Toxic Effect of Aflatoxins in Dogs Fed Contaminated Commercial Dry Feed: A Review
Abstract
:1. Introduction
2. Methods
3. Presence of Aspergillus spp. in Commercial Dry Feed for Dogs
4. Aflatoxins and Their Biotransformation Products
5. Contamination of Feed Ingredients by Aflatoxins
6. Aflatoxin Contamination in Commercial Dry Feed for Dogs
7. Clinical Findings in Dog Aflatoxicosis
8. Macroscopic and Microscopic Lesions in Aflatoxicosis in Dogs
9. Therapeutic Strategies
10. Methods Used to Control Aflatoxins in Commercial Dry Feed
11. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Case, L.; Daristotle, L.; Hayek, M.; Raasch, M. History and regulation of pet food. In Canine and Feline Nutrition; Case, L., Daristotle, L., Hayek, M., Raasch, M., Eds.; Mosby: Saint Louis, MO, USA, 2011; pp. 121–129. [Google Scholar] [CrossRef]
- Schleicher, M.; Cash, S.B.; Freeman, L.M. Determinants of pet food purchasing decisions. Can. Vet. J. 2019, 60, 644–650. [Google Scholar] [PubMed]
- Rojas, M.; González, I.; De la Cruz, S.; Hernández, P.E.; García, T.; Martín, R. Application of species-specific polymerase chain reaction assays to verify the labeling of quail (Coturnix coturnix), pheasant (Phasianus colchicus) and ostrich (Struthio camelus) in pet foods. Anim. Feed Sci. Tech. 2011, 169, 128–133. [Google Scholar] [CrossRef]
- Tegzes, J.H.; Oakley, B.B.; Brennan, G. Comparison of mycotoxin concentrations in grain versus grain-free dry and wet commercial dog foods. Toxicol. Commun. 2019, 3, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Beloshapka, A.; Buff, P.P.; Fahey Jr, G.C.; Swanson, K.S. Compositional analysis of whole grains, processed grains, grain co-products, and other carbohydrate sources with applicability to pet animal nutrition. Foods 2016, 5, 23. [Google Scholar] [CrossRef] [PubMed]
- Yathavamoorthi, R.; Nithin, C.T.; Ananthanarayanana, T.R.; Mathew, S.; Bindu, J.; Anandana, R.; Gopal, T.K. Tuna red meat as a novel ingredient in pet food for dogs. J. Aquat. Food Prod. Technol. 2020, 29, 1–10. [Google Scholar] [CrossRef]
- Ott, L.C.; Appleton, H.J.; Shi, H.; Keener, K.; Mellata, M. High voltage atmospheric cold plasma treatment inactivates Aspergillus flavus spores and deoxynivalenol toxin. Food Microbiol. 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, S.; Carvajal, M.; Ruiz, S.; Martínez, N.C.; Gómez, A.A.; Rojo, F. Presence of mutagens and carcinogens, called aflatoxins, and their hydroxylated metabolites in industrialized food for dogs. J. Microb. Biochem. Technol. 2018, 10, 76–86. [Google Scholar] [CrossRef]
- Alshannaq, A.; Yu, J. Occurrence, toxicity, and analysis of major mycotoxins in food. Int. J. Environ. Res. Pub. Health 2017, 14, 632. [Google Scholar] [CrossRef] [Green Version]
- Mahato, D.K.; Lee, K.E.; Kamle, M.; Devi, S.; Dewangan, K.N.; Kumar, P.; Kang, S.G. Aflatoxins in food and feed: An overview on prevalence, detection and control strategies. Front. Microbiol. 2019, 10, 2266. [Google Scholar] [CrossRef]
- Bueno, D.J.; Silva, J.O.; Oliver, G. Mycoflora in commercial pet foods. J. Food Protect. 2001, 64, 741–743. [Google Scholar] [CrossRef]
- Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2007, 8, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Aquino, S.; Corrêa, B. Aflatoxins in Pet Foods: A risk to special consumers. In Aflatoxins—Detection, Measurement and Control; Torres-Pacheco, I., Ed.; InTech: Rijeka, Croatia, 2011; pp. 53–74. [Google Scholar] [CrossRef]
- Bennett, J.M.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zicker, S.C. Evaluating pet foods: How confident are you when you recommend a commercial pet food? Top Companion Anim. Med. 2008, 23, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Gallo, A.; Solfrizzo, M.; Epifani, F.; Panzarini, G.; Perrone, G. Effect of temperature and water activity on gene expression and aflatoxin biosynthesis in Aspergillus flavus on almond medium. Int. J. Food Microbiol. 2015, 217, 162–169. [Google Scholar] [CrossRef]
