Deoxynivalenol Occurrence in Triticale Crops in Romania during the 2012–2014 Period with Extreme Weather Events
Abstract
:1. Introduction
2. Results
2.1. Agrometeorologic Factors in Romania in the 2012–2014 Period with Extreme Weather Events
2.2. Deoxynivalenol Occurrence in the Triticale Crop in Romania in the 2012–2014 Period with Extreme Weather Events
2.2.1. Deoxynivalenol Occurrence in the Triticale Crop by Agricultural Year in Romania in 2012–2014
Agricultural Region | Geographic Position | Aridity Indices, 1900–2000 | Deoxynivalenol (DON) Occurrence in the Triticale Crop by Agricultural Region, Geographic Position, Historical Aridity Indices and Agricultural Year in Romania in the 2012–2014 Period with Extreme Weather Events | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2012 | 2013 | 2014 | 2012–2014 | |||||||||||||||||
Latitude, °N | Longitude, °E | Iar-dM, mm °C−1 | CWD, mm | Analysed | Positive, % | ≥1000 µg/kg, % | Interval Average ± SD, µg/kg | Analysed | Positive, % | ≥1000 µg/kg, % | Interval Average ± SD, µg/kg | Analysed | Positive, % | ≥1000 µg/kg, % | Interval Average ± SD, µg/kg | Analysed | Positive, % | ≥1000 µg/kg, % | Interval Average ± SD, µg/kg | |
Dobrogea | 44.6 | 28.5 | 20 | −375 | 1 | 1 100 | 0 0 | 67.02 | 2 | 1 50 | 0 0 | <18.50–19.43 18.97 ± 0.66 | 3 | 3 100 | 1 33 | 59.40–1326.40 486.74 ± 727.17 | 6 | 5 83.3 | 1 16.6 | <18.50–1326.36 260.86 ± 522.54 |
Southern Plain | 44.3 | 26.6 | 26 | −258 | 13 | 11 84.6 | 0 0 | <18.50–246.55 95.91 ± 75.24 | 11 | 5 45.5 | 0 0 | <18.50–226.64 48.37 ± 61.08 | 21 | 21 100 | 5 23.8 | 24.37–1924.30 575.98 ± 510.96 | 45 | 37 82.2 | 5 11.1 | <18.50–1924.29 308.32 ± 430.68 |
Moldavia | 46.8 | 26.9 | 28 | −194 | 9 | 6 66.7 | 0 0 | <18.50–394.74 180.71 ± 173.48 | 13 | 11 84.6 | 0 0 | <18.50–410.56 159.78 ± 140.45 | 13 | 13 100 | 3 23.1 | 151.75–1533.80 562.20 ± 449.54 | 35 | 30 85.7 | 3 8.6 | <18.50–1533.76 314.63 ± 350.31 |
Oltenia Plain | 44.4 | 23.7 | 37 | −167 | 6 | 4 66.7 | 0 0 | <18.50–482.75 124.46 ± 181.03 | 7 | 2 28.6 | 0 0 | <18.50–54.06 27.73 ± 15.88 | 7 | 7 100 | 1 14.3 | 24.91–1825.80 610.03 ± 600.80 | 20 | 13 65 | 1 5 | <18.50–1825.75 260.56 ± 439.90 |
West Plain | 46.5 | 22.1 | 33 | −150 | 8 | 7 87.5 | 0 0 | <18.50–399.89 163.20 ± 140.47 | 7 | 6 85.7 | 0 0 | <18.50–661.73 147.97 ± 231.12 | 11 | 9 82 | 2 18.2 | <18.50–1198.30 359.75 ± 396.19 | 26 | 22 84.6 | 2 7.7 | <18.50–1198.34 242.26 ± 302.81 |
Southern Hilly Area | 45.1 | 24.7 | 39 | −93 | 12 | 11 91.7 | 0 0 | <18.50–498.08 224.05 ± 156.31 | 16 | 7 43.8 | 0 0 | <18.50–245.55 40.84 ± 58.86 | 11 | 11 100 | 7 63.6 | 105.74–3592.70 1426.65 ± 1298.71 | 39 | 29 74.4 | 7 17.9 | <18.50–3592.66 488.08 ± 901.96 |
Transylvania | 46.4 | 24.3 | 46 | −32 | 20 | 19 95 | 3 15 | <18.50–3378.40 576.43 ± 1000.08 | 22 | 18 81.8 | 4 18.2 | <18.50–3106.40 520.84 ± 840.07 | 23 | 23 100 | 4 17.4 | 26.57–2399.60 614.08 ± 719.10 | 65 | 60 92.3 | 11 16.9 | <18.50–3378.44 570.94 ± 841.30 |
Romania | 45.7 | 25.2 | 33 | −181 | 69 | 59 85.5 | 3 4.3 | <18.50–3378.40 278.40 ± 575.30 | 78 | 50 64.1 | 4 5.1 | <18.50–3106.40 205 ± 492.83 | 89 | 87 96.7 | 23 25.6 | <18.50–3592.70 661.90 ± 742.90 | 236 | 196 83.1 | 30 12.7 | <18.50–3592.66 398.76 ± 651.89 |
2.2.2. Deoxynivalenol Occurrence in the Triticale Crop by Geographic Position in Romania in 2012–2014
2.2.3. Deoxynivalenol Occurrence in the Triticale Crop by Variety in Romania in 2012–2014
Triticale Variety | Deoxynivalenol (DON) Occurrence in the Triticale Crop by Variety and Agricultural Year in Romania in the 2012–2014 Period with Extreme Weather Events. | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2012 | 2013 | 2014 | 2012–2014 | |||||||||||||
Analysed | Positive, % | ≥1000 µg/kg, % | Interval Average ± SD, µg/kg | Analysed | Positive, % | ≥1000 µg/kg, % | Interval Average ± SD, µg/kg | Analysed | Positive, % | ≥1000 µg/kg, % | Interval Average ± SD µg/kg | Analysed | Positive, % | ≥1000 µg/kg, % | Interval Average ± SD, µg/kg | |
Mungis | 1 | 1 100 | 0 0 | 97.61 | 1 | 1 100 | 0 0 | 57.00 | 2 | 1 50 | 0 0 | <18.50–104.47 61.49 ± 60.79 | 4 | 3 75 | 0 0 | <18.50–104.47 69.40 ± 39.88 |
Odisej | - | - | - | - | 3 | 0 0 | 0 0 | <18.50 | - | - | - | - | 3 | 0 0 | 0 0 | <18.50 |
Polego | 1 | 1 100 | 0 0 | 174.25 | 2 | 2 100 | 0 0 | <18.50–368.99 193.75 ± 247.83 | 3 | 3 100 | 0 0 | 51.19–106.41 78.98 ± 27.61 | 6 | 6 100 | 0 0 | <18.50–368.99 133.11 ± 127.11 |
Amarillo | 1 | 1 100 | 0 0 | 50.31 | - | - | - | - | - | - | - | - | 1 | 1 100 | 0 0 | 50.31 |
Gorun | - | - | - | - | 4 | 2 50 | 0 0 | <18.50–75.78 33.45 ± 28.24 | 6 | 5 83.3 | 1 100 | <18.50–1866.29 560.23 ± 676.53 | 10 | 7 70 | 1 10 | <18.50–1866.29 349.52 ± 573.18 |
Gorun 1 | 4 | 2 50 | 0 0 | <18.50–245.50 82.45 ± 109.55 | - | - | - | - | - | - | - | - | 4 | 2 50 | 0 0 | <18.50–245.50 82.45 ± 109.55 |
Haiduc | 12 | 10 83.3 | 0 0 | <18.50–482.75 151.39 ± 153.83 | 22 | 13 59.1 | 1 4.6 | <18.50–3106.44 279.80 ± 651.61 | 22 | 22 100 | 7 31.8 | 24.91–2853.78 832.18 ± 738.03 | 56 | 45 80.4 | 8 14.3 | <18.50–3106.44 469.29 ± 681.11 |
Trilstar | 3 | 3 100 | 1 33.3 | 130.67–3378.44 1251.89 ± 1842.56 | 3 | 2 66.7 | 0 0 | <18.50–77.16 47.48 ± 29.34 | - | - | - | - | 6 | 5 83.3 | 1 16.7 | <18.50–3378.44 649.68 ± 1339.23 |
Trismart | - | - | - | - | - | - | - | - | 3 | 3 100 | 0 0 | 26.57–552.53 240.09 ± 276.58 | 3 | 3 100 | 0 0 | 26.57–552.53 240.09 ± 276.58 |
Cascador | - | - | - | - | 1 | 1 100 | 0 0 | 275.91 | 1 | 1 100 | 1 100 | 1353.65 | 2 | 2 100 | 1 50 | 275.91–1353.65 814.78 ± 762.08 |
Stil | 5 | 5 100 | 0 0 | 48.18–778.60 267.91 ± 297.47 | 4 | 4 100 | 0 0 | 39.43–219.67 114.03 ± 89.28 | 7 | 6 85.7 | 1 14.3 | 136.33–2067.50 480.39 ± 704.38 | 16 | 15 93.8 | 1 6.3 | 39.43–2067.50 322.40 ± 497.86 |
