neutralization of Antivenom. Toxins 2019, 11, 95. [Google Scholar] [CrossRef] [Green Version]
- Lingam, T.M.C.; Tan, K.Y.; Tan, C.H. Proteomics and antivenom immunoprofiling of Russell’s viper (Daboia siamensis) venoms from Thailand and Indonesia. J. Venom. Anim. Toxins Incl. Trop. Dis. 2020, 26, e20190048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, J.W.; Serrano, S.M. Exploring snake venom proteomes: Multifaceted analyses for complex toxin mixtures. Proteomics 2008, 8, 909–920. [Google Scholar] [CrossRef]
- Fox, J.W.; Serrano, S.M. Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon 2005, 45, 969–985. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Morita, T. Structure and function of snake venom cysteine-rich secretory proteins. Toxicon 2004, 44, 227–231. [Google Scholar] [CrossRef]
- Rucavado, A.; Escalante, T.; Camacho, E.; Gutiérrez, J.M.; Fox, J.W. Systemic vascular leakage induced in mice by Russell’s viper venom from Pakistan. Sci. Rep. 2018, 8, 16088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morita, T. Structures and functions of snake venom CLPs (C-type lectin-like proteins) with anticoagulant-, procoagulant-, and platelet-modulating activities. Toxicon 2005, 45, 1099–1114. [Google Scholar] [CrossRef]
- Bernheimer, A.W.; Linder, R.; Weinstein, S.A.; Kim, K.S. Isolation and characterization of a phospholipase B from venom of Collett’s snake, Pseudechis colletti. Toxicon 1987, 25, 547–554. [Google Scholar] [CrossRef]
- Bernheimer, A.W.; Weinstein, S.A.; Linder, R. Isoelectric analysis of some Australian elapid snake venoms with special reference to phospholipase B and hemolysis. Toxicon 1986, 24, 841–849. [Google Scholar] [CrossRef]
- Dhananjaya, B.L.; D’Souza, C.J. An overview on nucleases (DNase, RNase, and phosphodiesterase) in snake venoms. Biochem. Biokhimiia 2010, 75, 1–6. [Google Scholar] [CrossRef]
- Lavin, M.F.; Earl, S.; Birrell, G.; St. Pierre, L.; Guddat, L.; de Jersey, J.; Masci, P. Snake venom nerve growth factors. In Handbook of Venoms and Toxins of Reptiles; Mackessy, S.P., Ed.; CRC Press: Boca Raton, FL, USA, 2009; pp. 377–391. [Google Scholar]
- Mukherjee, A.K.; Mackessy, S.P.; Dutta, S. Characterization of a Kunitz-type protease inhibitor peptide (Rusvikunin) purified from Daboia russelii russelii venom. Int. J. Biol. Macromol. 2014, 67, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Alencar, L.R.V.; Quental, T.B.; Grazziotin, F.G.; Alfaro, M.L.; Martins, M.; Venzon, M.; Zaher, H. Diversification in vipers: Phylogenetic relationships, time of divergence and shifts in speciation rates. Mol. Phylogenet. Evol. 2016, 105, 50–62. [Google Scholar] [CrossRef]