- Chiewchan, N.; Mujumdar, A.; Devahastin, S. Application of drying technology to control aflatoxins in foods and feeds: A Review. Dry Technol. 2015, 33, 1700–1707. [Google Scholar] [CrossRef]
- Witaszak, N.; Stepién, Ł.; Bocianowski, J.; Wáskiewicz, A. Fusarium species and mycotoxins contaminating veterinary diets for dogs and cats. Microorganisms 2019, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Błajet-Kosicka, A.; Kosicki, R.; Twarużek, M.; Grajewski, J. Determination of moulds and mycotoxins in dry dog and cat food using liquid chromatography with mass spectrometry and fluorescence detection. Food Addit. Contam. B Part 2014, 7, 302–308. [Google Scholar] [CrossRef]
- Singh, S.D.; Chuturgoon, A.A. A comparative analysis of mycotoxin contamination. J. S. Afr. Vet. Assoc. 2017, 88, 1–6. [Google Scholar] [CrossRef]
- Hołda, K.; Wiczuk, W.; Hać-szymańczuk, E.; Głogowski, R. Comprehensive microbiological evaluation of dry foods for growing dogs marketed in Poland. Anim. Sci. 2017, 56, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Campos, S.G.; Keller, L.M.; Cavaglieri, L.R.; Krüger, C.; Fernández, M.G.; Dalcero, A.M.; Magnoli, C.E.; Rosa, C.A. Aflatoxigenic fungi and aflatoxin B1 in commercial pet food in Brazil. World Mycotoxin J. 2009, 2, 85–90. [Google Scholar] [CrossRef]
- Copetti, M.V.; Santurio, J.M.; Cavalheiro, A.S.; Alves, S.H.; Ferreiro, L. Comparison of different culture media for mycological evaluation of commercial pet food. Acta Sci. Vet. 2009, 37, 329–335. [Google Scholar] [CrossRef]
- Girio, T.M.S.; Filho, A.N.; Junior, O.D.R.; Amaral, L.A.; Girio, R.J.S. Microbiological quality of dog feed sold in sealed packages and in bulk. Ars. Vet. Jaboticabal. SP 2012, 28, 36–40. [Google Scholar]
- Martins, M.L.; Martins, H.M.; Bernardo, F. Fungal flora and mycotoxins detection in commercial pet food. Rev. Port. Ciênc. Vet. 2003, 98, 179–183. [Google Scholar]
- Scudamore, K.A.; Hetmanski, M.T.; Nawaz, S.; Naylor, J.; Rainbird, S. Determination of mycotoxins in pet foods sold for domestic pets and wild birds using linked-column immunoassay clean-up and HPLC. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess 2009, 14, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, D.J.; Rodríguez, R.; Mota, J.J.; Suarez, L.R. Isolation and identification of phylamentous fungi in feed for domestic pets (dogs and cats). Rev. Cientif. FCV-LUZ 2015, 25, 432–438. [Google Scholar]
- Klich, M. Aspergillus flavus: The major producer of aflatoxin. Mol. Plant Pathol. 2007, 8, 713–722. [Google Scholar] [CrossRef]
- Tessari, E.N.; Kobashigawa, E.; Cardoso, A.L.; Ledoux, D.R. Effects of Aflatoxin B1 and Fumonisin B1 on blood biochemical. Toxins 2010, 2, 453–460. [Google Scholar] [CrossRef] [Green Version]
- Tulayakul, P.; Sakuda, S.; Dong, K.S.; Kumagai, S. Comparative activities of glutathione-S-transferase and dialdehyde reductase toward aflatoxin B1 in livers of experimental and farm animals. Toxicon 2005, 46, 204–209. [Google Scholar] [CrossRef]
- Yiannikouris, A.; Jouany, J. Mycotoxins in feeds and their fate in animals: A review. Anim. Res. 2002, 51, 81–99. [Google Scholar] [CrossRef] [Green Version]
- Galtier, P. Biotransformation and Fate of Mycotoxins. J. Toxicol. 1999, 18, 295–312. [Google Scholar] [CrossRef]
- Bingham, A.; Huebner, H.; Phillips, T.; Bauer, J. Identification and reduction of urinary aflatoxin metabolites in dogs. Food Chem. Toxicol. 2004, 42, 1851–1858. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Jezkova, A.; Yuan, Z.; Pavlikova, L.; Dohnal, V.; Kuca, K. Biological degradation of aflatoxins. Drug Metab. Rev. 2009, 41, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Benkerroum, N. Aflatoxins: Producing-molds, structure, health issues and incidence in Southeast Asian and Sub-Saharan African countries. Int. J. Environ. Res. Pub. Health 2020, 17, 1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uribe-Yunda, D.F.; Navas, M.C. Mecanismos moleculares involucrados en la mutagenicidad inducida por aflatoxina B1. Rev. Cienc. Salud. 2012, 10, 403–419. [Google Scholar]