Titan | 19 | 16 84.2 | 2 10.5 | <18.50–3170.89 405.95 ± 774.43 | 15 | 12 80 | 2 13.3 | <18.50–2053.30 325.42 ± 613.63 | 8 | 8 100 | 2 25 | 42.25–2165.68 663.02 ± 690.14 | 42 | 36 85.7 | 6 14.3 | <18.50–3170.89 426.15 ± 698.60 |
Tulus | - | - | - | - | - | - | - | - | 1 | 1 100 | 1 100 | 1533.76 | 1 | 1 100 | 1 100 | 1533.76 |
Colina | - | - | - | - | 1 | 1 100 | 0 0 | 47.80 | - | - | - | - | 1 | 1 100 | 0 0 | 47.80 |
Hercules | 1 | 1 100 | 0 0 | 199.70 | - | - | - | - | - | - | - | - | 1 | 1 100 | 0 0 | 199.70 |
Plai | 2 | 2 100 | 0 0 | 151.27–289.55 220.1 ± 97.78 | 1 | 1 100 | 0 0 | 26.14 | 1 | 1 100 | 0 0 | 201.35 | 4 | 4 100 | 0 0 | 26.14–289.55 167.08 ± 109.98 |
Silver | - | - | - | - | 2 | 2 100 | 0 0 | 31.37–263.62 147.50 ± 164.23 | 2 | 2 100 | 1 50 | 329.70–1198.34 764.02 ± 614.22 | 4 | 4 100 | 1 25 | 31.37–1198.34 455.76 ± 511.32 |
Tarzan | - | - | - | - | - | - | - | - | 1 | 1 100 | 0 0 | 663.16 | 1 | 1 100 | 0 0 | 663.16 |
Tremplin | 1 | 1 100 | 0 0 | 231.32 | 2 | 2 100 | 1 50 | 21.91–1961.94 991.93 ± 1371.81 | - | - | - | - | 3 | 3 100 | 1 33.3 | 21.91–1961.94 738.39 ± 1064.79 |
Trialina | - | - | - | - | 1 | 1 100 | 0 0 | 31.18 | - | - | - | - | 1 | 1 100 | 0 0 | 31.18 |
Trisidan | 1 | 1 100 | 0 0 | 399.89 | - | - | - | - | - | - | - | - | 1 | 1 100 | 0 0 | 399.89 |
Other | 17 | 14 82.4 | 0 0 | <18.50–473.33 147.85 ± 139.12 | 16 | 7 43.8 | 0 0 | <18.50–410.56 66.25 ± 108.96 | 33 | 33 100 | 9 27.3 | 24.37–3592.66 694.14 ± 866.67 | 66 | 54 81.8 | 9 13.6 | <18.50–3592.66 392.93 ± 673.49 |
Romania | 68 | 58 85.3 | 3 4.4 | <18.50–3378.40 278.40 ± 575.30 | 78 | 50 65.4 | 4 5.1 | <18.50–3106.40 204.98 ± 492.83 | 90 | 87 96.7 | 23 25.6 | <18.50–3592.70 661.90 ± 742.90 | 236 | 196 83.1 | 30 12.7 | <18.50–3592.66 398.76 ± 651.89 |
2.2.4. Deoxynivalenol Occurrence in the Triticale Crop and Other Cereals in Romania in 2012–2014
2.2.5. Deoxynivalenol Occurrence in the Triticale Crop by Hydrographic Basin in Romania in 2012–2014
2.2.6. Deoxynivalenol Occurrence in the Triticale Crop by Soil Type in Romania in 2012–2014
Soil Type (Scale 1:1,500,000) | Deoxynivalenol (DON) Contamination in the Triticale Crop by Soil Type and Agricultural Yearin Romania in the 2012–2014 Period with Extreme Weather Events. Interval; Average ± SD (Median); Positive Samples; Samples DON ≥ 1000 µg/kg | |||
---|---|---|---|---|
2012 | 2013 | 2014 | 2012–2014 | |
Chernozem | <18.50–367.48 95.04 ± 95.13 (69.20) 22/29 (79.9%) 0/29 (0%) | <18.50–410.56 101.46 ± 127.53 (40.02) 14/24 (53.3%) 0/24 (0%) | <18.50–1924.29 599.73 ± 478.75 (426.60) 38/39 (97.4%) 10/39 (25.6%) | <18.50–1924.29 310.66 ± 405.93 (141.97) 74/92 (80.4%) 10/92 (10.9%) |
Phaeozem (Luvic Pheozem) | 170.75–3170.89 1373.41 ± 1586.05 (778.60) 3/3 (100%) 1/3 (33.3%) | 24.69–275.91 177.93 ± 103.09 (213.11) 6/6 (100%) 0/6 (0%) | 136.33–2165.68 1071.61 ± 922.45 (953.09) 6/6 (100%) 3/6 (50%) | 24.69–3170.89 774.50 ± 966.58 (263.62) 15/15 (100%) 4/15 (26.7%) |
Luvisol | <18.50–3378.44 333.33 ± 590.15 (169.68) 34/37 (91.9%) 2/37 (5.4%) | <18.50–3106.44 260.13 ± 616.57 (32.51) 30/48 (62.5%) 4/48 (8.3%) | <18.50–3592.66 661.13 ± 895.02 (228.34) 43/44 (97.7%) 10/44 (22.7%) | <18.50–3592.66 417.90 ± 733.75 (148.76) 107/129 (83%) 16/129 (12.4%) |
Romania | <18.50–3378.40 278.40 ± 575.30 (124.73) 59/69 (85.5%) 3/69 (4.3%) | <18.50–3106.40 204.98 ± 492.83 (40.02) 50/78 (64.1%) 4/78 (5.1%) | <18.50–3592.70 661.90 ± 742.90 (329.70) 87/89 (96.7%) 23/89 (25.6%) | <18.50–3592.66 398.76 ± 651.89 (154.32) 196/236 (83.1%) 30/236 (12.7%) |
2.3. Statistical Analysis
2.3.1. Statistical Analysis of Agrometeorological Factors in Romania in 2012–2014
2.3.2. Statistical Analysis of Deoxynivalenol Occurrence in the Triticale Crop by Agricultural Year in Romania in 2012–2014
2.3.3. Statistical Analysis of Deoxynivalenol Occurrence in the Triticale Crop by Geographic Position in Romania in 2012–2014
2.3.4. Statistical Analysis of Deoxynivalenol Occurrence in the Triticale Crop by Variety in Romania in 2012–2014
2.3.5. Statistical Analysis of Deoxynivalenol Occurrence in the Triticale Crop by Soil Type in Romania in 2012–2014
2.3.6. Multivariate Tests of Between-Subjects Effects
3. Discussion
3.1. Extreme Weather Events in 2012–2014
3.2. Deoxynivalenol Occurrence in the Triticale Crop and Other Cereals by Agricultural Year
3.3. Deoxynivalenol Occurrence in the Triticale Crop and Other Cereals by Geographic Position
3.4. Deoxynivalenol Occurrence in the Triticale Crop by Variety
3.5. Deoxynivalenol Occurrence in the Triticale Crop and Other Cereals by Type
3.6. Deoxynivalenol Occurrence in the Triticale Crop and Other Cereals by Hydrographic Basin
3.7. Deoxynivalenol Occurrence in the Triticale Crop and Other Cereals by Soil Type
4. Conclusions
5. Materials and Methods
5.1. Triticale Sampling
5.2. Mycotoxin Analysis
5.3. Geographic Coordinates
5.4. Agroclimatic Data
5.5. Data Processing and Statistical Analysis
5.6. Spatial and Geographic Distribution
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, F. Triticale: Nutritional composition and food uses. Food Chem. 2018, 241, 468–479. [Google Scholar] [CrossRef] [PubMed]
- McGoverin, C.M.; Snyders, F.; Muller, N.; Botes, W.; Fox, G.; Manley, M. A review of triticale uses and the effect of growth environment on grain quality. J. Sci. Food Agric. 2011, 91, 1155–1165. [Google Scholar] [CrossRef] [PubMed]
- Peña, R.J. Food uses of triticale. In Triticale Improvement and Production; The Food and Agriculture Organization (FAO): Rome, Italy, 2004; pp. 37–48. Available online: http://www.fao.org/3/y5553e/y5553e.pdf (accessed on 22 July 2019).
