Monocytes in Uremia
Abstract
:1. Introduction
2. Phenotype of Monocytes in CKD
2.1. Surface Marker Expression
2.2. Cytokine and Mediator Secretion
2.3. Monocyte Function and Expression of Functional Proteins
3. Monocyte Subpopulations
4. Causes and Pathogenesis of Monocyte Alterations
4.1. Uremic Retention Solutes and Serum Factors
4.2. The Role of Hemodialysis Treatment on Monocytes Phenotype and Function
4.3. Further Factors That Influence Monocyte Activation
5. Consequences of Monocyte Alterations
5.1. Antimicrobial Defense
5.2. Monocyte Activation Contributes to Atherosclerosis
6. Conclusions and Perspectives
7. Methods
Author Contributions
Funding
Conflicts of Interest
References
- Ziegler-Heitbrock, L.; Ancuta, P.; Crowe, S.; Dalod, M.; Grau, V.; Hart, D.N.; Leenen, P.J.M.; Liu, Y.-J.; MacPherson, G.; Randolph, G.J.; et al. Nomenclature of monocytes and dendritic cells in blood. Blood 2010, 116, e74–e80. [Google Scholar] [CrossRef] [PubMed]
- Zawada, A.M.; Rogacev, K.S.; Rotter, B.; Winter, P.; Marell, R.-R.; Fliser, D.; Heine, G.H. SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset. Blood 2011, 118, e50–e61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Meur, Y.; Lorgeot, V.; Aldigier, J.C.; Wijdenes, J.; Leroux-Robert, C.; Praloran, V. Whole blood production of monocytic cytokines (IL-1beta, IL-6, TNF-alpha, sIL-6R, IL-1Ra) in haemodialysed patients. Nephrol. Dial. Transplant. 1999, 14, 2420–2426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Riemsdijk-Van Overbeeke, I.C.; Baan, C.C.; Knoop, C.J.; Loonen, E.H.; Zietse, R.; Weimar, W. Quantitative flow cytometry shows activation of the TNF-alpha system but not of the IL-2 system at the single cell level in renal replacement therapy. Nephrol. Dial. Transpl. 2001, 16, 1430–1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braun, N. Expression of adhesion molecules and activation markers on lymphocytes and monocytes during hemodialysis. Blood Purif. 1997, 15, 61–76. [Google Scholar] [CrossRef]
- Liakopoulos, V.; Roumeliotis, S.; Zarogiannis, S.; Eleftheriadis, T.; Mertens, P.R. Oxidative stress in hemodialysis: Causative mechanisms, clinical implications, and possible therapeutic interventions. Semin. Dial. 2019, 32, 58–71. [Google Scholar] [CrossRef]
- Borges Bonan, N.; Schepers, E.; Pecoits-Filho, R.; Dhondt, A.; Pletinck, A.; de Somer, F.; Vanholder, R.; van Biesen, W.; Moreno-Amaral, A.; Glorieux, G. Contribution of the uremic milieu to an increased pro-inflammatory monocytic phenotype in chronic kidney disease. Sci. Rep. 2019, 9, 10236. [Google Scholar] [CrossRef] [Green Version]
- Chiu, Y.-L.; Shu, K.-H.; Yang, F.-J.; Chou, T.-Y.; Chen, P.-M.; Lay, F.-Y.; Pan, S.-Y.; Lin, C.-J.; Litjens, N.H.R.; Betjes, M.G.H.; et al. A comprehensive characterization of aggravated aging-related changes in T lymphocytes and monocytes in end-stage renal disease: The iESRD study. Immun. Ageing 2018, 15, 27. [Google Scholar] [CrossRef]
- Jacobson, S.H.; Thylén, P.; Lundahl, J. Three monocyte-related determinants of atherosclerosis in haemodialysis. Nephrol. Dial. Transpl. 2000, 15, 1414–1419. [Google Scholar] [CrossRef]
- Pereira, R.; Costa, E.; Gonçalves, M.; Miranda, V.; do Sameiro Faria, M.; Quintanilha, A.; Belo, L.; Lima, M.; Santos-Silva, A. Neutrophil and monocyte activation in chronic kidney disease patients under hemodialysis and its relationship with resistance to recombinant human erythropoietin and to the hemodialysis procedure. Hemodial. Int. 2010, 14, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Thylén, P.; Lundahl, J.; Fernvik, E.; Grönneberg, R.; Halldén, G.; Jacobson, S.H. Impaired monocyte CD11b expression in interstitial inflammation in hemodialysis patients. Kidney Int. 2000, 57, 2099–2106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawabata, K.; Nakai, S.; Miwa, M.; Sugiura, T.; Otsuka, Y.; Shinzato, T.; Hiki, Y.; Tomimatsu, I.; Ushida, Y.; Hosono, F.; et al. Changes in Mac-1 and CD14 expression on monocytes and serum soluble CD14 level during push/pull hemodiafiltration. Nephron 2002, 90, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Schepers, E.; Houthuys, E.; Dhondt, A.; de Meyer, G.; Neirynck, N.; Bernaert, P.; van den Bergh, R.; Brouckaert, P.; Vanholder, R.; Glorieux, G. Transcriptome analysis in patients with chronic kidney disease on hemodialysis disclosing a key role for CD16+CX3CR1+ monocytes. PLoS ONE 2015, 10, e0121750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawabata, K.; Nakai, S.; Miwa, M.; Sugiura, T.; Otsuka, Y.; Shinzato, T.; Hiki, N.; Tomimatsu, I.; Ushida, Y.; Hosono, F.; et al. CD31 expression on leukocytes is downregulated in vivo during hemodialysis. Nephron 2001, 89, 153–160. [Google Scholar] [CrossRef]
- Chmielewski, M.; Bryl, E.; Marzec, L.; Aleksandrowicz, E.; Witkowski, J.M.; Rutkowski, B. Expression of scavenger receptor CD36 in chronic renal failure patients. Artif. Organs 2005, 29, 608–614. [Google Scholar] [CrossRef]
- Wu, C.-C.; Chen, J.-S.; Lin, S.-H.; Chu, P.; Lin, Y.-F.; Lin, S.-M.; Liao, T.-N. Aberrant activation of the TNF-alpha system and production of Fas and scavenger receptors on monocytes in patients with end-stage renal disease. Artif. Organs 2005, 29, 701–707. [Google Scholar] [CrossRef]
- Yang, J.; Fang, P.; Zhang, L.; Zhang, D.; Yang, W.Y.; Bottiglieri, T.; Kunapuli, S.P.; Yu, J.; Choi, E.T.; Ji, Y.; et al. Chronic Kidney Disease Induces Inflammatory CD40+ Monocyte Differentiation via Homocysteine Elevation and DNA Hypomethylation. Circ. Res. 2016, 11, 1226–1241. [Google Scholar] [CrossRef] [Green Version]