- Rawal, S.; Kim, J.E.; Coulombe, R., Jr. Aflatoxin B1 in poultry: Toxicology, metabolism and prevention. Res. Vet. Sci. 2010, 89, 325–331. [Google Scholar] [CrossRef]
- Bruchim, Y.; Segev, G.; Sela, U.; Bdolah, T.; Salomon, A.; Aroch, I. Accidental fatal aflatoxicosis due to contaminated commercial diet in 50 dogs. Res. Vet. Sci. 2012, 93, 279–287. [Google Scholar] [CrossRef]
- Mehrzad, J.; Fazel, F.; Pouyamehr, N.; Hosseinkhanil, S.; Dehghani, H. Naturally occurring level of aflatoxin B1 injures human, canine and bovine leukocytes through ATP depletion and caspase activation. Int. J. Toxicol. 2019, 141, 16–25. [Google Scholar] [CrossRef]
- Towner, R.A.; Qian, S.Y.; Kadiiska, M.B.; Mason, R.P. In vivo identification of aflatoxin-induced free radicals in rat bile. Free Radic. Biomed. 2003, 35, 1330–1340. [Google Scholar] [CrossRef]
- Macías, A.; Rial, C.; Acosta, A.; Henríquez, L.A.; Almeida, M.; Rodríguez, Á.; Zumbado, M.; Boada, L.D.; Zaccaroni, A.; Luzardo, O.P. Risk assessment of the exposure to mycotoxins in dogs and cats through the consumption of commercial dry food. Sci. Total Environ. 2020, 15, 134592. [Google Scholar] [CrossRef]
- Peterson, D.M. Oat antioxidants. J. Cereal. Sci. 2001, 33, 115–129. [Google Scholar] [CrossRef]
- Wan, J.; Chen, B.; Rao, J.J. Occurrence and preventive strategies to control mycotoxins in cereal-based food. Compr. Rev. Food Sci. F 2019, 19, 1–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Zhang, Z.; Zhang, Q.; Zhang, W.; Yu, L.; Wang, D.; Li, H.; Li, P. An on-site simultaneous semi-quantification of aflatoxin B1, zearalenone, and T-2 toxin in maize- and cereal-based feed via multicolor immunochromatographic Assay. Toxins 2018, 10, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamala, A.; Ortiz, J.; Kimanya, M.; Haesaert, G.; Donoso, S.; Tiisekwa, B.; De Meulenaer, B. Multiple mycotoxin co-occurrence in maize grown in three agro-ecological zones of Tanzania. Food Control 2015, 54, 208–215. [Google Scholar] [CrossRef]
- Herrera, M.; Bervis, N.; Carramiñana, J.J.; Juan, T.; Herrera, A.; Ariño, A.; Lorán, S. Occurrence and exposure assessment of aflatoxins and deoxynivalenol in cereal-based baby foods for infants. Toxins 2019, 11, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hacıbekiroğlu, I.; Kolak, U. Aflatoxins in various food from Istanbul, Turkey. Food Addit. Contam. B 2013, 6, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Nazir, A.; Kalim, I.; Sajjad, M.; Usman, M.; Iqbal, M. Prevalence of aflatoxin contamination in pulses and spices in different regions of Punjab. Chem. Int. 2019, 5, 274–280. [Google Scholar] [CrossRef]
- Zöngür, A. Investigation of DON and aflatoxin content in Agria and Hermes chips potato cultivars grown in Aksaray, Sivas, Kayseri, Niğde. J. Plant Dis. Protect 2020, 127, 521–527. [Google Scholar] [CrossRef]
- Amri, E.; Lenoi, S. Aflatoxin and fumonisin contamination of sun-dried sweet potato (Ipomoea batatas L.) chips in Kahama district, Tanzania. Appl. Environ. Microbiol. 2016, 4, 55–62. [Google Scholar] [CrossRef]
- Bagwan, N.B. Aflatoxin B1 contamination in papaya fruits (Carica papaya L.) during post harvest pathogenesis. Indian Phytopath. 2011, 64, 48–50. [Google Scholar]
- Munitz, M.S.; Resnik, S.L.; Pacin, A.; Salas, P.; Gonzalez, H.L.; Montti, M.L.; Drunday, V.; Guillin, E. Mycotoxigenic potential of fungi isolated from freshly harvested Argentinean blueberries. Mycotoxin Res. 2014, 30, 221–229. [Google Scholar] [CrossRef]
- Drusch, S.; Ragab, W. Mycotoxins in fruits, fruit juices, and dried fruits. J. Food Protect 2003, 66, 1514–1527. [Google Scholar] [CrossRef] [PubMed]
- AboDalam, T.H.; Amra, H.; Sultan, Y.; Magan, N.; Carlobos, A.L.; Cumagun, C.J.; Yli, T. New genotypes of aflatoxigenic fungi from Egypt and the Philippines. Fungal. Biol. 2020, 10, 142–155. [Google Scholar] [CrossRef]