- De Mil, T. Safety of Mycotoxin Binders Regarding Their Use with Veterinary Medicinal Products in Poultry and Pigs: An In Vitro and Pharmacokinetic Approach. Ph.D. Thesis, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium, 2016; pp. 1–196. Available online: https://core.ac.uk/download/pdf/55815487.pdf (accessed on 5 February 2021).
- FAO; FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/FBS (accessed on 12 December 2020).
- European Commission (EC). Summary Report of the Standing Committee on Plants, Animals, Food and Feed Held in Brussels on 14 April 2015 (Section Toxicological Safety of the Food Chain). Available online: https://ec.europa.eu/food/sites/food/files/safety/docs/reg-com_toxic_20150414_sum.pdf (accessed on 4 January 2020).
- Krska, R.; De Nijs, M.; McNerney, O.; Pichler, M.; Gilbert, J.; Edwards, S.; Suman, M.; Magan, N.; Rossi, V.; Van Der Fels-Klerx, H.; et al. Safe food and feed through an integrated toolbox for mycotoxin management: The MyToolBox approach. World Mycotoxin J. 2016, 9, 487–495. [Google Scholar] [CrossRef] [Green Version]
- De Rijk, T.C.; Van Egmond, H.P.; Van Der Fels-Klerx, H.J.; Herbes, R.; De Nijs, M.; Samson, R.A.; Slate, A.B.; Van Der Spiegel, M. A study of the 2013 Western European issue of aflatoxin contamination of maize from the Balkan area. World Mycotoxin J. 2015, 8, 641–651. [Google Scholar] [CrossRef]
- Leslie, J.; Poschmaier, B.; Van Egmond, H.; Malachová, A.; De Nijs, M.; Bagi, F.; Zhou, J.; Jin, Z.; Wang, S.; Suman, M.; et al. The MyToolbox EU–China Partnership—Progress and Future Directions in Mycotoxin Research and Management. Toxins 2020, 12, 712. [Google Scholar] [CrossRef]
- Leslie, J.F.; Lattanzio, V.; Audenaert, K.; Battilani, P.; Cary, J.; Chulze, S.N.; De Saeger, S.; Gerardino, A.; Karlovsky, P.; Liao, Y.-C.; et al. MycoKey Round Table Discussions of Future Directions in Research on Chemical Detection Methods, Genetics and Biodiversity of Mycotoxins. Toxins 2018, 10, 109. [Google Scholar] [CrossRef] [Green Version]
- Logrieco, A.F.; Miller, J.D.; Eskola, M.; Krska, R.; Ayalew, A.; Bandyopadhyay, R.; Battilani, P.; Bhatnagar, D.; Chulze, S.; De Saeger, S.; et al. The Mycotox Charter: Increasing Awareness of, and Concerted Action for, Minimizing Mycotoxin Exposure Worldwide. Toxins 2018, 10, 149. [Google Scholar] [CrossRef] [Green Version]
- Gagiu, V.; Mateescu, E.; Armeanu, I.; Dobre, A.A.; Smeu, I.; Cucu, M.E.; Oprea, O.A.; Iorga, E.; Belc, N. Post-Harvest Contamination with Mycotoxins in the Context of the Geographic and Agroclimatic Conditions in Romania. Toxins 2018, 10, 533. [Google Scholar] [CrossRef] [Green Version]
- Rapid Alert System for Food and Feed (RASFF). RASFF Annual Reports. Reports and Publications. European Commission. Available online: https://ec.europa.eu/food/safety/rasff/reports_publications_en (accessed on 14 January 2021).
- National Sanitary Veterinary and Food Safety Authority (ANSVSA). Reports on the Implementation of the Single Multiannual National Plan for Integrated Control for Romania (2007–2019). Available online: http://www.ansvsa.ro/informatii-pentru-public/planul-national-multianual-unic-de-control-integrat-pentru-romania/# (accessed on 9 February 2021).
- Blöschl, G.; Hall, J.; Viglione, A.; Perdigão, R.A.P.; Parajka, J.; Merz, B.; Lun, D.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; et al. Changing climate both increases and decreases European river floods. Nature 2019, 573, 108–111. [Google Scholar] [CrossRef]
- Blöschl, G.; Hall, J.; Parajka, J.; Perdigão, R.A.P.; Merz, B.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; Bonacci, O.; Borga, M.; et al. Changing climate shifts timing of European floods. Science 2017, 357, 588–590. [Google Scholar] [CrossRef] [Green Version]
- Hofstätter, M.; Blöschl, G. Vb Cyclones Synchronized with the Arctic-/North Atlantic Oscillation. J. Geophys. Res. Atmos. 2019, 124, 3259–3278. [Google Scholar] [CrossRef]
- Hofstätter, M.; Lexer, A.; Homann, M.; Blöschl, G. Large-scale heavy precipitation over Central Europe and the role of atmospheric cyclone track types. Int. J. Climatol. 2017, 38, e497–e517. [Google Scholar] [CrossRef] [Green Version]
- Hofstätter, M.; Chimani, B.; Lexer, A.; Bloschl, G. A new classification scheme of European cyclone tracks with relevance to precipitation. Water Resour. Res. 2016, 52, 7086–7104. [Google Scholar] [CrossRef]
- Wu, B.; Yang, K.; Francis, J.A. A Cold Event in Asia during January–February 2012 and Its Possible Association with Arctic Sea Ice Loss. J. Clim. 2017, 30, 7971–7990. [Google Scholar] [CrossRef]
- Schaller, N.; Otto, F.E.L.; van Oldenborgh, G.J.; Massey, N.R.; Prarrow, S.; Allen, M.R. The heavy precipitation event of May–June 2013 in the Upper Danube and Elbe basins. Bull. Am. Met. Soc. 2014, 95, S69–S72. [Google Scholar]
- Dong, B.; Sutton, R.; Woollings, T.; Hodges, K. Variability of the North Atlantic summer storm track: Mechanisms and impacts on European climate. Environ. Res. Lett. 2013, 8, 034037. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration (NOAA). Climate at a Glance: Global Mapping, Global Time Series; NOAA National Centers for Environmental Information: Boulder, CO, USA, 2020. Available online: https://www.ncdc.noaa.gov/cag/ (accessed on 16 July 2019).