- Girndt, M.; Sester, M.; Sester, U.; Kaul, H.; Köhler, H. Defective expression of B7-2 (CD86) on monocytes of dialysis patients correlates to the uremia-associated immune defect. Kidney Int. 2001, 59, 1382–1389. [Google Scholar] [CrossRef] [Green Version]
- De Cal, M.; Cruz, D.N.; Corradi, V.; Nalesso, F.; Polanco, N.; Lentini, P.; Brendolan, A.; Tetta, C.; Ronco, C. HLA-DR expression and apoptosis: A cross-sectional controlled study in hemodialysis and peritoneal dialysis patients. Blood Purif. 2008, 26, 249–254. [Google Scholar] [CrossRef]
- Kuroki, Y.; Tsuchida, K.; Go, I.; Aoyama, M.; Naganuma, T.; Takemoto, Y.; Nakatani, T. A study of innate immunity in patients with end-stage renal disease: Special reference to toll-like receptor-2 and -4 expression in peripheral blood monocytes of hemodialysis patients. Int. J. Mol. Med. 2007, 19, 783–790. [Google Scholar] [CrossRef]
- Gollapudi, P.; Yoon, J.-W.; Gollapudi, S.; Pahl, M.V.; Vaziri, N.D. Leukocyte toll-like receptor expression in end-stage kidney disease. Am. J. Nephrol. 2010, 31, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Koc, M.; Toprak, A.; Arikan, H.; Odabasi, Z.; Elbir, Y.; Tulunay, A.; Asicioglu, E.; Eksioglu-Demiralp, E.; Glorieux, G.; Vanholder, R.; et al. Toll-like receptor expression in monocytes in patients with chronic kidney disease and haemodialysis: Relation with inflammation. Nephrol. Dial. Transpl. 2011, 26, 955–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.C.; Liao, T.N.; Lu, K.C.; Chen, J.S.; Chu, P.; Lin, S.H.; Chuang, C.H.; Lin, Y.F. Apoptotic markers on lymphocytes and monocytes are unchanged during single hemodialysis sessions using either regenerated cellulose or polysulfone membranes. Clin. Nephrol. 2005, 64, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Okumoto, S.; Taniguchi, Y.; Nakashima, A.; Masaki, T.; Ito, T.; Ogawa, T.; Takasugi, N.; Kohno, N.; Yorioka, N. C-C chemokine receptor 2 expression by circulating monocytes influences atherosclerosis in patients on chronic hemodialysis. Ther. Apher. Dial. 2009, 13, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, C.; Heine, G.H.; Garcia, P.; Reichart, B.; Georg, T.; Krause, M.; Köhler, H.; Girndt, M. Increased expression of monocytic angiotensin-converting enzyme in dialysis patients with cardiovascular disease. Nephrol. Dial. Transpl. 2006, 21, 1596–1602. [Google Scholar] [CrossRef]
- Seibert, E.; Zohles, K.; Ulrich, C.; Kluttig, A.; Nuding, S.; Kors, J.A.; Swenne, C.A.; Werdan, K.; Fiedler, R.; Girndt, M. Association between autonomic nervous dysfunction and cellular inflammation in end-stage renal disease. BMC Cardiovasc. Disord. 2016, 16, 210. [Google Scholar] [CrossRef] [Green Version]
- Malaponte, G.; Bevelacqua, V.; Fatuzzo, P.; Rapisarda, F.; Emmanuele, G.; Travali, S.; Mazzarino, M.C. IL-1beta, TNF-alpha and IL-6 release from monocytes in haemodialysis patients in relation to dialytic age. Nephrol. Dial. Transpl. 2002, 17, 1964–1970. [Google Scholar] [CrossRef] [Green Version]
- Girndt, M.; Sester, U.; Kaul, H.; Köhler, H. Production of proinflammatory and regulatory monokines in hemodialysis patients shown at a single-cell level. J. Am. Soc. Nephrol. 1998, 9, 1689–1696. [Google Scholar]
- Mege, J.L.; Capo, C.; Purgus, R.; Olmer, M. Monocyte production of transforming growth factor beta in long-term hemodialysis: Modulation by hemodialysis membranes. Am. J. Kidney Dis. 1996, 28, 395–399. [Google Scholar] [CrossRef]
- Asmis, R.; Stevens, J.; Begley, J.G.; Grimes, B.; van Zant, G.; Fanti, P. The isoflavone genistein inhibits LPS-stimulated TNFalpha, but not IL-6 expression in monocytes from hemodialysis patients and healthy subjects. Clin. Nephrol. 2006, 65, 267–275. [Google Scholar] [CrossRef]
- Kim, H.W.; Yang, H.-N.; Kim, M.G.; Choi, H.M.; Jo, S.-K.; Cho, W.Y.; Kim, H.K. Microinflammation in hemodialysis patients is associated with increased CD14CD16(+) pro-inflammatory monocytes: Possible modification by on-line hemodiafiltration. Blood Purif. 2011, 31, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Malaponte, G.; Libra, M.; Bevelacqua, Y.; Merito, P.; Fatuzzo, P.; Rapisarda, F.; Cristina, M.; Naselli, G.; Stivala, F.; Mazzarino, M.C.; et al. Inflammatory status in patients with chronic renal failure: The role of PTX3 and pro-inflammatory cytokines. Int. J. Mol. Med. 2007, 20, 471–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balakrishnan, V.S.; Jaber, B.L.; Natov, S.N.; Cendoroglo, M.; King, A.J.; Schmid, C.H.; Pereira, B.J. Interleukin-1 receptor antagonist synthesis by peripheral blood mononuclear cells in hemodialysis patients. Kidney Int. 1998, 54, 2106–2112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donati, D.; Degiannis, D.; Mazzola, E.; Gastaldi, L.; Raskova, J.; Raska, K.; Camussi, G. Interleukin-1 receptors and receptor antagonist in haemodialysis. Nephrol. Dial. Transpl. 1997, 12, 111–118. [Google Scholar] [CrossRef]
- Momoi, T.; Ono, M.; Takagi, T.; Sugiura, S.; Ogawa, H.; Saito, A. The effects of hemodialysis (HD) membranes on interleukin 1-beta (IL-1 beta) production from peripheral blood mononuclear cells (PBMC). Clin. Nephrol. 1995, 44, S24–S28. [Google Scholar] [PubMed]
- Memoli, B.; Grandaliano, G.; Soccio, M.; Postiglione, L.; Guida, B.; Bisesti, V.; Esposito, P.; Procino, A.; Marrone, D.; Michael, A.; et al. In vivo modulation of soluble “antagonistic” IL-6 receptor synthesis and release in ESRD. J. Am. Soc. Nephrol. 2005, 16, 1099–1107. [Google Scholar] [CrossRef] [Green Version]