- Granados, F.; Redondo, M.; Jaikel, D. Mycotoxin contamination of beverages obtained from tropical crops. Beverages 2018, 4, 83. [Google Scholar] [CrossRef] [Green Version]
- Pour, S.H.; Mahmoudi, S.; Masoumi, S.; Rezaie, S.; Barac, A.; Ranjbaran, M.; Oliya, S.; Mehravar, F.; Sasani, E.; Noorbakhsh, F.; et al. Aflatoxin M1 contamination level in Iranian milk and dairy products: A systematic review and meta-analysis. World Mycotoxin J. 2020, 13, 67–82. [Google Scholar] [CrossRef]
- Cavus, S.; Tornuk, F.; Sarioglu, K.; Yetim, H. Determination of mold contamination and aflatoxin levels of the meat products/ingredients collected from Turkey market. J. Food Saf. 2018, 38, 1–7. [Google Scholar] [CrossRef]
- Pitt, J.I.; Taniwaki, M.H.; Cole, M.B. Mycotoxin production in major crops as influenced by growing, harvesting, storage and processing, with emphasis on the achievement of food safety objectives. Food Control 2013, 32, 205–215. [Google Scholar] [CrossRef]
- Rodríguez, M.; Ramos, A.J.; Prim, M.; Sanchis, V.; Marín, S. Usefulness of the analytical control of aflatoxins in feedstuffs for dairy cows for the prevention of aflatoxin M1 in milk. Mycotoxin Res. 2019, 36, 11–22. [Google Scholar] [CrossRef]
- Algahtani, F.D.; Morshdy, A.E.; Hussein, M.; Abouelkheir, E.S.; Adeboye, A.; Valentine, A.; Elabbasy, M.T. Biogenic amines and aflatoxins in some imported meat products: Incidence, occurrence, and public health impacts. J. Food Qual. 2020, 8718179. [Google Scholar] [CrossRef]
- Teixeira, E.M.; Frehse, M.S.; Freire, R.L.; Ono, M.A.; Bordini, J.G.; Hirozawa, M.T.; Ono, E.Y. Safety of low and high cost dry feed intended for dogs in Brazil concerning fumonisins, zearalenone and aflatoxins. World Mycotoxin J. 2017, 10, 273–283. [Google Scholar] [CrossRef]
- Gazzotti, T.; Biagi, G.; Pagliuca, G.; Pinna, C.; Scardilli, M.; Grandi, M.; Zaghini, G. Occurrence of mycotoxins in extruded commercial dog food. Anim. Feed Sci. Tech. 2015, 202, 81–89. [Google Scholar] [CrossRef]
- Hernandez, E.; Valdivia, A.; Cruz, C.; Saldaña, M.; Quezada, T.; Rangel, E.; Ortiz, R.; Medina, L.; Jaramillo. Diagnosis of subclinical aflatoxicosis by biochemical changes in dairy cows under field conditions. Pak. Vet. J. 2020, 1–6. [Google Scholar] [CrossRef]
- Maia, P.P.; de Siqueira, M.E.P.B. Occurrence of aflatoxins B1, B2, G1 and G2 in some Brazilian pet foods. Food Addit. Contam. 2002, 19, 1180–1183. [Google Scholar] [CrossRef] [PubMed]
- Shao, M.; Li, L.; Gu, Z.; Yao, M.; Xu, D.; Fan, W. Mycotoxins in commercial dry pet food in China. Food Addit. Contamb. 2018, 11, 237–245. [Google Scholar] [CrossRef]
- Newman, S.J.; Smith, J.R.; Stenske, K.A.; Newman, L.B.; Dunlap, J.R.; Imerman, P.M.; Kirk, C.A. Aflatoxicosis in nine dogs after exposure to contaminated commercial dog food. J. Vet. Diagn. Investig. 2007, 19, 168–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castaldo, L.; Graziani, G.; Gaspari, A.; Izzo, L.; Tolosa, J.; Rodríguez, Y.; Ritieni, A. Target analysis and retrospective screening of multiple mycotoxins in pet food using UHPLC-Q-Orbitrap HRMS. Toxins 2019, 11, 434. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.; Marquez, C. Determination of aflatoxins in domestic pet foods (dog and cat) using immunoaffinity column and HPLC. Anim. Feed Sci. Technol. 2001, 93, 109–114. [Google Scholar] [CrossRef]
- Akinrinmade, J.F.; Akinrinde, A.S. Aflatoxin status of some commercial dry dog foods in Ibadan, Nigeria. Afr. J. Biotechnol. 2012, 11, 11463–11467. [Google Scholar] [CrossRef]
- Basalan, M.; Hismiogullari, S.E.; Hismiogullari, A.A.; Filazi, A. Fungi and aflatoxin B1 in horse and dog feeds in western Turkey. Revue Méd. Vét. 2004, 156, 248–252. [Google Scholar]
- Gunsen, U.; Yaroglu, T. Aflatoxin in dog and horse feeds in Turkey. Vet. Hum. Toxicol. 2002, 44, 113–114. [Google Scholar]
- Reis-Gomes, A.; Marcolongo-Pereira, C.; Sallis, E.S.V.; Pereira, D.I.B.; Schild, A.L.; Faria, R.O.; Meireles, M.C.A. Aflatoxicosis in dogs in Southern Rio Grande do Sul. Pesq. Vet. Bras. 2014, 34, 162–166. [Google Scholar] [CrossRef] [Green Version]