- Tang, E.L.H.; Tan, N.H.; Fung, S.Y.; Tan, C.H. Comparative proteomes, immunoreactivities and neutralization of procoagulant activities of Calloselasma rhodostoma (Malayan pit viper) venoms from four regions in Southeast Asia. Toxicon 2019, 169, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.F.; Wang, J.; He, Y.; Qu, Y.F.; Lin, L.H.; Ma, X.M.; Ji, X. Proteomic and biochemical analyses of short-tailed pit viper (Gloydius brevicaudus) venom: Age-related variation and composition-activity correlation. J. Proteom. 2014, 105, 307–322. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.C.; Huang, M.N.; Chang, J.F.; Liu, C.C.; Chen, C.K.; Hsieh, C.H. Snake venom proteome and immuno-profiling of the hundred-pace viper, Deinagkistrodon acutus, in Taiwan. Acta Trop. 2019, 189, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Kuniyoshi, A.K.; Rocha, M.; Carvalho, D.C.; Juliano, M.A.; Neto, L.J.; Tambourgi, D.V.; Portaro, F.C.V. Angiotensin-degrading serine peptidase: A new chymotrypsin-like activity in the venom of Bothrops jararaca partially blocked by the commercial antivenom. Toxicon 2012, 59, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Lee, L.P.; Tan, K.Y.; Tan, C.H. Snake venom proteomics and antivenomics of two Sundaic lance-headed pit vipers: Trimeresurus wiroti (Malaysia) and Trimeresurus puniceus (Indonesia). Comp. Biochem. Physiol. Part D Genom. Proteom. 2021, 100875. [Google Scholar] [CrossRef]
- Debono, J.; Bos, M.H.A.; Do, M.S.; Fry, B.G. Clinical implications of coagulotoxic variations in Mamushi (Viperidae: Gloydius) snake venoms. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2019, 225, 108567. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.M.; Solano, G.; Pla, D.; Herrera, M.; Segura, Á.; Vargas, M.; Villalta, M.; Sánchez, A.; Sanz, L.; Lomonte, B.; et al. Preclinical Evaluation of the Efficacy of Antivenoms for Snakebite Envenoming: State-of-the-Art and Challenges Ahead. Toxins 2017, 9, 163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, C.H.; Liew, J.L.; Tan, K.Y.; Tan, N.H. Assessing SABU (Serum Anti Bisa Ular), the sole Indonesian antivenom: A proteomic analysis and neutralization efficacy study. Sci. Rep. 2016, 6, 37299. [Google Scholar] [CrossRef] [Green Version]
- Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.H.; Tan, K.Y.; Tan, N.H. Revisiting Notechis scutatus venom: On shotgun proteomics and neutralization by the “bivalent” Sea Snake Antivenom. J. Proteom. 2016, 144, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Chen, T.; Wu, S.; Yang, C.; Bai, M.; Shu, K.; Li, K.; Zhang, G.; Jin, Z.; He, F.; et al. iProX: An integrated proteome resource. Nucleic Acids Res. 2019, 47, D1211–D1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lingam, T.M.C.; Tan, K.Y.; Tan, C.H. Thai Russell’s viper monospecific antivenom is immunoreactive and effective in neutralizing the venom of Daboia siamensis from Java, Indonesia. Toxicon 2019, 168, 95–97. [Google Scholar] [CrossRef]