- Morita, Y.; Yamamura, M.; Kashihara, N.; Makino, H. Increased production of interleukin-10 and inflammatory cytokines in blood monocytes of hemodialysis patients. Res. Commun. Mol. Pathol. Pharmacol. 1997, 98, 19–33. [Google Scholar] [PubMed]
- Sardenberg, C.; Suassuna, P.; Watanabe, R.; Cruz Andreoli, M.C.; Aparecida Dalboni, M.; Faria Seabra, V.; Draibe, S.A.; Cendoroglo Neto, M.; Jaber, B. Balance between cytokine production by peripheral blood mononuclear cells and reactive oxygen species production by monocytes in patients with chronic kidney disease. Ren. Fail. 2004, 26, 673–681. [Google Scholar] [CrossRef]
- Scholze, A.; Krueger, K.; Diedrich, M.; Räth, C.; Torges, A.; Jankowski, V.; Maier, A.; Thilo, F.; Zidek, W.; Tepel, M. Superoxide dismutase type 1 in monocytes of chronic kidney disease patients. Amino Acids 2011, 41, 427–438. [Google Scholar] [CrossRef]
- Krueger, K.; Shen, J.; Maier, A.; Tepel, M.; Scholze, A. Lower Superoxide Dismutase 2 (SOD2) Protein Content in Mononuclear Cells Is Associated with Better Survival in Patients with Hemodialysis Therapy. Oxid. Med. Cell. Longev. 2016, 2016, 7423249. [Google Scholar] [CrossRef] [Green Version]
- Krueger, K.; Koch, K.; Jühling, A.; Tepel, M.; Scholze, A. Low expression of thiosulfate sulfurtransferase (rhodanese) predicts mortality in hemodialysis patients. Clin. Biochem. 2010, 43, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Marzec, L.; Zdrojewski, Z.; Liberek, T.; Bryl, E.; Chmielewski, M.; Witkowski, J.M.; Rutkowski, B. Expression of Hsp72 protein in chronic kidney disease patients. Scand. J. Urol. Nephrol. 2009, 43, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Rastmanesh, M.M.; Bluyssen, H.A.R.; Joles, J.A.; Boer, P.; Willekes, N.; Braam, B. Increased expression of SOCS3 in monocytes and SOCS1 in lymphocytes correlates with progressive loss of renal function and cardiovascular risk factors in chronic kidney disease. Eur. J. Pharmacol. 2008, 593, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, C.; Trojanowicz, B.; Fiedler, R.; Kohler, F.; Wolf, A.-F.; Seibert, E.; Girndt, M. Differential Expression of Lipoprotein-Associated Phospholipase A2 in Monocyte Subsets: Impact of Uremia and Atherosclerosis. Nephron 2017, 135, 1–11. [Google Scholar] [CrossRef]
- Trojanowicz, B.; Ulrich, C.; Kohler, F.; Bode, V.; Seibert, E.; Fiedler, R.; Girndt, M. Monocytic angiotensin-converting enzyme 2 relates to atherosclerosis in patients with chronic kidney disease. Nephrol. Dial. Transpl. 2017, 32, 287–298. [Google Scholar] [CrossRef] [Green Version]
- Muniz-Junqueira, M.I.; Braga Lopes, C.; Magalhães, C.A.M.; Schleicher, C.C.; Veiga, J.P.R. Acute and chronic influence of hemodialysis according to the membrane used on phagocytic function of neutrophils and monocytes and pro-inflammatory cytokines production in chronic renal failure patients. Life Sci. 2005, 77, 3141–3155. [Google Scholar] [CrossRef]
- Kitazono, T.; Padgett, R.C.; Armstrong, M.L.; Tompkins, P.K.; Heistad, D.D. Evidence that angiotensin II is present in human monocytes. Circulation 1995, 91, 1129–1134. [Google Scholar] [CrossRef]
- Trojanowicz, B.; Ulrich, C.; Seibert, E.; Fiedler, R.; Girndt, M. Uremic Conditions Drive Human Monocytes to Pro-Atherogenic Differentiation via an Angiotensin-Dependent Mechanism. PLoS ONE 2014, 9, e102137. [Google Scholar] [CrossRef] [Green Version]
- Merino, A.; Alvarez-Lara, M.A.; Ramirez, R.; Carracedo, J.; Martin-Malo, A.; Aljama, P. Losartan prevents the development of the pro-inflammatory monocytes CD14+CD16+ in haemodialysis patients. Nephrol. Dial. Transpl. 2012, 27, 2907–2912. [Google Scholar] [CrossRef] [Green Version]
- Heidenreich, S.; Schmidt, M.; Bachmann, J.; Harrach, B. Apoptosis of monocytes cultured from long-term hemodialysis patients. Kidney Int. 1996, 49, 792–799. [Google Scholar] [CrossRef] [Green Version]
- Nockher, W.A.; Scherberich, J.E. Expanded CD14+ CD16+ monocyte subpopulation in patients with acute and chronic infections undergoing hemodialysis. Infect. Immun. 1998, 66, 2782–2790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heine, G.H.; Ulrich, C.; Seibert, E.; Seiler, S.; Marell, J.; Reichart, B.; Krause, M.; Schlitt, A.; Köhler, H.; Girndt, M. CD14(++)CD16+ monocytes but not total monocyte numbers predict cardiovascular events in dialysis patients. Kidney Int. 2008, 73, 622–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saionji, K.; Ohsaka, A. Expansion of CD4+CD16+ blood monocytes in patients with chronic renal failure undergoing dialysis: Possible involvement of macrophage colony-stimulating factor. Acta Haematol. 2001, 105, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.W.; Woo, Y.S.; Yang, H.N.; Choi, H.M.; Jo, S.K.; Cho, W.Y.; Kim, H.-K. Primed monocytes: Putative culprits of chronic low-grade inflammation and impaired innate immune responses in patients on hemodialysis. Clin. Exp. Nephrol. 2011, 15, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Liakopoulos, V.; Jeron, A.; Shah, A.; Bruder, D.; Mertens, P.R.; Gorny, X. Hemodialysis-related changes in phenotypical features of monocytes. Sci. Rep. 2018, 8, 13964. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, R.; Carracedo, J.; Berdud, I.; Carretero, D.; Merino, A.; Rodríguez, M.; Tetta, C.; Martín-Malo, A.; Aljama, P. Microinflammation in hemodialysis is related to a preactivated subset of monocytes. Hemodial. Int. 2006, 10, S24–S27. [Google Scholar] [CrossRef]
- Kawanaka, N.; Nagake, Y.; Yamamura, M.; Makino, H. Expression of Fc gamma receptor III (CD16) on monocytes during hemodialysis in patients with chronic renal failure. Nephron 2002, 90, 64–71. [Google Scholar] [CrossRef]