- Stenske, K.; Smith, J.; Newman, S.; Newman, L.; Kirk, C. Aflatoxicosis in dogs and dealing with suspected contaminated commercial foods. J. Am. Vet. Med. 2006, 228, 1686–1691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagiwara, M.; Kogika, M.; Malucelli, B. Disseminated intravascular coagulation in dog with aflatoxicosis. J. Small Anim. Pract. 1990, 31, 239–243. [Google Scholar] [CrossRef]
- Bastianello, S.S.; Nesbit, J.W.; Williams, M.C.; Lange, A.L. Pathological findings in a natural outbreak of aflatoxicosis in dogs. Onderstepoort J. Vet. Res. 1987, 54, 635–640. [Google Scholar] [PubMed]
- Arnot, L.; Duncan, N.; Coetzer, H.; Botha, C. An outbreak of canine aflatoxicosis in Gauteng province, South Africa. J. S. Afr. Vet. Assoc. 2012, 83, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dereszynski, D.; Center, S.; Randolph, J.; Brooks, M.; Hadden, A.; Palyada, K.; McDonough, S.; Messick, J.; Stokol, T.; Bischoff, K.; et al. Clinical and clinicopathologic features of dogs that consumed foodborne hepatotoxic aflatoxins: 72 cases (2005–2006). JAVMA J. Am. Vet. Med. A 2008, 232, 1329–1337. [Google Scholar] [CrossRef]
- Prins, M.; Schellens, C.J.; van Leeuwen, M.W.; Rothuizen, J.; Teske, E. Coagulation disorders in dogs with hepatic disease. Vet. J. 2010, 185, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Donahue, S.M.; Brooks, M.; Otto, C.M. Examination of hemostatic parameters to detect hypercoagulability in dogs with severe protein-losing nephropathy. J. Vet. Emerg. Crit. Care 2011, 21, 346–355. [Google Scholar] [CrossRef]
- Ensley, S.M.; Radke, S.L. Mycotoxins in grains and feeds. In Diseases of Swine; Zimmerman, J.J., Karriker, L.A., Ramirez, A., Schwartz, K.J., Stevenson, G.W., Zhang, J., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2019; pp. 1055–1071. [Google Scholar] [CrossRef]
- Rauber, R.H.; Dilkin, P.; Giacomini, L.Z.; de Almeida, C.A.A.; Mallmann, C.A. Performance of Turkey poults fed different doses of aflatoxins in the diet. Poult. Sci. 2007, 86, 1620–1624. [Google Scholar] [CrossRef]
- Wada, H.; Usui, M.; Sakuragawa, N. Hemostatic Abnormalities and Liver Diseases; Favaloro, J.E., Ed.; Seminars in Thrombosis and Hemostasis: New York, NY, USA, 2008. [Google Scholar]
- Newberne, P.; Russo, R.; Wogan, G. Acute toxicity of aflatoxin B1 in the dog. Pathol. Vet. 1966, 3, 331–340. [Google Scholar] [CrossRef]
- Bischoff, K.; Rumbeiha, W. Pet food recalls and pet food contaminants in small animals: An update. Vet. Clin. Small Anim. 2018, 48, 917–931. [Google Scholar] [CrossRef]
- Eroksuz, Y.; Kaya, E.; Issi, M.; Baydar, E.; Cevik, A.; Eroksuz, H.; Asci, Z.; Timurkan, O. Subacute aflatoxicosis due to moldy bread consumption in a dog. Revue Méd. Vét. 2015, 166, 259–265. [Google Scholar]
- Ural, K.; Ulutas, B.; Tunca, R.; Kum, C.; Avci, H.; Boyacioglu, M.; Gultekin, M.; Atasoy, A. Aflatoxicosis in rottweilers after eating moldy bread: Clinicopathological features and effective tetrasulphate therapy. Vet. Arhiv. 2013, 83, 403–412. [Google Scholar]
- Wouters, A.T.; Casagrande, R.A.; Wouters, F.; Watanabe, T.T.; Boabaid, F.M.; Cruz, C.E.; Driemeier, D. An outbreak of aflatoxin poisoning in dogs associated with aflatoxin B1–contaminated maize products. J. Vet. Diagn. Investig. 2013, 25, 282–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weingarten, M.A.; Sande, A.A. Acute liver failure in dogs and cats. J. Vet. Emerg. Crit Care 2015, 25, 455–473. [Google Scholar] [CrossRef] [PubMed]
- Griebsch, C.; Whitney, J.; Angles, J.; Bennett, P. Acute liver failure in two dogs following ingestion of cheese tree (Glochidion ferdinandi) roots. J. Vet. Emerg. Crit. Care 2018, 1, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, S.L. Taurine and carnitine in canine cardiomyopathy. Vet. Clin. Small Anim. 2006, 36, 1325–1343. [Google Scholar] [CrossRef]
- Viviano, K.R.; Wielen, B.V. Effect of N-Acetylcysteine supplementation on intracellular glutathione, urine isoprostanes, clinical score, and survival in hospitalized Ill dogs. J. Vet. Intern. Med. 2013, 27, 250–258. [Google Scholar] [CrossRef]