- Tan, K.Y.; Tan, N.H.; Tan, C.H. Venom proteomics and antivenom neutralization for the Chinese eastern Russell’s viper, Daboia siamensis from Guangxi and Taiwan. Sci. Rep. 2018, 8, 8545. [Google Scholar] [CrossRef]
Protein Family and Subtype | Accession No. | Relative Protein Abundance in Percentage (% of Total Venom Proteins). Bracket Indicates the Number of Homologous Subtypes Identified. | |||
---|---|---|---|---|---|
Oc-Malaya (40) | Ot-Vietnam (49) | Ot-China (62) | Oo-Okinawa (39) | ||
Snake Venom Serine Protease | 52.94 (18) | 43.77 (22) | 40.38 (22) | 35.49 (19) | |
Serine endopeptidase | A0A2I7YS44 | 1.65 | 1.90 | - | - |
Serine endopeptidase | A0A2I7YS46 | - | - | 1.38 | 1.36 |
Serine endopeptidase | A0A2I7YS67 | - | - | - | 1.40 |
Serine endopeptidase | A0A2I7YS70 | - | 0.59 | 3.74 | - |
Serine protease | A0A1Y0DIB4 | 2.20 | - | - | - |
Serine protease | U3TBG1 | 2.03 | - | - | - |
Serine protease VLSP-3 | E0Y420 | 3.02 | - | 1.43 | 2.44 |
Serine proteinase 1 | A0A194AM91 | 1.99 | 2.10 | - | - |
Serine proteinase 10 | A0A194ARW1 | - | 0.63 | - | - |
Serine proteinase 10b | A0A194ARP9 | 2.75 | - | - | - |
Serine proteinase 11a | A0A194ATG3 | - | 1.97 | - | - |
Serine proteinase 12a | A0A1W7RJV2 | 6.83 | 3.41 | 0.34 | |
Serine proteinase 14a | A0A194APL6 | - | - | - | 1.49 |
Serine proteinase 15a | A0A1W7RJS4 | - | - | 2.41 | - |
Serine proteinase 16 | A0A194APB8 | - | 2.75 | - | - |
Serine proteinase 19b | A0A194APB3 | 2.89 | 4.70 | - | - |
Serine proteinase 1a | A0A0K8RS97 | - | - | 1.70 | - |
Serine proteinase 1b | T1D6M9 | - | 2.29 | - | - |
Serine proteinase 1b | T1E3X7 | - | - | - | 0.67 |
Serine proteinase 2 | A0A194ARH4 | - | 1.61 | 1.66 | - |
Serine proteinase 9 | A0A1W7RJU0 | 1.87 | - | 0.31 | - |
Serine proteinase 9b | A0A194ASS1 | 5.90 | 1.66 | 1.48 | - |
Serine proteinase 9c | A0A194AS00 | - | - | - | 0.90 |
Snake venom serine protease | A0A194ALW4 | - | - | - | 1.04 |
Snake venom serine protease | A0A194AM96 | - | - | - | 1.85 |
Snake venom serine protease | A0A194APB3 | - | - | 1.88 | 1.62 |
Snake venom serine protease | A0A194APJ3 | - | 2.90 | - | 2.76 |
Snake venom serine protease 1 | O13059 | - | 1.03 | - | - |
Snake venom serine protease 2C | O13062 | - | - | 1.50 | - |
Snake venom serine protease homolog KN4 | Q71QJ4 | - | - | 3.86 | - |
Snake venom serine protease HS112 | Q5W960 | - | - | 1.76 | - |
Snake venom serine protease pallabin | Q9YGJ2 | - | - | - | 1.17 |
Snake venom serine protease pallase | O93421 | - | 2.64 | - | - |
Thrombin-like enzyme AhV_TL-I | I4CHP3 | 4.00 | - | - | 1.43 |
Thrombin-like enzyme asperase | Q072L6 | 2.97 | - | - | - |