- Carmona, A.; Agüera, M.L.; Luna-Ruiz, C.; Buendía, P.; Calleros, L.; García-Jerez, A.; Rodríguez-Puyol, M.; Arias, M.; Arias-Guillen, M.; de Arriba, G.; et al. Markers of endothelial damage in patients with chronic kidney disease on hemodialysis. Am. J. Physiol. Renal Physiol. 2017, 312, F673–F681. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, R.; Carracedo, J.; Merino, A.; Soriano, S.; Ojeda, R.; Alvarez-Lara, M.A.; Martín-Malo, A.; Aljama, P. CD14+CD16+ monocytes from chronic kidney disease patients exhibit increased adhesion ability to endothelial cells. Contrib. Nephrol. 2011, 171, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Merino, A.; Portolés, J.; Selgas, R.; Ojeda, R.; Buendia, P.; Ocaña, J.; Bajo, M.A.; del Peso, G.; Carracedo, J.; Ramírez, R.; et al. Effect of different dialysis modalities on microinflammatory status and endothelial damage. Clin. J. Am. Soc. Nephrol. 2010, 5, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Ulrich, C.; Heine, G.H.; Seibert, E.; Fliser, D.; Girndt, M. Circulating monocyte subpopulations with high expression of angiotensin-converting enzyme predict mortality in patients with end-stage renal disease. Nephrol. Dial. Transpl. 2010, 25, 2265–2272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merino, A.; Nogueras, S.; García-Maceira, T.; Rodríguez, M.; Martin-Malo, A.; Ramirez, R.; Carracedo, J.; Aljama, P. Bacterial DNA and endothelial damage in haemodialysis patients. Nephrol. Dial. Transpl. 2008, 23, 3635–3642. [Google Scholar] [CrossRef] [PubMed]
- Bonan, N.B.; Steiner, T.M.; Kuntsevich, V.; Virzì, G.M.; Azevedo, M.; Nakao, L.S.; Barreto, F.C.; Ronco, C.; Thijssen, S.; Kotanko, P.; et al. Uremic Toxicity-Induced Eryptosis and Monocyte Modulation: The Erythrophagocytosis as a Novel Pathway to Renal Anemia. Blood Purif. 2016, 41, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Nockher, W.A.; Wiemer, J.; Scherberich, J.E. Haemodialysis monocytopenia: Differential sequestration kinetics of CD14+CD16+ and CD14++ blood monocyte subsets. Clin. Exp. Immunol. 2001, 123, 49–55. [Google Scholar] [CrossRef]
- De Sequera, P.; Corchete, E.; Bohorquez, L.; Albalate, M.; Perez-Garcia, R.; Alique, M.; Marques, M.; García-Menéndez, E.; Portolés, J.; Ramirez, R. Residual Renal Function in Hemodialysis and Inflammation. Ther. Apher. Dial. 2017, 21, 592–598. [Google Scholar] [CrossRef]
- Bolasco, P.; Spiga, P.; Arras, M.; Murtas, S.; La Nasa, G. Could there be Haemodynamic Stress Effects on Pro-Inflammatory CD14+CD16+ Monocytes during Convective-Diffusive Treatments? A Prospective Randomized Controlled Trial. Blood Purif. 2019, 47, 385–394. [Google Scholar] [CrossRef]
- Carracedo, J.; Merino, A.; Nogueras, S.; Carretero, D.; Berdud, I.; Ramírez, R.; Tetta, C.; Rodríguez, M.; Martín-Malo, A.; Aljama, P. On-line hemodiafiltration reduces the proinflammatory CD14+CD16+ monocyte-derived dendritic cells: A prospective, crossover study. J. Am. Soc. Nephrol. 2006, 17, 2315–2321. [Google Scholar] [CrossRef] [Green Version]
- Ariza, F.; Merino, A.; Carracedo, J.; Alvarez de Lara, M.A.; Crespo, R.; Ramirez, R.; Martín-Malo, A.; Aljama, P. Post-dilution high convective transport improves microinflammation and endothelial dysfunction independently of the technique. Blood Purif. 2013, 35, 270–278. [Google Scholar] [CrossRef]
- Fiedler, R.; Neugebauer, F.; Ulrich, C.; Wienke, A.; Gromann, C.; Storr, M.; Böhler, T.; Seibert, E.; Girndt, M. Randomized controlled pilot study of 2 weeks’ treatment with high cutoff membrane for hemodialysis patients with elevated C-reactive protein. Artif. Organs 2012, 36, 886–893. [Google Scholar] [CrossRef]
- Andrikos, E.; Buoncristiani, E.; D’Intini, V.; Bordoni, V.; Bonello, M.; Levin, N.; Buoncristiani, U.; Pappas, M.; Ronco, C. Effect of daily hemodialysis on monocytes apoptosis. Blood Purif. 2005, 23, 79–82. [Google Scholar] [CrossRef]
- Bordoni, V.; Piroddi, M.; Galli, F.; de Cal, M.; Bonello, M.; Dimitri, P.; Salvatori, G.; Ranishta, R.; Levin, N.; Tetta, C.; et al. Oxidant and carbonyl stress-related apoptosis in end-stage kidney disease: Impact of membrane flux. Blood Purif. 2006, 24, 149–156. [Google Scholar] [CrossRef]
- D’Intini, V.; Bordoni, V.; Bolgan, I.; Bonello, M.; Brendolan, A.; Crepaldi, C.; Gastaldon, F.; Levin, N.W.; Bellomo, R.; Ronco, C. Monocyte apoptosis in uremia is normalized with continuous blood purification modalities. Blood Purif. 2004, 22, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Witko-Sarsat, V.; Friedlander, M.; Nguyen Khoa, T.; Capeillere-Blandin, C.; Nguyen, A.T.; Canteloup, S.; Dayer, J.M.; Jungers, P.; Drueke, T.; Descamps-Latscha, B. Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure. J. Immunol. 1998, 161, 2524–2532. [Google Scholar] [PubMed]
- Jankowski, J.; van der Giet, M.; Jankowski, V.; Schmidt, S.; Hemeier, M.; Mahn, B.; Giebing, G.; Tolle, M.; Luftmann, H.; Schluter, H.; et al. Increased plasma phenylacetic acid in patients with end-stage renal failure inhibits iNOS expression. J. Clin. Investig. 2003, 112, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.; Westhoff, T.H.; Krauser, P.; Ignatius, R.; Jankowski, J.; Jankowski, V.; Zidek, W.; van der Giet, M. The uraemic toxin phenylacetic acid impairs macrophage function. Nephrol. Dial. Transpl. 2008, 23, 3485–3493. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.-M.; Zhou, J.-J.; Zheng, Q.; Gan, H.; Wang, H. Dialysis method alters the expression of microRNA-33a and its target genes ABCA1, ABCG1 in THP-1 macrophages. Ther. Apher. Dial. 2014, 18, 44–50. [Google Scholar] [CrossRef]