- Wild, C.P.; Turner, P.C. The toxicology of aflatoxins as a basis for public health decisions. Mutagenesis 2002, 17, 471–481. [Google Scholar] [CrossRef]
- Citil, M.; Gunes, V.; Atakisi, O.; Ozcan, A.; Tuzcua, M.; Dogan, A. Protective effect of L-carnitine against oxidative damage caused by experimental chronic aflatoxicosis in quail (Coturnix coturnix). Acta Vet. Hung. 2005, 53, 319–324. [Google Scholar] [CrossRef] [Green Version]
- Atungulu, G.G.; Mohammadi-Shad, Z.; Wilson, S. Mycotoxin issues in pet food. Food Feed Saf. Syst. Anal. 2018, 1, 25–44. [Google Scholar] [CrossRef]
- Leung, M.C.K.; Díaz-Llano, G.; Smith, T.K. Mycotoxins in pet food: A review on worldwide prevalence and preventative strategies. J. Agric. Food Chem. 2006, 54, 9623–9635. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.; Pereira, M.N.; Scussel, V.M. Ozone gas antifungal effect on extruded dog food contaminated with Aspergillus flavus. Ozone Sci. 2018, 7, 1–8. [Google Scholar] [CrossRef]
- Lambert, R.; Stratford, M. Weak-acid preservatives: Modelling microbial inhibition and response. J. Appl. Microbiol. 1999, 86, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Christ, D.; Savi, G.D.; Scussel, V.M. Effectiveness of ozone gas in raw and processed food for fungi and mycotoxin decontamination-A review. J. Chem. Biol. Phys. Sci. 2016, 6, 326–348. [Google Scholar] [CrossRef]
- Diao, E.; Hou, H.; Chen, B.; Shan, C.; Dong, H. Ozonolysis efficiency and safety evaluation of aflatoxi B1 in peanuts. Food Chem. Toxicol. 2013, 55, 519–525. [Google Scholar] [CrossRef]
- Di Gregorio, M.C.; de Neeff, D.V.; Jager, A.V.; Corassin, C.H.; de Pinho, A.C.; de Albuquerque, R.; de Azevedo, A.C.; Fernandes, C.A. Mineral adsorbents for prevention of mycotoxins in animal feeds. Toxin Rev. 2014, 33, 125–135. [Google Scholar] [CrossRef]
- Tomašević-Čanović, M.; Daković, A.; Rottinghaus, G.; Matijašević, S.; Đuričić, M. Surfactant modified zeolites–new efficient adsorbents for mycotoxins. Microporous Mat. 2003, 61, 173–180. [Google Scholar] [CrossRef]
- Lahtinen, S.J.; Haskard, C.A.; Ouwehand, A.C.; Salminen, S.J.; Ahokas, J.T. Binding of aflatoxin B1 to cell wall components of Lactobacillus rhamnosus strain GG. Food Addit. Contam. 2004, 21, 158–164. [Google Scholar] [CrossRef]
- De Luna-López, M.C.; Valdivia-Flores, A.G.; Jaramillo-Juárez, F.; Reyes, J.L.; Ortiz-Martínez, R.; Quezada-Tristán, T. Association between Aspergillus flavus colonization and aflatoxins production in immature grains of maize genotypes. J. Food Sci. Eng. 2013, 3, 688–698. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization). Worldwide Regulations for mycotoxins in food and feed 2003. FAO Food Nutr. Pap. 2003, 81, 59. [Google Scholar]
- Witaszak, N.; Waśkiewicz, A.; Bocianowski, J.; Stępień, Ł. Contamination of pet food with mycobiota and Fusarium mycotoxins-focus on dogs and cats. Toxins 2020, 12, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EU (European Union). Commission Directive 2003/100/EC of 31 October 2003 amending Annex I to Directive 2002/32/EC of the European Parliament and of the Council on undesirable substances in animal feed. Off. J. Eur. Communities 2003, 46, 33–37. [Google Scholar]
Location | Number of Samples (n) | Major Fungi Identified | Positive Samples (%) | Citation |
---|---|---|---|---|
Argentina | 12 | Aspergillus flavus, A. niger, Mucor globosus, M. plumbeus, M. racemosus, Rhizopus spp. | 100 | [11] |
Brazil | 180 | A. flavus, A. candidus, A. flavipes, A. fumigatus, A. niger, A. ochraceus, A. parasiticus, Cladosporium spp., Fusarium spp., Mucor spp., Penicillium spp. | 100 | [22] |
Brazil | 34 | Absidia spp., Aureobasidium spp., Alternaria spp., Aspergillus spp., Chrysonilia spp., Cladosporium spp., Emericella spp., Eurotium spp., Fusarium spp., Geotrichum spp., Monascus spp., Mucor spp., Olyptrichum spp., Paecilomyces spp., Penicillium spp., Phoma spp., Rhodotorula spp., Rhizopus spp., Scapulariopsis spp., Syncephalostrum spp., Tilletiopsis spp., Trichoderma spp., Wallemia spp., Yeasts | 74 | [23] |