- World Meteorological Organization (WMO). Assessment of the observed extreme conditions during late boreal winter 2011/2012. In World Meteorological Organization, Weather—Climate—Water, WCDMP; World Meteorological Organization (WMO): Geneva, Switzerland, 2013; Volume 80, p. 16. Available online: http://www.wmo.int/pages/prog/wcp/wcdmp/documents/Coldspell2012.pdf (accessed on 4 August 2020).
- Letestu, A.C.; Ulrich, D. The Cold Spell of February 2012 in Switzerland. European Forecaster. 2013. Available online: http://www.euroforecaster.org/newsletter18/cold_spell.pdf (accessed on 7 September 2020).
- The Republic of Serbia. Analysis of the Severe Weather Event in Serbia—Cold Spell in February 2012. Republic Hydrometeorological Service. Belgrade, 23 February 2012. Available online: http://www.hidmet.gov.rs/data/klimatologija_static/eng/Talas_hladnoce_februar_2012.pdf (accessed on 7 September 2020).
- National Aeronautics and Space Administration (NASA). Cold Snap Across Europe. NASA Earth Observatory. Available online: https://earthobservatory.nasa.gov/images/77126/cold-snap-across-europe (accessed on 28 June 2021).
- National Administration Romanian Waters (NARW). Evaluarea Preliminară a Riscului la Inundații (Preliminary Flood Risk Assessment); Administrația Bazinală de Apă Buzău—Ialomița: Buzau, Romania; p. 97. Available online: http://www.inhga.ro/documents/10184/386602/PFRA_Report_RO5.pdf/1f0fae43-c468-4343-8d0e-695492c07368 (accessed on 28 June 2021).
- Ionita, M.; Dima, M.; Lohmann, G.; Scholz, P.; Rimbu, N. Predicting the June 2013 European Flooding Based on Precipitation, Soil Moisture, and Sea Level Pressure. J. Hydrometeorol. 2015, 16, 598–614. [Google Scholar] [CrossRef] [Green Version]
- Schröter, K.; Kunz, M.; Elmer, F.; Mühr, B.; Merz, B. What made the June 2013 flood in Germany an exceptional event? A hydro-meteorological evaluation. Hydrol. Earth Syst. Sci. 2015, 19, 309–327. [Google Scholar] [CrossRef] [Green Version]
- International Commission for the Protection of the Danube River (ICPDR). Floods in June 2013 in the Danube River Basin. A brief Overview of Key Events and Lessons Learned; International Commission for the Protection of the Danube River (ICPDR): Vienna, Austria, 2014; pp. 1–30. Available online: https://www.icpdr.org/main/sites/default/files/nodes/documents/icpdr_floods-report-web_0.pdf (accessed on 8 September 2020).
- Grams, C.M.; Binder, H.; Pfahl, S.; Piaget, N.; Wernli, H. Atmospheric processes triggering the Central European floods in June. Nat. Hazards Earth Syst. Sci. 2014, 14, 1691–1702. [Google Scholar] [CrossRef] [Green Version]
- Bloschl, G.; Nester, T.; Komma, J.; Parajka, J.; Perdigão, R.A.P. The June 2013 flood in the Upper Danube Basin, and comparisons with the 2002, 1954 and 1899 floods. Hydrol. Earth Syst. Sci. 2013, 17, 5197–5212. [Google Scholar] [CrossRef] [Green Version]
- Van der Schrier, G.; van den Besselaar, E.; Leander, R.; Verver, G.; Tank, A.K.; Beersma, J.; van Oldenborgh, G.J.; Plieger, M.; Renshaw, R.; Bissoli, P. Central European Flooding the Royal Netherlands Meteorological Inst. (KNMI). Available online: https://www.knmi.nl/kennis-en-datacentrum/achtergrond/central-european-flooding-2013 (accessed on 8 September 2020).
- Stadtherr, L.; Coumou, D.; Petoukhov, V.; Petri, S.; Rahmstorf, S. Record Balkan floods of 2014 linked to planetary wave resonance. Sci. Adv. 2016, 2, e1501428. [Google Scholar] [CrossRef] [Green Version]
- Strelec Mahović, N.; Renko, T.; Tutiš, V.; Trošić, T. Synoptic Analysis of the Catastrophic Floods in SE Europe, May the European Forecaster 2014, 43–47. Available online: http://www.euroforecaster.org/newsletter20/dhmz.pdf (accessed on 8 September 2020).
- Zurich Insurance Company. Balkan Floods of May 2014: Challenges Facing Flood Resilience in a Former War Zone. A Zurich Flood Resilience Program Case Study. Available online: https://www.preventionweb.net/files/44332_44332zurichrisknexusmay2015balkanfl.pdf (accessed on 28 June 2021).
- Von Özden, T. ‘Yvette’ Bringt Sturm und Flut. ZDF (in German). Available online: http://www.heute.de/tief-yvette-bringt-polen-oesterreich-bulgarien-serbien-bosnien-herzegowina-und-slowakei-ueberschwemmungen-33178364.html (accessed on 9 September 2020).
- Prăvălie, R.; Piticar, A.; Roșca, B.; Sfîcă, L.; Bandoc, G.; Tiscovschi, A.; Patriche, C. Spatio-temporal changes of the climatic water balance in Romania as a response to precipitation and reference evapotranspiration trends during 1961–2013. Catena 2019, 172, 295–312. [Google Scholar] [CrossRef]
- Oprea, O.-A.; Mateescu, E.; Barbu, A.; Tudor, R. Extreme Dry Years in the 21st Century at the Level of the Agricultural Areas of Muntenia, Romania. In Proceedings of the Agriculture for Life, Life for Agriculture Conference Proceedings, Bucharest, Romania, 7–9 June 2018; Volume 1, pp. 101–109. [Google Scholar] [CrossRef] [Green Version]
- Bissolli, P.; Ziese, M.; Pietzsch, S.; Finger, P.; Friedrich, K.; Nitsche, H.; Obregón, A. Drought Conditions in Europe in the Spring of 2012; Deutscher Wetterdienst: Offenbach, Germany, 2012; pp. 1–30. Available online: https://www.dwd.de/EN/ourservices/specialevents/drought/20120810_Trockenheit_2012_en.pdf?__blob=publicationFile&v=4 (accessed on 3 September 2020).
- Broska, L.H.; Poganietz, W.-R.; Vögele, S. Extreme events defined—A conceptual discussion applying a complex systems approach. Futures 2020, 115, 102490. [Google Scholar] [CrossRef]
- Herring, S.C.; Hoerling, M.P.; Kossin, J.P.; Peterson, T.C.; Stott, P.A. Explaining Extreme Events of 2014 from a Climate Perspective. Bull. Am. Meteorol. Soc. 2015, 96, S1–S172. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., et al., Eds.; A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate, Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 1–19. Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/SREX_FD_SPM_final-2.pdf (accessed on 9 September 2020).
- Stephenson, D.B. Definition, diagnosis, and origin of extreme weather and climate events. In Climate Extremes and Society; Murnane, R.J., Diaz, H.F., Eds.; Cambridge University Press: Cambridge, UK, 2008; pp. 11–23. [Google Scholar]
- The Royal Netherlands Meteorological Institute (KNMI). Central European Flooding 2013. Available online: https://www.knmi.nl/over-het-knmi/over (accessed on 29 June 2021).
- National Oceanic and Atmospheric Administration (NOAA). Europe. Percent of Normal Precipitation. Available online: http://www.weather-info.co.uk/wxsvc/Verification.html (accessed on 3 February 2021).