Thrombin-like enzyme bilineobin | Q9PSN3 | 2.23 | 2.56 | - | 2.96 |
Thrombin-like enzyme collinein-4 | C0HK18 | - | - | 0.83 | - |
Thrombin-like enzyme contortrixobin | P82981 | 4.72 | 3.23 | 1.67 | 4.50 |
Thrombin-like enzyme elegaxobin-1 | P84788 | 1.67 | 1.21 | 1.55 | - |
Thrombin-like enzyme halystase | P81176 | - | - | 1.50 | - |
Thrombin-like enzyme kangshuanmei | P85109 | 2.55 | - | 2.55 | - |
Thrombin-like enzyme kangshuanmei | P85109 | - | - | - | - |
Thrombin-like enzyme stejnobin | Q8AY81 | 1.46 | 0.06 | - | - |
Alpha-fibrinogenase shedaoenase | Q6T5L0 | - | - | - | 1.48 |
Bradykinin-releasing enzyme KR-E-1 | Q7SZE2 | - | - | - | 3.11 |
Venom plasminogen activator 1 | A0A286S0D8 | - | - | 3.30 | - |
Venom plasminogen activator 2 | A0A286S0E6 | - | 2.38 | - | |
Venom plasminogen activator LV-PA | Q27J47 | - | - | 1.96 | - |
Venom plasminogen activator TSV-PA | Q91516 | - | - | 1.64 | 1.99 |
Venom thrombin-like enzyme | A1E2S1 | - | - | 1.92 | 1.52 |
BATXSVSP11 | A0A1L8D610 | - | 2.28 | - | 1.82 |
BATXSVSP14 | A0A1L8D5V3 | - | 0.14 | - | - |
Cadam10_SVSP-12 | A0A1W7RB66 | 2.21 | 1.73 | - | - |
Phospholipase A2 | 21.21(3) | 18.61(2) | 25.33(7) | 22.82 (3) | |
Phospholipase A2 | A0A0H3U1W3 | - | - | 4.87 | - |
Phospholipase A2 | A0A0H3U1Y1 | - | - | - | 2.75 |
Phospholipase A2 | A0A0H3U1Y3 | - | 15.80 | 5.28 | - |
Phospholipase A2 | A0A0H3U1Z8 | - | 2.81 | - | - |
Phospholipase A2 | A0A0H3U208 | 10.46 | - | - | - |
Phospholipase A2 | A0A0H3U209 | - | - | 6.41 | 8.08 |
Phospholipase A2 | A0A0H3U248 | - | - | 1.34 | - |
Phospholipase A2 | U5HS18 | 7.64 | - | - | - |
Acidic phospholipase A2 4 | P81479 | 3.11 | - | 7.15 | 11.99 |
Acidic phospholipase A2 Drk-a1 | A8CG86 | - | - | 0.18 | - |
Basic phospholipase A2 Drk-b1 | A8CG89 | - | - | 0.11 | - |
L-Amino-Acid-Oxidase | 9.54(5) | 16.89(7) | 6.48(5) | 4.95(1) | |
Amine oxidase | A0A068EPZ2 | 1.40 | 4.31 | 1.21 | - |
Amine oxidase | T2HQ57 | 1.45 | - | - | 4.95 |
Amine oxidase | T2HRS5 | - | 2.63 | 1.04 | - |
L-amino acid oxidase | X2JCV5 | 4.37 | - | 2.02 | - |
L-amino-acid oxidase | A0A0K8RYS7 | - | 3.85 | - | - |
L-amino-acid oxidase | A6MFL0 | - | 0.38 | - | - |
L-amino-acid oxidase | O93364 | 1.07 | 1.27 | - | - |
L-amino-acid oxidase | P0DI84 | 1.26 | - | - | - |
L-amino-acid oxidase | P81382 | - | 0.19 | - | - |
L-amino-acid oxidase | Q4JHE3 | - | 4.27 | 0.99 | - |
L-amino acid oxidase bordonein-L | C0HJE7 | - | - | 1.23 | - |
Snake Venom Metalloproteinase | 10.50(5) | 15.88(11) | 19.87 (14) | 17.20(5) | |
PII | |||||
Metalloprotease P-II 3 | A0A077L6V8 | - | - | 0.13 | - |
p-ii_metalloprotease | U3TDH2 | - | - | - | 3.25 |
Zinc metalloproteinase/disintegrin | Q6T271 | - | 1.20 | - | - |
PIII | |||||
Metalloprotease | A0A0C4ZNF1 | 0.87 | - | - | - |