Brazil | 60 | Aspergillus spp., Fusarium spp., Penicillium spp., Rhizopus spp. | 53.3 | [24] |
Poland | 25 | Aspergillus spp., Mucor spp., Penicillium spp. | 52 | [19] |
Poland | 20 | Aspergillus spp., Penicillium spp., Rhizopus spp. | 25 | [21] |
Poland | 25 | Aspergillus spp., Alternaria spp., Cladosporium spp., Fusarium spp., F. verticillioides., F. proliferatum | 100 | [18] |
Portugal | 20 | A. niger, Mucor spp., Penicillium spp. | 100 | [25] |
South Africa | 20 | A. flavus, A. fumigatus, A. parasiticus, F. graminearum, F. verticilloides, Penicillium spp. | 100 | [20] |
United Kingdom | 5 | Absidia spp., Acremonium spp., Alternaria spp., Aspergillus spp., Cladosporium spp., Eurotium spp., Mucor spp., Pénicillium spp., Rhizopus spp., Syncephalastrum spp., Wallemia spp., yeasts. | 100 | [26] |
Venezuela | 4 | Acremonium charticola, A. flavus, A. fumigatus, A. terreus, C. herbarum, F. poae, P. citrinum, P. expansum. | 94 | [27] |
Location | Number of Sample (n) | Test | Mean AF (μg/kg) | Positive Samples (%) | Citation |
---|---|---|---|---|---|
Brazil | 45 | TLC | AFB1 (19.0) | AFB1 (6.7) | [64] |
Brazil | 180 | HPLC | AFB1 (7.0) | AFB1 (100) | [22] |
Brazil | (AE) 49 (AP) 25 (ASP) 13 | HPLC | (SF) AF (1.2) (PF) AF (0.4) (SPF) AF (0.5) | AF (95.4) | [61] |
China | 32 | LC-MS/MS | AFB1 (47.7) | AFB1 (87.5) | [65] |
United States | 9 | ELISA, TLC, HPLC | AFB1 (530) AFB2 (19.0) | AFB1 (88.8) AFB2 (77.7) | [66] |
Italy | (AE) 24 (AP) 24 | LC-MS, PLC-MS/MS | AFB1 y AFG1 (<0.5) AFB2 (5.7) AFG2 (15.8) | AF (12.0) | [62] |
Italy | 55 | UHPLC-Q-Orbitrap HRMS | AFB1 (4.3) | AFB1 (25.8) | [67] |
Mexico | 19 | HPLC | AFB1 (5.0), AFB2(0.07), AFG1 (0.05), AFG2 (0.03), AFM1 (2.0) AFM2 (0.1) AFP1 (1.1), AFL (0.3) | AFB1 (79.0), AFB2 (26.0), AFG1 (63.0), AFG2 (21.0), AFM1 (63.0), AFM2 (89.0), AFP1 (58.0), AFL (47.0) | [68] |
Mexico | 29 | HPLC-FL | AFB1 (1.6), AFB2(0.1), AFG1 (28.2), AFG2 (1.3), AFM1 (1.8), AFM2 (0.2), AFP1 (1.7), AFL (28.6) | AFB1 (76.0), AFB2 (4.0), AFG1 (86.0), AFG2 (93.0), AFM1 (48.0), AFM2 (21.0), AFP1 (100), AFL (100) | [8] |
Nigeria | 30 | HPLC | AF (9.6) | AF (100) | [69] |
Poland | 25 | HPLC-FLD | AF (0.2) | AF (4.0) | [19] |
South Africa | (AE)10 (AP)10 | TLC, HPLC-FLD | (SF) AFB1 (44.1) (PF) AFB1 (20.1) | AFB1 (100) | [20] |
Turkey | 21 | ELISA | AFB1 (6.6) | AFB1 (100) | [70] |
Turkey | 18 | ELISA | AF 1.75 a 20 | AF (16.7) | [71] |
Brazil | Retrospective study | HPLC | AFB1–AFG1 (89.0–191) | - | [72] |
Location | Number of Intoxicated Dogs (n) | Mortality (%) | Range of AF in CDF (µg/kg) | Citation |
---|---|---|---|---|
Brazil | 4 | 100 | AFB1–AFB2 (89.0–191) | [72] |
Brazil | 2 | 100 | AFB1 (83.2–150) | [74] |
Israel | 50 | 68.0 | AF (80–300) | [38] |
South Africa | 10 | 100 | AF (100–300) | [75] |
South Africa | 100 | 96.0 | AF (<5–4946) | [76] |
United States | 9 | 100 | AFB1 (223–579) | [66] |
United States | 72 | 36.1 | AF (48–800) | [77] |
Analyte | A. Intoxication | B. Reference Values | Comparison (A/B) |
---|---|---|---|
Blood biochemistry | |||
Total bilirubin (µM/L) | 130 (1.71–428) | 2.7 (0.00–5.1) | 48.1 (0.00–83.9) |
ALT (U/L) | 598 (6.0–2278) | 59.5 (5.0–106) | 10.1 (1.20–21.5) |
AST (U/L) | 178 (15.0–748) | 31.8 (9.0–56.0) | 5.6 (1.7–13.4) |
ALP (U/L) | 284 (10.0–3477) | 67.3 (4.0–140) | 4.2 (2.5–24.8) |
TP (s) | 41.4 (4.5–71) | 12.0 (6.0–18.0) | 3.4 (0.75–3.9) |
APTT (s) | 34.5 (9.6–241) | 15.7 (10.0–23.8) | 2.2 (0.96–10.1) |
GGT (U/L) | 10.4 (0.00–44.4) | 7.8 (0.00–19.0) | 1.34 (0.00–2.3) |
Total protein (g/dL) | 4.9 (1.10–7.9) | 6.3 (5.4–7.1) | 0.78 (0.20–1.11) |
Albumin (g/dL) | 2.5 (0.50–3.9) | 3.5 (2.8–4.1) | 0.70 (0.18–0.95) |
Coagulation tests | |||
FVII:C (% activity) | 32.0 (1.40–67.0) | 125 (50–200) | 0.26 (0.03–0.34) |
Platelets (X109/L) | 156 (8.0–432) | 347 (143–700) | 0.45 (0.06–0.62) |