- Messmer, M.; Gómez-Navarro, J.J.; Raible, C. Climatology of Vb cyclones, physical mechanisms and their impact on extreme precipitation over Central Europe. Earth Syst. Dyn. 2015, 6, 541–553. [Google Scholar] [CrossRef] [Green Version]
- Apostol, L. The Mediterranean cyclones—The role in ensuring water resources and their potential of climatic risk, in the east of Romania. Present Environ. Sustain. Dev. 2008, 2, 43–163. [Google Scholar]
- Van Bebber, W.J. Die Zugstrassen der barometrischen Minima nach den Bahnenkarten der deutschen Seewarte für den Zeitraum 1875–1890. Meteorologische Zeitschrift 1891, 8, 361–366. [Google Scholar]
- Maps of World. Map of Europe. Available online: https://www.mapsofworld.com/europe/ (accessed on 5 June 2021).
- Hall, J.; Blöschl, G. Spatial patterns and characteristics of flood seasonality in Europe. Hydrol. Earth Syst. Sci. 2018, 22, 3883–3901. [Google Scholar] [CrossRef] [Green Version]
- European Spatial Planning Observation Network (ESPON). Flood Recurrence in Europe, Based on the Frequency of Floods in the Time Span of 1987–2002. ESPON Data Base. 2019. Available online: https://www.preventionweb.net/files/3827_Floodhazard8702N3.jpg (accessed on 28 October 2020).
- Mîndrescu, M.; Grădinaru, I. Central and Eastern Europe paleoscience symposium: From local to global. Past Glob. Chang. Mag. 2017, 25, 114. [Google Scholar] [CrossRef] [Green Version]
- Paltineanu, C.; Mihailescu, I.F.; Seceleanu, I.; Dragota, C.; Vasenciuc, F. Using aridity indices to describe some climate and soil features in Eastern Europe: A Romanian case study. Theor. Appl. Climatol. 2007, 90, 263–274. [Google Scholar] [CrossRef]
- Stănilă, A.-L.; Dumitru, M. Soils Zones in Romania and Pedogenetic Processes. Agric. Agric. Sci. Procedia 2016, 10, 135–139. [Google Scholar] [CrossRef] [Green Version]
- European Commission (EC). Soil Atlas of Europe, European Soil Bureau Network. Office for Official Publications of the European Communities, L-2995 Luxembourg. 2005. Available online: https://esdac.jrc.ec.europa.eu/Projects/Soil_Atlas/Download/Atlas.pdf (accessed on 10 January 2017).
- Roșca, S.; Bilașco, Ș.; Fodorean, I. Pedological risks in Romania. Preliminary analysis. Risks Catastr. J. 2020, 27, 33–45. [Google Scholar] [CrossRef]
- Pasquali, M.; Beyer, M.; Logrieco, A.; Audenaert, K.; Balmas, V.; Basler, R.; Boutigny, A.-L.; Chrpová, J.; Czembor, E.; Gagkaeva, T.; et al. A European Database of Fusarium graminearum and F. culmorum Trichothecene Genotypes. Front. Microbiol. 2016, 7, 406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langer, S.M.; Longin, C.F.H.; Würschum, T. Flowering time control in European winter wheat. Front. Plant Sci. 2014, 5, 537. [Google Scholar] [CrossRef] [Green Version]
- Backhouse, D. Global distribution of Fusarium graminearum, F. asiaticum and F. boothii from wheat in relation to climate. Eur. J. Plant Pathol. 2014, 139, 161–173. [Google Scholar] [CrossRef]
- Boogaard, H.; Wolf, J.; Supit, I.; Niemeyer, S.; van Ittersum, M. A regional implementation of WOFOST for calculating yield gaps of autumn-sown wheat across the European Union. Field Crop. Res. 2013, 143, 130–142. [Google Scholar] [CrossRef]
- AgroAtlas Project. Project “Interactive Agricultural Ecological Atlas of Russia and Neighboring Countries. Economic Plants and their Diseases”. 2003. Available online: http://www.agroatlas.ru/en/content/diseases/Tritici/Tritici_Fusarium_graminiarum/index.html (accessed on 15 January 2021).
- Bryła, M.; Waśkiewicz, A.; Podolska, G.; Szymczyk, K.; Jędrzejczak, R.; Damaziak, K.; Sułek, A. Occurrence of 26 Mycotoxins in the Grain of Cereals Cultivated in Poland. Toxins 2016, 8, 160. [Google Scholar] [CrossRef] [Green Version]
- Topi, D.; Babič, J.; Pavšič-Vrtač, K.; Tavčar-Kalcher, G.; Jakovac-Strajn, B. Incidence of Fusarium Mycotoxins in Wheat and Maize from Albania. Molecules 2020, 26, 172. [Google Scholar] [CrossRef]
- Leggieri, M.C.; Lanubile, A.; Dall’Asta, C.; Pietri, A.; Battilani, P. The impact of seasonal weather variation on mycotoxins: Maize crop in 2014 in northern Italy as a case study. World Mycotoxin J. 2020, 13, 25–36. [Google Scholar] [CrossRef]
- Kos, J.; Hajnal, E.J.; Malachová, A.; Steiner, D.; Stranska, M.; Krska, R.; Poschmaier, B.; Sulyok, M. Mycotoxins in maize harvested in Republic of Serbia in the period 2012–2015. Part 1: Regulated mycotoxins and its derivatives. Food Chem. 2020, 312, 126034. [Google Scholar] [CrossRef]
- Kos, J.; Hajnal, E.J.; Šarić, B.; Jovanov, P.; Nedeljković, N.; Milovanović, I.; Krulj, J. The influence of climate conditions on the occurrence of deoxynivalenol in maize harvested in Serbia during 2013–2015. Food Control 2017, 73, 734–740. [Google Scholar] [CrossRef]
- Svoboda, M.; Blahová, J.; Honzlová, A.; Kalinová, J.; Macharáčková, P.; Rosmus, J.; Mejzlík, V.; Kúkol, P.; Vlasáková, V.; Mikulková, K. Multiannual occurrence of mycotoxins in feed ingredients and complete feeds for pigs in the Czech Republic. Acta Vet. Brno 2019, 88, 291–301. [Google Scholar] [CrossRef] [Green Version]
- Udovicki, B.; Audenaert, K.; De Saeger, S.; Rajkovic, A. Overview on the Mycotoxins Incidence in Serbia in the Period 2004–2016. Toxins 2018, 10, 279. [Google Scholar] [CrossRef] [Green Version]
- Gagiu, V.; Cucu, M.; Dobre, A.; Mateescu, E.; Oprea, O.; Belc, N. Contamination of the Wheat Crop with Deoxynivalenol Mycotoxin in the 2012–2013 Agricultural Year (in Romanian); Editura Inovativ Media: Bucharest, Romania, 2013; p. 200. [Google Scholar]
- Gagiu, V.; Mateescu, E.; Belc, N. Risk Assessment of Cereal Crops Contamination with Deoxynivalenol in Romania, in 2012 (in Romanian); Editura Printech: Bucharest, Romania, 2013; p. 149. ISBN 978-606-23-0053-1. [Google Scholar]
- Gagiu, V.; Cucu, M.; Dobre, A.; Mateescu, E.; Oprea, O.; Belc, N. Contamination of Grain Crops with Deoxynivalenol in Romania, in Agricultural Year 2013–2014 (in Romanian); Editura Inovativ Media: Bucharest, Romania, 2014; p. 113. ISBN 978-973-0-18158-6. [Google Scholar]
- Tima, H.; Berkics, A.; Hannig, Z.; Ittzés, A.; Nagy, E.K.; Mohácsi-Farkas, C.; Kiskó, G. Deoxynivalenol in wheat, maize, wheat flour and pasta: Surveys in Hungary in 2008–2015. Food Addit. Contam. Part B Surveill. 2017, 11, 37–42. [Google Scholar] [CrossRef]