Metalloprotease PIIa | V5IWE4 | - | - | - | 0.76 |
Metalloprotease PIII | V5IWF4 | - | - | 0.77 | - |
Metalloproteinase (Type III) 2b | A0A0K8RZ04 | - | 1.92 | 0.87 | - |
Metalloproteinase (Type III) 2b | J3RY86 | - | - | 1.80 | - |
Metalloproteinase (Type III) 5a | A0A0B8RV98 | 0.72 | - | - | - |
Metalloproteinase (Type III) 6a | A0A1W7RJU5 | - | 0.27 | - | - |
Metalloproteinase type III 10b | A0A194APP8 | - | 0.49 | - | - |
Metalloproteinase type III 12b | A0A194APP0 | - | - | 1.83 | - |
Metalloproteinase type III 13 | A0A194ARL7 | - | - | 1.20 | - |
Metalloproteinase type III 2a | A0A194AMD0 | - | 0.33 | 0.40 | - |
p-iii_metalloprotease | U3TBS9 | - | 0.60 | 1.98 | 10.93 |
Snake venom metalloproteinase (Type III) 5 | J3S831 | - | - | 1.57 | - |
Zinc metalloproteinase/disintegrin | P0C6E4 | - | 1.22 | - | - |
Zinc metalloproteinase-disintegrin-like daborhagin-K | B8K1W0 | - | - | 0.14 | - |
Zinc metalloproteinase-disintegrin stejnitin | P0DM87 | 0.13 | - | 2.95 | 1.85 |
Zinc metalloproteinase/disintegrin-like HR1a | Q8JIR2 | 8.13 | 5.40 | 4.56 | - |
Zinc metalloproteinase-disintegrin-like HR1b | P20164 | - | 1.35 | 0.39 | - |
Zinc metalloproteinase-disintegrin-like halysase | Q8AWI5 | 0.64 | - | 1.27 | - |
BATXSVMPII6 | A0A1L8D5Z0 | - | - | - | 0.41 |
BATXSVMPIII8 | A0A1L8D5Y0 | - | 0.76 | - | - |
Cadam10_SVMPIII-6 | A0A1W7RB97 | - | 2.35 | - | - |
Cysteine-Rich Venom Protein | 0.12(1) | 3.36(3) | 1.97(2) | 13.20(4) | |
Cysteine-rich secretory protein 1c | A0A194APW7 | - | - | - | 3.14 |
Cysteine-rich secretory protein 1b | A0A194AQ87 | - | 0.13 | - | - |
Cysteine-rich secretory protein 1b | A0A194AS36 | - | - | 0.90 | - |
Cysteine-rich Venom Protein Moojin | A0A2H4N3D5 | - | - | - | 3.78 |
Cysteine-rich seceretory protein Bs-CRP | F2Q6E4 | 0.12 | 2.52 | 1.07 | 3.26 |
Cysteine-rich seceretory protein Ch-CRPKa | F2Q6E5 | - | 0.70 | - | - |
Cysteine rich secretory protein | T2HPR8 | - | - | - | 3.01 |
Venom Endothelial Growth Factor | 4.35 (2) | 1.01(1) | 2.67(1) | 1.89(2) | |
Snake venom vascular endothelial growth factor toxin | P67862 | 4.28 | 1.01 | 2.67 | - |
Vascular endothelial growth factor | A0A077L6N5 | - | - | - | 0.19 |
Vascular endothelial growth factor-like protein | T2HQ62 | 0.07 | - | - | 1.70 |
Phospholipase-B-Like | 0.28(2) | 0.20(1) | 0.75(2) | 2.94(2) | |
Phospholipase B-like | A0A077L7E7 | - | 0.20 | - | - |
Phospholipase B-like | A0A1W7RB94 | 0.16 | - | 0.40 | - |
Phospholipase B-like | T2HQ75 | - | - | - | 1.57 |
Phospholipase B-like | V8ND68 | 0.12 | - | 0.35 | 1.37 |
5′ Nucleotidase | 0.09(1) | - | 0.14(1) | - | |
Snake venom 5′-nucleotidase | B6EWW8 | 0.09 | 0.14 | - | |
Snaclec | 0.97(3) | 0.28(2) | 2.14(5) | 1.13(2) | |
C-type lectin 2 | A0A0K8RZ50 | 0.08 | - | 0.12 | - |