- Trojanowicz, B.; Imdahl, T.; Ulrich, C.; Fiedler, R.; Girndt, M. Circulating miR-421 Targeting Leucocytic Angiotensin Converting Enzyme 2 Is Elevated in Patients with Chronic Kidney Disease. Nephron 2019, 141, 61–74. [Google Scholar] [CrossRef]
- Schepers, E.; Meert, N.; Glorieux, G.; Goeman, J.; van der Eycken, J.; Vanholder, R. P-cresylsulphate, the main in vivo metabolite of p-cresol, activates leucocyte free radical production. Nephrol. Dial. Transpl. 2007, 22, 592–596. [Google Scholar] [CrossRef]
- Ito, S.; Higuchi, Y.; Yagi, Y.; Nishijima, F.; Yamato, H.; Ishii, H.; Osaka, M.; Yoshida, M. Reduction of indoxyl sulfate by AST-120 attenuates monocyte inflammation related to chronic kidney disease. J. Leukoc. Biol. 2013, 93, 837–845. [Google Scholar] [CrossRef]
- He, T.; Xiong, J.; Huang, Y.; Zheng, C.; Liu, Y.; Bi, X.; Liu, C.; Han, W.; Yang, K.; Xiao, T.; et al. Klotho restrain RIG-1/NF-κB signaling activation and monocyte inflammatory factor release under uremic condition. Life Sci. 2019, 231, 116570. [Google Scholar] [CrossRef]
- Kim, H.Y.; Yoo, T.-H.; Hwang, Y.; Lee, G.H.; Kim, B.; Jang, J.; Yu, H.T.; Kim, M.C.; Cho, J.-Y.; Lee, C.J.; et al. Indoxyl sulfate (IS)-mediated immune dysfunction provokes endothelial damage in patients with end-stage renal disease (ESRD). Sci. Rep. 2017, 7, 3057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Böger, R.H.; Bode-Böger, S.M.; Tsao, P.S.; Lin, P.S.; Chan, J.R.; Cooke, J.P. An endogenous inhibitor of nitric oxide synthase regulates endothelial adhesiveness for monocytes. J. Am. Coll. Cardiol. 2000, 36, 2287–2295. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.-F.; Li, Y.-J.; Yang, T.-L.; Lou, B.; Xie, X.-M. Losartan inhibits monocytic adhesion induced by ADMA via downregulation of chemokine receptors in monocytes. Eur. J. Clin. Pharmacol. 2009, 65, 457–464. [Google Scholar] [CrossRef]
- Bhaskaran, M.; Radhakrishnan, N.; Patni, H.; Singh, P.; Chaudhary, A.N.; Singhal, P.C. Dialysis membrane-induced oxidative stress: Role of heme oxygenase-1. Nephron Exp. Nephrol. 2007, 105, e24–e32. [Google Scholar] [CrossRef] [PubMed]
- Carracedo, J.; Ramírez, R.; Martín-Malo, A.; Rodríguez, M.; Madueño, J.A.; Aljama, P. Role of adhesion molecules in mononuclear cell apoptosis induced by cuprophan hemodialysis membranes. Nephron 2001, 89, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Carracedo, J.; Ramírez, R.; Martin-Malo, A.; Rodríguez, M.; Aljama, P. Nonbiocompatible hemodialysis membranes induce apoptosis in mononuclear cells: The role of G-proteins. J. Am. Soc. Nephrol. 1998, 9, 46–53. [Google Scholar] [CrossRef]
- Carracedo, J.; Ramírez, R.; Soriano, S.; Martín-Malo, A.; Rodríguez, M.; Aljama, P. Caspase-3-dependent pathway mediates apoptosis of human mononuclear cells induced by cellulosic haemodialysis membranes. Nephrol. Dial. Transpl. 2002, 17, 1971–1977. [Google Scholar] [CrossRef] [Green Version]
- Carracedo, J.; Ramirez, R.; Soriano, S.; Alvarez de Lara, M.A.; Rodriguez, M.; Martin-Malo, A.; Aljama, P. Monocytes from dialysis patients exhibit characteristics of senescent cells: Does it really mean inflammation? Contrib. Nephrol. 2005, 149, 208–218. [Google Scholar] [CrossRef]
- Girndt, M.; Heisel, O.; Köhler, H. Influence of dialysis with polyamide vs haemophan haemodialysers on monokines and complement activation during a 4-month long-term study. Nephrol. Dial. Transpl. 1999, 14, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.F.; Chang, D.M.; Shaio, M.F.; Lu, K.C.; Chyr, S.H.; Li, B.L.; Sheih, S.D. Cytokine production during hemodialysis: Effects of dialytic membrane and complement activation. Am. J. Nephrol. 1996, 16, 293–299. [Google Scholar] [CrossRef]
- Mandolfo, S.; Tetta, C.; David, S.; Gervasio, R.; Ognibene, D.; Wratten, M.L.; Tessore, E.; Imbasciati, E. In vitro and in vivo biocompatibility of substituted cellulose and synthetic membranes. Int. J. Artif. Organs 1997, 20, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Marchant, A.; Tielemans, C.; Husson, C.; Gastaldello, K.; Schurmans, T.; de Groote, D.; Duchow, J.; Vanherweghem, L.; Goldman, M. Cuprophane haemodialysis induces upregulation of LPS receptor (CD14) on monocytes: Role of complement activation. Nephrol. Dial. Transpl. 1996, 11, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Pertosa, G.; Simone, S.; Soccio, M.; Marrone, D.; Gesualdo, L.; Schena, F.P.; Grandaliano, G. Coagulation cascade activation causes CC chemokine receptor-2 gene expression and mononuclear cell activation in hemodialysis patients. J. Am. Soc. Nephrol. 2005, 16, 2477–2486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhondt, A.; Vanholder, R.; Glorieux, G.; Waterloos, M.A.; de Smet, R.; Lesaffer, G.; Lameire, N. Vitamin E-bonded cellulose membrane and hemodialysis bioincompatibility: Absence of an acute benefit on expression of leukocyte surface molecules. Am. J. Kidney Dis. 2000, 36, 1140–1146. [Google Scholar] [CrossRef]
- Girndt, M.; Lengler, S.; Kaul, H.; Sester, U.; Sester, M.; Köhler, H. Prospective crossover trial of the influence of vitamin E-coated dialyzer membranes on T-cell activation and cytokine induction. Am. J. Kidney Dis. 2000, 35, 95–104. [Google Scholar] [CrossRef]
- Stavroulopoulos, A.; Petras, D.; Kakavas, I.; Agroyannis, I.; Stamatelou, K.; Vyssoulis, G.; Papadakis, I.T.; Stefanadis, C. Monocyte expression of adhesion molecules during low- and high-flux polysulfone hemodialysis and the effect of atorvastatin administration. Blood Purif. 2010, 29, 274–279. [Google Scholar] [CrossRef]