Protein C (% activity) | 18.0 (4.0–55.0) | 105 (75–135) | 0.17 (0.05–0.41) |
Cholesterol (mmol/L) | 1.26 (0.00–7.9) | 5.2 (2.6–8.6) | 0.24 (0.00–0.91) |
Antithrombin (% activity) | 11.0 (0.00–147) | 105 (65–145) | 0.10 (0.00–1.01) |
Fibrinogen (mg/dL) | 37.0 (11.0–344) | 305 (100–510) | 0.12 (0.11–0.67) |
Location | Macroscopic Lesions | Microscopic Lesions |
---|---|---|
Generalized | Hemorrhagic diathesis, jaundice, and ascites. | |
Hepatic | Hepatomegaly, uneven surface, pale yellowish discoloration, enhanced lobular pattern, cholestasis, and gallbladder edema. | Hepatocytes with micro and macrovesicular steatosis, cytomegaly, pyknosis, karyorexis, and necrosis. Centrilobular areas with hemorrhage, reticulin, and collagen. Hyperplasia and proliferation of bile ducts. |
Pulmonary | Atelectasis, congestion, pleural effusion, hydrothorax, and petechiae. | Alveoli with hemorrhage and perivascular edema. |
Cardiac | Ecchymosis and petechiae in the endocardium and epicardium. Hydropericardium. | |
Digestive | Edema and congestion in the gastrointestinal lumen, mesenteric lymph nodes and pancreas. | Necrosis with mononuclear infiltration in the mucosa. |
Splenic | Splenomegaly | Diffuse perivascular edema and red pulp with hemorrhages and erythrophagocytosis. |
Renal | Dark red coloration with subcapsular depressions and multifocal hemorrhages. | Fluid accumulation in Bowman’s space and glomerular basement membrane thickening. Multifocal vascular congestion in the interstitial tissue of the renal medulla and pelvis. Degeneration, ectasia, and necrosis of the proximal and distal tubular epithelium. |
Drug | Dose | Administration via | Usual Interval (h/d) | Therapeutic Indications |
---|---|---|---|---|
Hemostatic Stabilization | ||||
Vitamin K1 | 2.0 mg/kg | SC | 24/5 | Synthesis of coagulation factors |
Intravenous plasma | 10.0 mL/kg | IV | Until TP & TTPa are restored | Correction of coagulopathy |
Elimination of AF and Hepato-Renal Protection | ||||
Hartman solution | 40.0–60.0 mL/kg/d | IV | cbp | Increased glomerular filtration rate and restoration of water/electrolyte balance |
N-acetylcysteine | 70.0 mg/kg | IV | 12/15 | GSH synthesis and AF binding |
Silymarin | 20 mg/kg | PO | 24/30 | Counter AF epoxides |
Vitamin E | 10.0 U/kg | PO | 24/30 | Counter AF epoxides |
L-carnitine | 50.0–100 mg/kg | PO | 8/30 | Decreased liver lipidosis and counter epoxides |
Symptomatic Treatment | ||||
Metoclopramide | 0.40 mg/kg | SC | 8/3 | Antiemetic |
Ondansetron | 0.15 mg/kg | IV | 12/3 | Antiemetic |
Famotidine | 0.5 mg/kg | IV | 12/30 | Decreased gastric secretion |
Sucralfate | 0.5–1.0 g/dog | PO | 8/30 | Gastric cytoprotection |
Ampicillin | 25.0 mg/kg | IV | 8/7 | Broad spectrum bactericide |
Enrofloxacin | 5.0–20.0 mg/kg | IV | 12/7 días | Broad spectrum bactericide |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Martínez, L.; Valdivia-Flores, A.G.; Guerrero-Barrera, A.L.; Quezada-Tristán, T.; Rangel-Muñoz, E.J.; Ortiz-Martínez, R. Toxic Effect of Aflatoxins in Dogs Fed Contaminated Commercial Dry Feed: A Review. Toxins 2021, 13, 65. https://doi.org/10.3390/toxins13010065
Martínez-Martínez L, Valdivia-Flores AG, Guerrero-Barrera AL, Quezada-Tristán T, Rangel-Muñoz EJ, Ortiz-Martínez R. Toxic Effect of Aflatoxins in Dogs Fed Contaminated Commercial Dry Feed: A Review. Toxins. 2021; 13(1):65. https://doi.org/10.3390/toxins13010065
Chicago/Turabian StyleMartínez-Martínez, Lizbeth, Arturo G. Valdivia-Flores, Alma Lilian Guerrero-Barrera, Teódulo Quezada-Tristán, Erika Janet Rangel-Muñoz, and Raúl Ortiz-Martínez. 2021. "Toxic Effect of Aflatoxins in Dogs Fed Contaminated Commercial Dry Feed: A Review" Toxins 13, no. 1: 65. https://doi.org/10.3390/toxins13010065
APA StyleMartínez-Martínez, L., Valdivia-Flores, A. G., Guerrero-Barrera, A. L., Quezada-Tristán, T., Rangel-Muñoz, E. J., & Ortiz-Martínez, R. (2021). Toxic Effect of Aflatoxins in Dogs Fed Contaminated Commercial Dry Feed: A Review. Toxins, 13(1), 65. https://doi.org/10.3390/toxins13010065