- Pleadin, J.; Vasilj, V.; Petrovic, D.; Frece, J.; Vahcic, N.; Jahic, S.; Markov, K. Annual variations of Fusarium mycotoxins in unprocessed maize, wheat and barley from Bosnia and Herzegovina. Croat. J. Food Sci. Technol. 2017, 9, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Pleadin, J.; Frece, J.; Lešić, T.; Zadravec, M.; Vahčić, N.; Staver, M.M.; Markov, K. Deoxynivalenol and zearalenone in unprocessed cereals and soybean from different cultivation regions in Croatia. Food Addit. Contam. Part B Surveill. 2017, 10, 1–7. [Google Scholar] [CrossRef]
- Vogelgsang, S.; Musa, T.; Bänziger, I.; Kägi, A.; Bucheli, T.D.; Wettstein, F.E.; Pasquali, M.; Forrer, H.-R. Fusarium Mycotoxins in Swiss Wheat: A Survey of Growers’ Samples between 2007 and 2014 Shows Strong Year and Minor Geographic Effects. Toxins 2017, 9, 246. [Google Scholar] [CrossRef] [Green Version]
- Sumíková, T.; Chrpová, J.; Džuman, Z.; Salava, J.; Štěrbová, L.; Palicová, J.; Slavíková, P.; Stránská-Zachariášová, M.; Hajslova, J. Mycotoxins content and its association with changing patterns of Fusarium pathogens in wheat in the Czech Republic. World Mycotoxin J. 2017, 10, 143–151. [Google Scholar] [CrossRef]
- Aureli, G.; Amoriello, T.; Belocchi, A.; D’Egidio, M.; Fornara, M.; Melloni, S.; Quaranta, F. Preliminary survey on the co-occurrence of DON and T2+HT2 toxins in durum wheat in Italy. Cereal Res. Commun. 2015, 43, 481–491. [Google Scholar] [CrossRef] [Green Version]
- Chrpová, J.; Šíp, V.; Sumíková, T.; Salava, J.; Palicová, J.; Štočková, L.; Džuman, Z.; Hajslova, J. Occurrence of Fusarium species and mycotoxins in wheat grain collected in the Czech Republic. World Mycotoxin J. 2016, 9, 317–327. [Google Scholar] [CrossRef]
- Šliková, S.; Gavurniková, S.; Šudyova, V.; Gregová, E. Occurrence of Deoxynivalenol in Wheat in Slovakia during 2010 and 2011. Toxins 2013, 5, 1353–1361. [Google Scholar] [CrossRef]
- Šliková, S.; Gavurnikova, S.; Hašana, R.; Minarikova, M.; Gregova, E. Deoxynivalenol in Grains of Oats and Wheat Produced in Slovakia. J. Agric. For. 2016, 62, 343–348. [Google Scholar] [CrossRef] [Green Version]
- Mankeviciene, A.; Jablonskytė-Raščė, D.; Maiksteniene, S. Occurrence of mycotoxins in spelt and common wheat grain and their products. Food Addit. Contam. Part A 2014, 31, 132–138. [Google Scholar] [CrossRef]
- Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Global Mycotoxin Occurrence in Feed: A Ten-Year Survey. Toxins 2019, 11, 375. [Google Scholar] [CrossRef] [Green Version]
- Van Der Fels-Klerx, H.; Adamse, P.; Punt, A.; Van Asselt, E.D. Data Analyses and Modelling for Risk Based Monitoring of Mycotoxins in Animal Feed. Toxins 2018, 10, 54. [Google Scholar] [CrossRef] [Green Version]
- Kovasky, P. Mycotoxin Survey 2014—Focus on Russian Poultry and Swine Feed. BIOMIN Holding GmbH. 2015. Available online: https://www2.biomin.net/in-te/blog-posts/mycotoxin-survey-2014-focus-on-russian-poultry-and-swine-feed/ (accessed on 9 February 2021).
- Rafai, P.; Bata, R.; Jakab, L.; Vanyi, A. Evaluation of mycotoxin-contaminated cereals for their use in animal feeds in Hungary. Food Addit. Contam. 2000, 17, 799–808. [Google Scholar] [CrossRef]
- Perkowski, J.; Stuper, K.; Buśko, M.; Góral, T.; Jeleń, H.; Wiwart, M.; Suchowilska, E. A comparison of contents of group A and B trichothecenes and microbial counts in different cereal species. Food Addit. Contam. Part B 2012, 5, 151–159. [Google Scholar] [CrossRef]
- Tabuc, C.; Taranu, I.; Calin, L. Survey of Moulds and Mycotoxin Contamination of Cereals in South-Eastern Romania in 2008–2010. Arch. Zootech. 2011, 14, 25–38. Available online: https://ibna.ro/arhiva/AZ%2014-4/AZ%2014-4_02%20Tabuc.pdf (accessed on 15 October 2020).
- Ittu, M.; Ittu, Gh.; Gagiu, V.; Smeu, I.; Dobre, A. Preliminary evaluation of response to Fusarium Head Blight (FHB) and deoxynivalenol (DON) contamination in some Romanian wheat and triticale genotypes. An. INCDA Fundulea Genet. Amelior. Plantelor 2013, 81, 19–26. Available online: http://www.incda-fundulea.ro/anale/81/81.2.pdf (accessed on 1 March 2020).
- Gaikpa, D.S.; Lieberherr, B.; Maurer, H.P.; Longin, C.F.H.; Miedaner, T. Comparison of rye, triticale, durum wheat and bread wheat genotypes for Fusarium head blight resistance and deoxynivalenol contamination. Plant Breed. 2019, 139, 251–262. [Google Scholar] [CrossRef]
- Góral, T.; Wiśniewska, H.; Ochodzki, P.; Walentyn-Góral, D. Higher Fusarium Toxin Accumulation in Grain of Winter Triticale Lines Inoculated with Fusarium culmorum as Compared with Wheat. Toxins 2016, 8, 301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikos-Szymańska, M.; Podolska, G. Contamination with Fusarium mycotoxins in triticale depends on agrotechnical factor and cultivar. J. Food Agric. Environ. 2013, 11, 1528–1531. [Google Scholar] [CrossRef]
- Ittu, G.; Saulescu, N.; Ittu, M.; Mustatea, P. Present and perspectives in Romanian triticale breeding program. Commun. Agric. Appl. Boil. Sci. 2014, 79, 185–191. [Google Scholar]
- Ittu, Gh.; Saulescu, N.N.; Ittu, M.; Mustatea, P. Introduction of short straw genes in Romanian triticale germplasm. Rom. Agric. Res. 2007, 24, 7–10. [Google Scholar]
- Miedaner, T.; Heinrich, N.; Schneider, B.; Oettler, G.; Rohde, S.; Rabenstein, F. Estimation of deoxynivalenol (DON) content by symptom rating and exoantigen content for resistance selection in wheat and triticale. Euphytica 2004, 139, 123–132. [Google Scholar] [CrossRef]
- Administratia Nationala de Meteorologie (ANM). Rapoarte Anuale (Annual Reports). Available online: http://www.meteoromania.ro/despre-noi/raport-anual/ (accessed on 5 February 2021).
- Polifronie, E.M. Luna iulie 2014—A patra cea mai ploioasă din ultimii 50 de ani [July 2014—The fourth rainiest in the last 50 years]. Rev. Științifică Adm. Natl. Meteorol. 2014, 42–57. [Google Scholar]
- Oprea, O.A.; Mateescu, E. Thermal and water risk agro-meteorological parameters and their impact on winter wheat crops (Triticum aestivum L.) in Muntenia region. Sci. Pap. Ser. A Agron. 2017, 60, 512–519. Available online: http://agronomyjournal.usamv.ro/pdf/2017/Art84.pdf (accessed on 8 March 2020).