- Kaplow, L.S.; Goffinet, J.A. Profound neutropenia during the early phase of hemodialysis. JAMA 1968, 203, 1135–1137. [Google Scholar] [CrossRef]
- Schouten, W.E.M.; Grooteman, M.P.C.; Schoorl, M.; van Houte, A.J.; Nubé, M.J. Monocyte activation in peripheral blood and dialyser eluates: Phenotypic profile and cytokine release. Nephron 2002, 91, 646–653. [Google Scholar] [CrossRef]
- Stuard, S.; Carreno, M.P.; Poignet, J.L.; Albertazzi, A.; Haeffner-Cavaillon, N. A major role for CD62P/CD15s interaction in leukocyte margination during hemodialysis. Kidney Int. 1995, 48, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Tabor, B.; Geissler, B.; Odell, R.; Schmidt, B.; Blumenstein, M.; Schindhelm, K. Dialysis neutropenia: The role of the cytoskeleton. Kidney Int. 1998, 53, 783–789. [Google Scholar] [CrossRef] [Green Version]
- Thylén, P.; Fernvik, E.; Haegerstrand, A.; Lundahl, J.; Jacobson, S.H. Dialysis-induced serum factors inhibit adherence of monocytes and granulocytes to adult human endothelial cells. Am. J. Kidney Dis. 1997, 29, 78–85. [Google Scholar] [CrossRef]
- Thylén, P.; Fernvik, E.; Lundahl, J.; Hed, J.; Jacobson, S.H. Cell surface receptor modulation on monocytes and granulocytes during clinical and experimental hemodialysis. Am. J. Nephrol. 1995, 15, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Thylén, P.; Fernvik, E.; Lundahl, J.; Hed, J.; Jacobson, S.H. Modulation of CD11b/CD18 on monocytes and granulocytes following hemodialysis membrane interaction in vitro. Int. J. Artif. Organs 1996, 19, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Girndt, M.; Kaul, H.; Leitnaker, C.K.; Sester, M.; Sester, U.; Köhler, H. Selective sequestration of cytokine-producing monocytes during hemodialysis treatment. Am. J. Kidney Dis. 2001, 37, 954–963. [Google Scholar] [CrossRef] [PubMed]
- Sester, U.; Sester, M.; Heine, G.; Kaul, H.; Girndt, M.; Köhler, H. Strong depletion of CD14(+)CD16(+) monocytes during haemodialysis treatment. Nephrol. Dial. Transpl. 2001, 16, 1402–1408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griveas, I.; Visvardis, G.; Sakellariou, G.; Passadakis, P.; Thodis, I.; Vargemezis, V.; Pavlitou, A.; Fleva, A. Biocompatibility study based on differential sequestration kinetics of CD14+CD16+ blood monocyte subsets with different dialyzers. Ren. Fail. 2006, 28, 493–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kino, K.; Akizawa, T.; Koshikawa, S. Effects of membrane characteristics on cytokine production by mononuclear cells in regular haemodialysis patients. Nephrol. Dial. Transpl. 1995, 10, 29–33. [Google Scholar] [CrossRef]
- Koliousi, E.; Vartholomatos, G.; Katopodis, K.P.; Kolaitis, N.; Siamopoulos, K.C. Effect of the hemodialysis session on bcl-2 expression in peripheral blood mononuclear cells in vivo. Blood Purif. 2006, 24, 542–547. [Google Scholar] [CrossRef]
- Trojanowicz, B.; Ulrich, C.; Fiedler, R.; Storr, M.; Boehler, T.; Martus, P.; Pawlak, M.; Glomb, M.A.; Henning, C.; Templin, M.; et al. Impact of serum and dialysates obtained from chronic hemodialysis patients maintained on high cut-off membranes on inflammation profile in human THP-1 monocytes. Hemodial. Int. 2017, 21, 348–358. [Google Scholar] [CrossRef]
- Trojanowicz, B.; Ulrich, C.; Fiedler, R.; Martus, P.; Storr, M.; Boehler, T.; Werner, K.; Hulko, M.; Zickler, D.; Willy, K.; et al. Modulation of leucocytic angiotensin-converting enzymes expression in patients maintained on high-permeable haemodialysis. Nephrol. Dial. Transpl. 2018, 33, 34–43. [Google Scholar] [CrossRef]
- Colì, L.; Donati, G.; Cappuccilli, M.L.; Cianciolo, G.; Comai, G.; Cuna, V.; Carretta, E.; La Manna, G.; Stefoni, S. Role of the hemodialysis vascular access type in inflammation status and monocyte activation. Int. J. Artif. Organs 2011, 34, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Atamaniuk, J.; Kopecky, C.; Skoupy, S.; Säemann, M.D.; Weichhart, T. Apoptotic cell-free DNA promotes inflammation in haemodialysis patients. Nephrol. Dial. Transpl. 2012, 27, 902–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pertosa, G.; Gesualdo, L.; Bottalico, D.; Schena, F.P. Endotoxins modulate chronically tumour necrosis factor alpha and interleukin 6 release by uraemic monocytes. Nephrol. Dial. Transpl. 1995, 10, 328–333. [Google Scholar]
- Eleftheriadis, T.; Pissas, G.; Remoundou, M.; Filippidis, G.; Antoniadi, G.; Oustampasidou, N.; Liakopoulos, V.; Stefanidis, I. Ferroportin in monocytes of hemodialysis patients and its associations with hepcidin, inflammation, markers of iron status and resistance to erythropoietin. Int. Urol. Nephrol. 2014, 46, 161–167. [Google Scholar] [CrossRef]
- Sonnweber, T.; Theurl, I.; Seifert, M.; Schroll, A.; Eder, S.; Mayer, G.; Weiss, G. Impact of iron treatment on immune effector function and cellular iron status of circulating monocytes in dialysis patients. Nephrol. Dial. Transpl. 2011, 26, 977–987. [Google Scholar] [CrossRef] [Green Version]
- Guz, G.; Glorieux, G.L.; de Smet, R.; Waterloos, M.-A.F.; Vanholder, R.C.; Dhondt, A.W. Impact of iron sucrose therapy on leucocyte surface molecules and reactive oxygen species in haemodialysis patients. Nephrol. Dial. Transpl. 2006, 21, 2834–2840. [Google Scholar] [CrossRef]
- Jurek, A.; Turyna, B.; Kubit, P.; Klein, A. The ability of HDL to inhibit VCAM-1 expression and oxidized LDL uptake is impaired in renal patients. Clin. Biochem. 2008, 41, 1015–1018. [Google Scholar] [CrossRef]
- Krishnan, S.; Shimoda, M.; Sacchi, R.; Kailemia, M.J.; Luxardi, G.; Kaysen, G.A.; Parikh, A.N.; Ngassam, V.N.; Johansen, K.; Chertow, G.M.; et al. HDL Glycoprotein Composition and Site-Specific Glycosylation Differentiates Between Clinical Groups and Affects IL-6 Secretion in Lipopolysaccharide-Stimulated Monocytes. Sci. Rep. 2017, 7, 43728. [Google Scholar] [CrossRef]