C-type lectin alpha subunit | T2HQM1 | - | - | - | 0.52 |
C-type lectin B subunit | A0A077L6M9 | 0.50 | - | 0.54 | - |
C-type lectin BPL | P0DL30 | 0.39 | 0.07 | - | - |
C-type lectin J | A0A0A1WDW9 | - | - | 0.13 | - |
Galactose binding lectin | T2HS62 | - | - | - | 0.61 |
Snaclec jerdonibitin subunit beta | D1MGU1 | - | 0.22 | 1.26 | - |
Snaclec rhodocetin subunit delta | D2YW40 | - | - | 0.09 | - |
Venom Nerve Growth Factor | - | - | 0.07(1) | 0.38(1) | |
Nerve growth factor | A0A077L854 | - | - | 0.07 | - |
Nerve growth factor | T2HPR2 | - | - | - | 0.38 |
Phosphodiesterase | - | - | 0.09 (1) | - | |
Phosphodiesterase | A0A194AS02 | - | - | 0.09 | - |
Kunitz-Type Serine Protease Inhibitor | - | - | 0.11(1) | - | |
Kunitz-type serine protease inhibitor 2 | P00990 | - | - | 0.11 | - |
Venom | GbMAV | TaMAV |
---|---|---|
EC50 (µg/mL) | EC50 (µg/mL) | |
Ovophis convictus (West Malaysia) | 5.90 ± 0.56 | 27.78 ± 0.20 |
Ovophis convictus (Vietnam) | 2.60 ± 0.14 | 8.87 ± 0.62 |
Ovophis convictus (China) | 1.31 ± 0.12 | 6.89 ± 0.38 |
Ovophis okinavensis (Japan) | 3.34 ± 0.10 | 17.98 ± 0.480 |
Venom | Procoagulant Activity | Antivenom Neutralization | |||
---|---|---|---|---|---|
GbMAV | TaMAV | ||||
MCD a (µg/mL) | ED b | ED b | |||
µL | mg/mL | µL | mg/mL | ||
Oc-Malaya | 9.55 ± 0.75 | 4.81 ± 0.32 | 0.80 | 6.11 ± 0.76 | 0.63 |
Ot-Vietnam | 4.25 ± 0.15 | 2.72 ± 0.42 | 0.63 | 3.06 ± 0.26 | 0.56 |
Oo-Okinawa | 7.05 ± 0.05 | 6.13 ± 1.03 | 0.46 | 6.03 ± 0.44 | 0.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, C.H.; Palasuberniam, P.; Tan, K.Y. Snake Venom Proteomics, Immunoreactivity and Toxicity Neutralization Studies for the Asiatic Mountain Pit Vipers, Ovophis convictus, Ovophis tonkinensis, and Hime Habu, Ovophis okinavensis. Toxins 2021, 13, 514. https://doi.org/10.3390/toxins13080514
Tan CH, Palasuberniam P, Tan KY. Snake Venom Proteomics, Immunoreactivity and Toxicity Neutralization Studies for the Asiatic Mountain Pit Vipers, Ovophis convictus, Ovophis tonkinensis, and Hime Habu, Ovophis okinavensis. Toxins. 2021; 13(8):514. https://doi.org/10.3390/toxins13080514
Chicago/Turabian StyleTan, Choo Hock, Praneetha Palasuberniam, and Kae Yi Tan. 2021. "Snake Venom Proteomics, Immunoreactivity and Toxicity Neutralization Studies for the Asiatic Mountain Pit Vipers, Ovophis convictus, Ovophis tonkinensis, and Hime Habu, Ovophis okinavensis" Toxins 13, no. 8: 514. https://doi.org/10.3390/toxins13080514
APA StyleTan, C. H., Palasuberniam, P., & Tan, K. Y. (2021). Snake Venom Proteomics, Immunoreactivity and Toxicity Neutralization Studies for the Asiatic Mountain Pit Vipers, Ovophis convictus, Ovophis tonkinensis, and Hime Habu, Ovophis okinavensis. Toxins, 13(8), 514. https://doi.org/10.3390/toxins13080514