- INCDA Fundulea. Fișe de Prezentare a Soiurilor de Triticale (Presentation Sheets of Triticale Varieties). Available online: https://www.incda-fundulea.ro/fise/triticale.html (accessed on 16 October 2020).
- Kharbikar, L.; Dickin, E.T.; Edwards, S. Impact of post-anthesis rainfall, fungicide and harvesting time on the concentration of deoxynivalenol and zearalenone in wheat. Food Addit. Contam. Part A 2015, 32, 1–11. [Google Scholar] [CrossRef]
- Gautam, P.; Dill-Macky, R. Free Water Can Leach Mycotoxins from Fusarium-infected Wheat Heads. J. Phytopathol. 2012, 160, 484–490. [Google Scholar] [CrossRef]
- Slessarev, E.W.; Lin, Y.; Bingham, N.L.; Johnson, J.; Dai, Y.; Schimel, J.P.; Chadwick, O.A. Water balance creates a threshold in soil pH at the global scale. Nature 2016, 540, 567–569. [Google Scholar] [CrossRef]
- Turkington, T.K.; Petran, A.; Yonow, R.; Kriticos, D.J. Fusarium graminearum (Fusarium Head Blight). HarvestChoice Pest. Geogr. 2014, 1–7. [Google Scholar] [CrossRef]
- Höper, H.; Steinberg, C.; Alabouvette, C. Involvement of clay type and pH in the mechanisms of soil suppressiveness to Fusarium wilt of flax. Soil Biol. Biochem. 1995, 27, 955–967. [Google Scholar] [CrossRef]
- Leplat, J.; Friberg, H.; Abid, M.; Steinberg, C. Survival of Fusarium graminearum, the causal agent of Fusarium head blight. A review. Agron. Sustain. Dev. 2012, 33, 97–111. [Google Scholar] [CrossRef]
- Young, I.; Ritz, K. Tillage, habitat space and function of soil microbes. Soil Tillage Res. 2000, 53, 201–213. [Google Scholar] [CrossRef]
- Tudose, I. Unitățile Majore de Relief din Europa (Major Relief Units in Europe). Created on 24 September 2016. Available online: https://geografilia.blogspot.com/2016/09/harta-bac-unitatile-majore-de-relief.html (accessed on 3 December 2020).
- The Government of Serbia. Serbia Floods 2014. Belgrade, Serbia. 2014. Available online: https://reliefweb.int/sites/reliefweb.int/files/resources/20140715-serbia-rna-report_0.pdf (accessed on 7 September 2020).
- Kochiieru, Y.; Mankevičienė, A.; Ceseviciene, J.; Semaškienė, R.; Dabkevičius, Z.; Janavičienė, S. The influence of harvesting time and meteorological conditions on the occurrence of Fusarium species and mycotoxin contamination of spring cereals. J. Sci. Food Agric. 2020, 100, 2999–3006. [Google Scholar] [CrossRef]
- Szep, R.; Mateescu, E.; Niță, I.-A.; Birsan, M.-V.; Bodor, Z.; Keresztesi, Á. Effects of the Eastern Carpathians on atmospheric circulations and precipitation chemistry from 2006 to 2016 at four monitoring stations (Eastern Carpathians, Romania). Atmospheric Res. 2018, 214, 311–328. [Google Scholar] [CrossRef]
- Gagkaeva, T.; Gavrilova, O.; Orina, A.; Lebedin, Y.; Shanin, I.; Petukhov, P.; Eremin, S. Analysis of Toxigenic Fusarium Species Associated with Wheat Grain from Three Regions of Russia: Volga, Ural, and West Siberia. Toxins 2019, 11, 252. [Google Scholar] [CrossRef] [Green Version]
- Tutelyan, V.; Zakharova, L.; Sedova, I.; Perederyaev, O.; Aristarkhova, T.; Eller, K. Fusariotoxins in Russian Federation 2005–2010 grain harvests. Food Addit. Contam. Part B Surveill. 2013, 6, 139–145. [Google Scholar] [CrossRef]
- Pinotti, L.; Ottoboni, M.; Giromini, C.; Dell’Orto, V.; Cheli, F. Mycotoxin Contamination in the EU Feed Supply Chain: A Focus on Cereal Byproducts. Toxins 2016, 8, 45. [Google Scholar] [CrossRef]
- European Commission (EC). Commission Recommendation 2006/576/EC of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. Off. J. Eur. Union L. 2006, 229, 7–9. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:229:0007:0009:EN:PDF (accessed on 20 March 2020).
- Gambacorta, L.; Olsen, M.; Solfrizzo, M. Pig Urinary Concentration of Mycotoxins and Metabolites Reflects Regional Differences, Mycotoxin Intake and Feed Contaminations. Toxins 2019, 11, 378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schatzmayr, G.; Streit, E. Global occurrence of mycotoxins in the food and feed chain: Facts and figures. World Mycotoxin J. 2013, 6, 213–222. [Google Scholar] [CrossRef]
- The National Administration “Romanian Waters” (ANAR). Map of the Areas Affected by Historically Significant Floods. Available online: http://www.meteo.ro/stire/2122/Harta-zonelor-cu-pericol-ridicat-de-inundatii.html (accessed on 2 March 2021).
- Economica. Inundaţiile Care au Afectat România în 2014: Pierderi de Vieţi Omeneşti şi Daune de Milioane de Euro—Retrospectivă. (Floods That Affected Romania in 2014: Loss of Life and Damage of Millions of Euros—Retrospective), 17 December 2014. Available online: https://www.economica.net/inundatiile-care-au-afectat-romania-in-2014-pierderi-de-vieti-omenesti-si-daune-de-milioane-de-euro-retrospectiva_93411.html (accessed on 9 February 2021).
- Jordanova, N. The magnetism of soils with little or no profile differentiation. Soil Magn. Appl. Pedol. Environ. Sci. Agric. 2017, 287–330. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports; FAO—IUSS Working Group WRB: Rome, Italy, 2015; Available online: http://www.fao.org/3/i3794en/I3794en.pdf (accessed on 4 September 2020).
- Furtak, K.; Grządziel, J.; Gałązka, A.; Gawryjołek, K.; Niedźwiecki, J. Fungal biodiversity and metabolic potential of selected fluvisols from the Vistula River valley in Lubelskie, Poland. Appl. Soil Ecol. 2021, 160, 103866. [Google Scholar] [CrossRef]
- Siebielec, S.; Siebielec, G.; Klimkowicz-Pawlas, A.; Gałązka, A.; Grządziel, J.; Stuczyński, T. Impact of Water Stress on Microbial Community and Activity in Sandy and Loamy Soils. Agronomy 2020, 10, 1429. [Google Scholar] [CrossRef]
- Grządziel, J.; Furtak, K.; Gałązka, A. Community-Level Physiological Profiles of Microorganisms from Different Types of Soil That are Characteristic to Poland—A Long-Term Microplot Experiment. Energies 2018, 11, 56. [Google Scholar] [CrossRef] [Green Version]
- Argiroff, W.A.; Zak, D.; Lanser, C.M.; Wiley, M.J. Microbial Community Functional Potential and Composition Are Shaped by Hydrologic Connectivity in Riverine Floodplain Soils. Microb. Ecol. 2016, 73, 630–644. [Google Scholar] [CrossRef]
- Goswami, R.S.; Kistler, H. Heading for disaster: Fusarium graminearum on cereal crops. Mol. Plant Pathol. 2004, 5, 515–525. [Google Scholar] [CrossRef]
- Ponnamperuma, F.N. Effects of flooding on soils. In Flooding and Plant Growth; Academic Press: Orlando, FL, USA, 1984; Chapter 2; pp. 9–45. [Google Scholar]
- Kubiak-Wójcicka, K.; Machula, S. Influence of Climate Changes on the State of Water Resources in Poland and Their Usage. Geosciences 2020, 10, 312. [Google Scholar] [CrossRef]
- Gavrilov, M.; Radaković, M.; Sipos, G.; Mezősi, G.; Gavrilov, G.; Lukić, T.; Basarin, B.; Benyhe, B.; Fiala, K.; Kozák, P.; et al. Aridity in the Central and Southern Pannonian Basin. Atmosphere 2020, 11, 1269. [Google Scholar] [CrossRef]
- Antolini, G.; Pavan, V.; Tomozeiu, R.; Marletto, V. Atlante Climatico dell’Emilia-Romagna 1961–2015; Project: Climate changE-R; Arpae Emilia-Romagna: Bologna, Italy, 2017; ISBN 978-88-87854-44-2. Available online: https://www.arpae.it/it/temi-ambientali/clima/rapporti-e-documenti/atlante-climatico/atlante-climatico-1961-2015 (accessed on 9 October 2020).