- Tokuda, N.; Kano, M.; Meiri, H.; Nomoto, K.; Naito, S. Calcitriol therapy modulates the cellular immune responses in hemodialysis patients. Am. J. Nephrol. 2000, 20, 129–137. [Google Scholar] [CrossRef]
- Wu, E.L.; Cui, H.X. Effect of 1,25-(OH)2D3 and lipopolysaccharide on mononuclear cell inflammation in type 2 diabetes mellitus and diabetic nephropathy uremia. Genet. Mol. Res. 2016, 15, 1–11. [Google Scholar] [CrossRef]
- Stubbs, J.R.; Idiculla, A.; Slusser, J.; Menard, R.; Quarles, L.D. Cholecalciferol supplementation alters calcitriol-responsive monocyte proteins and decreases inflammatory cytokines in ESRD. J. Am. Soc. Nephrol. 2010, 21, 353–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meireles, M.S.; Kamimura, M.A.; Dalboni, M.A.; Giffoni de Carvalho, J.T.; Aoike, D.T.; Cuppari, L. Effect of cholecalciferol on vitamin D-regulatory proteins in monocytes and on inflammatory markers in dialysis patients: A randomized controlled trial. Clin. Nutr. 2016, 35, 1251–1258. [Google Scholar] [CrossRef] [PubMed]
- Seibert, E.; Heine, G.H.; Ulrich, C.; Seiler, S.; Köhler, H.; Girndt, M. Influence of cholecalciferol supplementation in hemodialysis patients on monocyte subsets: A randomized, double-blind, placebo-controlled clinical trial. Nephron Clin. Pract. 2013, 123, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Arena, A.; Coppolino, G.; Nostro, L.; Pavone, B.; Bonvissuto, G.; Campo, S.; Iannello, D.; Bonina, L.; Buemi, M. Impaired antiviral activity of monocytes from patients on hemodiafiltration. J. Nephrol. 2007, 20, 560–567. [Google Scholar] [PubMed]
- Dopheide, J.F.; Zeller, G.C.; Kuhlmann, M.; Girndt, M.; Sester, M.; Sester, U. Differentiation of Monocyte Derived Dendritic Cells in End Stage Renal Disease is Skewed towards Accelerated Maturation. Adv. Clin. Exp. Med. 2015, 24, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.M.; Woo, Y.S.; Kim, M.G.; Jo, S.-K.; Cho, W.Y.; Kim, H.K. Altered monocyte-derived dendritic cell function in patients on hemodialysis: A culprit for underlying impaired immune responses. Clin. Exp. Nephrol. 2011, 15, 546–553. [Google Scholar] [CrossRef]
- Lim, W.H.; Kireta, S.; Leedham, E.; Russ, G.R.; Coates, P.T. Uremia impairs monocyte and monocyte-derived dendritic cell function in hemodialysis patients. Kidney Int. 2007, 72, 1138–1148. [Google Scholar] [CrossRef]
- Verkade, M.A.; van Druningen, C.J.; Op de Hoek, C.T.; Weimar, W.; Betjes, M.G.H. Decreased antigen-specific T-cell proliferation by moDC among hepatitis B vaccine non-responders on haemodialysis. Clin. Exp. Med. 2007, 7, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Ross, R. Atherosclerosis—An inflammatory disease. N. Engl. J. Med. 1999, 340, 115–126. [Google Scholar] [CrossRef]
- Gottsäter, A.; Forsblad, J.; Mätzsch, T.; Persson, K.; Ljungcrantz, I.; Ohlsson, K.; Lindgärde, F. Interleukin-1 receptor antagonist is detectable in human carotid artery plaques and is related to triglyceride levels and Chlamydia pneumoniae IgA antibodies. J. Intern. Med. 2002, 251, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Balakrishnan, V.S.; Schmid, C.H.; Jaber, B.L.; Natov, S.N.; King, A.J.; Pereira, B.J. Interleukin-1 receptor antagonist synthesis by peripheral blood mononuclear cells: A novel predictor of morbidity among hemodialysis patients. J. Am. Soc. Nephrol. 2000, 11, 2114–2121. [Google Scholar] [PubMed]
- Jeng, Y.; Lim, P.S.; Wu, M.Y.; Tseng, T.-Y.; Chen, C.H.; Chen, H.P.; Wu, T.-K. Proportions of Proinflammatory Monocytes Are Important Predictors of Mortality Risk in Hemodialysis Patients. Mediators Inflamm. 2017, 2017, 1070959. [Google Scholar] [CrossRef] [PubMed]
- Rogacev, K.S.; Seiler, S.; Zawada, A.M.; Reichart, B.; Herath, E.; Roth, D.; Ulrich, C.; Fliser, D.; Heine, G.H. CD14++CD16+ monocytes and cardiovascular outcome in patients with chronic kidney disease. Eur. Heart J. 2011, 32, 84–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulrich, C.; Seibert, E.; Heine, G.H.; Fliser, D.; Girndt, M. Monocyte angiotensin converting enzyme expression may be associated with atherosclerosis rather than arteriosclerosis in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2011, 6, 505–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogacev, K.S.; Ziegelin, M.; Ulrich, C.; Seiler, S.; Girndt, M.; Fliser, D.; Heine, G.H. Haemodialysis-induced transient CD16+ monocytopenia and cardiovascular outcome. Nephrol. Dial. Transpl. 2009, 24, 3480–3486. [Google Scholar] [CrossRef] [Green Version]
- Lorenzen, J.M.; David, S.; Richter, A.; de Groot, K.; Kielstein, J.T.; Haller, H.; Thum, T.; Fliser, D. TLR-4+ peripheral blood monocytes and cardiovascular events in patients with chronic kidney disease—A prospective follow-up study. Nephrol. Dial. Transpl. 2011, 26, 1421–1424. [Google Scholar] [CrossRef] [Green Version]
- Ando, M.; Lundkvist, I.; Bergström, J.; Lindholm, B. Enhanced scavenger receptor expression in monocyte-macrophages in dialysis patients. Kidney Int. 1996, 49, 773–780. [Google Scholar] [CrossRef] [Green Version]
- Konishi, Y.; Okamura, M.; Konishi, M.; Negoro, N.; Yoshida, T.; Inoue, T.; Kanayama, Y.; Yoshikawa, J. Enhanced gene expression of scavenger receptor in peripheral blood monocytes from patients on cuprophane haemodialysis. Nephrol. Dial. Transpl. 1997, 12, 1167–1172. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, M.S.B.; Fabris, B.A.; Brinholi, F.F.; Bortolasci, C.C.; Watanabe, M.A.E.; Oliveira, K.B.; Delfino, V.D.A.; Lavado, E.L.; Barbosa, D.S. Increased oxidative stress in foam cells obtained from hemodialysis patients. Hemodial. Int. 2013, 17, 266–274. [Google Scholar] [CrossRef]