- Costantini, E.A.C.; Barbetti, R.; Fantappiè, M.; L’Abate, G.; Lorenzetti, R.; Magini, S. Pedodiversity. In World Soils Book Series; Costantini, E., Dazzi, C., Eds.; Springer Science and Business Media LLC: Dordrecht, The Netherlands, 2013; pp. 105–178. [Google Scholar]
- Michéli, E.; Fuchs, M.; Hegymegi, P.; Stefanovits, P. Classification of the Major Soils of Hungary and their Correlation with the World Reference Base for Soil Resources (WRB). Agrokémia Talajt. 2006, 55, 19–28. [Google Scholar] [CrossRef]
- Von Pallmann, H.; Gessnert, H. Early Soil Type Map of Switzerland. The European Soil Data Centre (ESDAC). 1934. Available online: https://esdac.jrc.ec.europa.eu/images/Eudasm/CH/CH_12000.jpg (accessed on 30 October 2020).
- Cornea, C.P.; Israel-Roming, F.; Ciuca, M.; Voaides, C. Natural occurrence of Fusarium species and corresponding chemotypes in wheat scab complex from Romania. Rom. Biotechnol. Lett. 2013, 18, 8787–8795. Available online: http://www.rombio.eu/vol18nr6/7%20Cornea_Israel.pdf (accessed on 4 June 2021).
- Bozac, P.; Botău, D.; Popescu, S.; Boldura, O.; Alexa, E. Distribution of Fusarium species in Timis County (Western Romania) in relation with environmental conditions. J. Hortic. For. Biotechnol. 2014, 18, 137–140. Available online: https://www.semanticscholar.org/paper/Distribution-of-Fusarium-species-in-Timis-County-in-Bozac-Bot%C4%83u/3fb734a8d2bc5fae0191e577dad7d95a2bf4efe8 (accessed on 4 June 2021).
- Gagiu, V. Triticale crop and contamination with mycotoxins under the influence of climate change—global study. J. Hyg. Eng. Des. 2018, 23, 30–45. Available online: https://keypublishing.org/jhed/jhed-volumes/jhed-volume-23/ (accessed on 28 June 2021).
- Jaskiewicz, B.; Grabinski, J.; Ireneusz Ochmian, I. Intensity of triticale production in different regions of Poland. In Proceedings of the 2019 International Conference “Economic Science for Rural Development” No 51, Jeglava, Latvia, 9–10 May 2019; pp. 137–143. Available online: https://llufb.llu.lv/conference/economic_science_rural/2019/Latvia_ESRD_51_2019-137-143.pdf (accessed on 28 June 2021). [CrossRef]
- Kruse, P. How Germany became the number 3 in the triticale world and why i am confident about the future development. In Molecular Breeding of Forage and Turf; Guedes-Pinto, H., Darvey, N., Carnide, V.P., Eds.; Springer: Dordrecht, The Netherlands, 1996; Volume 5, pp. 41–43. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA). Russia: Sown Winter Grain Area for 2014/15 Down 8 Percent. Commodity Intelligence Report. 19 November 2013. Available online: https://ipad.fas.usda.gov/highlights/2013/11/rs_19nov2013/?fbclid=IwAR3Y5gC2cK5yq5azIjXSZC2xfjOrlW7OssDvuepIVpvLD4gtV8QMVoboPjQ (accessed on 4 February 2021).
- United State Department of Agriculture (USDA). Crop Production Maps. 2015. Available online: https://ipad.fas.usda.gov/ogamaps/cropproductionmaps.aspx (accessed on 4 February 2021).
- Nugmanov, A.; Beishova, I.; Kokanov, S.; Lozowicka, B.; Kaczynski, P.; Konecki, R.; Snarska, K.; Wołejko, E.; Sarsembayeva, N.; Abdigaliyeva, T. Systems to reduce mycotoxin contamination of cereals in the agricultural region of Poland and Kazakhstan. Crop Prot. 2018, 106, 64–71. [Google Scholar] [CrossRef]
- National Snow and Ice Data Center (NSIDC). Land Resources of Russia—Maps of Soil Characteristics. Available online: https://nsidc.org/fgdc/maps/russia_soil_browse.html (accessed on 9 February 2021).
- Tolika, K.; Maheras, P.; Anagnostopoulou, C. The exceptionally wet year of 2014 over Greece: A statistical and synoptical-atmospheric analysis over the region of Thessaloniki. Theor. Appl. Clim. 2018, 132, 809–821. [Google Scholar] [CrossRef]
- Google Earth. Google Landsat/Copernicus. Available online: https://earth.google.com/web/ (accessed on 21 March 2017).
- Armeanu, I.; Petrehuş, V. Probabilităţi și Statistică Aplicate în Biologie (Probabilities and Statistics Applied in Biology; Matrix_ROM: Bucharest, Romania, 2006; 268p, ISBN 973-755-110-9. [Google Scholar]
- The Environmental Systems Research Institute (ESRI). ArcGIS. Discover Your Power with ArcGIS. Redlands, California, the United States. Available online: https://www.esri.com/en-us/arcgis/about-arcgis/overview (accessed on 28 June 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gagiu, V.; Mateescu, E.; Dobre, A.A.; Smeu, I.; Cucu, M.E.; Oprea, O.A.; Alexandru, D.; Iorga, E.; Belc, N. Deoxynivalenol Occurrence in Triticale Crops in Romania during the 2012–2014 Period with Extreme Weather Events. Toxins 2021, 13, 456. https://doi.org/10.3390/toxins13070456
Gagiu V, Mateescu E, Dobre AA, Smeu I, Cucu ME, Oprea OA, Alexandru D, Iorga E, Belc N. Deoxynivalenol Occurrence in Triticale Crops in Romania during the 2012–2014 Period with Extreme Weather Events. Toxins. 2021; 13(7):456. https://doi.org/10.3390/toxins13070456
Chicago/Turabian StyleGagiu, Valeria, Elena Mateescu, Alina Alexandra Dobre, Irina Smeu, Mirela Elena Cucu, Oana Alexandra Oprea, Daniel Alexandru, Enuța Iorga, and Nastasia Belc. 2021. "Deoxynivalenol Occurrence in Triticale Crops in Romania during the 2012–2014 Period with Extreme Weather Events" Toxins 13, no. 7: 456. https://doi.org/10.3390/toxins13070456
APA StyleGagiu, V., Mateescu, E., Dobre, A. A., Smeu, I., Cucu, M. E., Oprea, O. A., Alexandru, D., Iorga, E., & Belc, N. (2021). Deoxynivalenol Occurrence in Triticale Crops in Romania during the 2012–2014 Period with Extreme Weather Events. Toxins, 13(7), 456. https://doi.org/10.3390/toxins13070456