- Kliger, E.; Kristal, B.; Shapiro, G.; Chezar, J.; Sela, S. Primed polymorphonuclear leukocytes from hemodialysis patients enhance monocyte transendothelial migration. Am. J. Physiol. Heart Circ. Physiol. 2017, 313, H974–H987. [Google Scholar] [CrossRef]
- Ewert, L.; Fischer, A.; Brandt, S.; Scurt, F.G.; Philipsen, L.; Müller, A.J.; Girndt, M.; Zenclussen, A.C.; Lindquist, J.A.; Gorny, X.; et al. Cold shock Y-box binding protein-1 acetylation status in monocytes is associated with systemic inflammation and vascular damage. Atherosclerosis 2018, 278, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Ashman, N.; Macey, M.G.; Fan, S.L.; Azam, U.; Yaqoob, M.M. Increased platelet-monocyte aggregates and cardiovascular disease in end-stage renal failure patients. Nephrol. Dial. Transpl. 2003, 18, 2088–2096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stach, K.; Karb, S.; Akin, I.; Borggrefe, M.; Krämer, B.; Kälsch, T.; Kälsch, A.-I. Elevation of Platelet and Monocyte Activity Markers of Atherosclerosis in Haemodialysis Patients Compared to Peritoneal Dialysis Patients. Mediators Inflamm. 2017, 2017, 8506072. [Google Scholar] [CrossRef] [PubMed]
- Becs, G.; Hudák, R.; Fejes, Z.; Debreceni, I.B.; Bhattoa, H.P.; Balla, J.; Kappelmayer, J. Haemodiafiltration elicits less platelet activation compared to haemodialysis. BMC Nephrol. 2016, 17, 147. [Google Scholar] [CrossRef] [Green Version]
- Benck, U.; Stach, K.; Jung, S.; Krämer, B.K.; Kälsch, T.; Kälsch, A.-I. Short- and long-term effects of hemodialysis on platelet and monocyte activity markers of atherosclerosis in patients with end-stage renal disease. Cardiol. J. 2018, 25, 595–600. [Google Scholar] [CrossRef]
- Libby, P.; Everett, B.M. Novel Antiatherosclerotic Therapies. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 538–545. [Google Scholar] [CrossRef] [Green Version]
Surface Marker | Function | Comparison to Healthy Control | Quote | Year of Publication |
---|---|---|---|---|
CD11b | Integrin, adhesion molecule | ↓ → | [9] [10,11] | 2000 2000, 2010 |
CD14 | Endotoxin receptor | ↑ ↓ | [12] [13] # [10] | 2002 2015 2010 |
CD16 | Immunoglobulin Fc receptor γIII | → | [13] | 2015 |
CD31 | PECAM-1 endothelial adhesion | → | [14] | 2001 |
CD36 | “scavenger” receptor of oxidized lipoproteins | ↑ | [15,16] | 2005 |
CD40 | Receptor for co-stimulating signals of B-cells, promotes cytokine production in macrophages | ↑ | [17] | 2016 |
CD68 | Gp110, function? | ↑ | [16] | 2005 |
CD86 | B7-2, co-stimulation of T-cells | ↓ | [18] | 2001 |
CD95 | Fas, apoptosis induction | ↑ | [16] | 2005 |
HLA-DR | Class II tissue antigen, antigen presentation | → ↑ | [18] [10,19] | 2001 2008, 2010 |
MAC-1 | CD11b/CD18 dimer, adhesion, complement receptor | ↑ | [14] | 2001 |
TLR-2 | Toll-like receptor, recognition of bacteria etc. | → ↑ | [20] [21,22] | 2007 2010, 2011 |
TLR-4 | Toll-like receptor, LPS-receptor | ↓ → ↑ | [20] [22] [21] | 2007 2011 2010 |
TNF-R2 | Receptor for TNF-α | ↑ | [4,23] | 2001, 2005 |
CX3CR1 | Fractalkine receptor, adhesion molecule | ↑ | [13] # | 2015 |
CCR2 | C-C chemokine receptor 2 | ↑ | [24] § | 2009 |
ACE | Angiotensin converting enzyme | ↑ | [25] | 2006 |
AChR | Receptor for Acetylcholine | ↑ | [26] | 2016 |
Cytokine | Function | Unstimulated | Stimulated by LPS | Quote |
---|---|---|---|---|
IL-1ß | Proinflammatory | ↑ | ↓ | [27] |
IL-6 | Proinflammatory | → * ↑ | → * → | [28] [27,29,30] |
TNF-α | Proinflammatory | ↑ | → → * ↑ | [27] [31] [30] |
TGF-ß | Anti-proliferative, profibrotic | ↑ | [29] | |
IL-10 | Anti-inflammatory | → * | → | [28] |
PTX-3 | Pattern recognition, antibacterial defense | ↑ | → | [32] |
System | Function | Comparison to Healthy Controls | Quote |
---|---|---|---|
SOD1 | Superoxide dismutase 1, antioxidative | Protein content low, transcription rate high | [39] |
SOD2 | Superoxide dismutase 2, antioxidative | Reduced protein content CKD3/4, normal CKD5D; enhanced transcriptional activation all CKD | [40] |
Rhodanese | Regulation of mitochondrial reactive oxygen species production | Protein content and transcription low | [41] |
Hsp72 | Heat shock protein 72, protein folding and degradation, cellular damage protection | Protein content and transcription low | [42] |
SOCS3 | Suppressor of cytokine signaling, modulates intracellular signaling after cytokine-receptor interaction | Enhanced transcription | [43] |
Lp-PLA2 | Lipoprotein-associated Phospholipase A2, platelet activation, pro-atherogenic | Enhanced transcription | [44] |
ACE ACE2 AT1-R AT2-R | Angiotensin converting enzyme Angiotensin converting enzyme type 2 Angiotensin II receptor Type 1 Angiotensin II receptor Type 2 | Enhanced transcription Reduced transcription Enhanced transcription Normal transcription | [45] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Girndt, M.; Trojanowicz, B.; Ulrich, C. Monocytes in Uremia. Toxins 2020, 12, 340. https://doi.org/10.3390/toxins12050340
Girndt M, Trojanowicz B, Ulrich C. Monocytes in Uremia. Toxins. 2020; 12(5):340. https://doi.org/10.3390/toxins12050340
Chicago/Turabian StyleGirndt, Matthias, Bogusz Trojanowicz, and Christof Ulrich. 2020. "Monocytes in Uremia" Toxins 12, no. 5: 340. https://doi.org/10.3390/toxins12050340
APA StyleGirndt, M., Trojanowicz, B., & Ulrich, C. (2020). Monocytes in Uremia. Toxins, 12(5), 340. https://doi.org/10.3390/toxins12050340