Therapeutic Effects of Apamin as a Bee Venom Component for Non-Neoplastic Disease
Abstract
:1. Introduction
2. Pharmacological Actions of Apamin
2.1. Ca2+ Channels Blocker
2.2. Atherosclerosis
2.3. Ventricular Fibrillation
2.4. Liver Fibrosis
2.5. Pancreatitis
2.6. CNS Disease
2.6.1. Alzheimer’s Disease
2.6.2. Parkinson’s Disease
2.7. Neurofibromatosis
2.8. Atopic Dermatitis
3. Conclusions
Funding
Conflicts of Interest
References
- Son, D.J.; Lee, J.W.; Lee, Y.H.; Song, H.S.; Lee, C.K.; Hong, J.T. Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol. Ther. 2007, 115, 246–270. [Google Scholar] [CrossRef] [PubMed]
- Orsolic, N. Bee venom in cancer therapy. Cancer Metastasis Rev. 2012, 31, 173–194. [Google Scholar] [CrossRef] [PubMed]
- Moreno, M.; Giralt, E. Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: Melittin, apamin and mastoparan. Toxins 2015, 7, 1126–1150. [Google Scholar] [CrossRef] [Green Version]
- Munstedt, K.; Hackethal, A.; Schmidt, K. Bee venom therapy, bee venom acupuncture or apipuncture—What is the evidence behind the various health claims? Am. Bee J. 2005, 145, 665–668. [Google Scholar]
- Aufschnaiter, A.; Kohler, V.; Khalifa, S.; Abd El-Wahed, A.; Du, M.; El-Seedi, H.; Buttner, S. Apitoxin and its components against cancer, neurodegeneration and rheumatoid arthritis: Limitations and possibilities. Toxins 2020, 12, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, W.R.; Kim, S.J.; Park, J.H.; Kim, K.H.; Chang, Y.C.; Park, Y.Y.; Lee, K.G.; Han, S.M.; Yeo, J.H.; Pak, S.C.; et al. Bee venom reduces atherosclerotic lesion formation via anti-inflammatory mechanism. Am. J. Chin. Med. 2010, 38, 1077–1092. [Google Scholar] [CrossRef]
- An, H.J.; Kim, J.Y.; Kim, W.H.; Gwon, M.G.; Gu, H.M.; Jeon, M.J.; Han, S.M.; Pak, S.C.; Lee, C.K.; Park, I.S.; et al. Therapeutic effects of bee venom and its major component, melittin, on atopic dermatitis in vivo and in vitro. Br. J. Pharmacol. 2018, 175, 4310–4324. [Google Scholar] [CrossRef] [Green Version]
- Gu, H.; An, H.J.; Kim, J.Y.; Kim, W.H.; Gwon, M.G.; Kim, H.J.; Han, S.M.; Park, I.; Park, S.C.; Leem, J.; et al. Bee venom attenuates porphyromonas gingivalis and rankl-induced bone resorption with osteoclastogenic differentiation. Food Chem. Toxicol. 2019, 129, 344–353. [Google Scholar] [CrossRef]
- Mourre, C.; Fournier, C.; Soumireu-Mourat, B. Apamin, a blocker of the calcium-activated potassium channel, induces neurodegeneration of purkinje cells exclusively. Brain Res. 1997, 778, 405–408. [Google Scholar] [CrossRef]
- Lamy, C.; Goodchild, S.J.; Weatherall, K.L.; Jane, D.E.; Liegeois, J.F.; Seutin, V.; Marrion, N.V. Allosteric block of kca2 channels by apamin. J. Biol. Chem. 2010, 285, 27067–27077. [Google Scholar] [CrossRef] [Green Version]
- Feranchak, A.P.; Doctor, R.B.; Troetsch, M.; Brookman, K.; Johnson, S.M.; Fitz, J.G. Calcium-dependent regulation of secretion in biliary epithelial cells: The role of apamin-sensitive sk channels. Gastroenterology 2004, 127, 903–913. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Fischer, D.; Noelker, C.; Vulinovic, F.; Grunewald, A.; Chevarin, C.; Klein, C.; Oertel, W.H.; Hirsch, E.C.; Michel, P.P.; Hartmann, A.; et al. Bee venom and its component apamin as neuroprotective agents in a parkinson disease mouse model. PLoS ONE 2013, 8, e61700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.J.; Park, J.H.; Kim, K.H.; Lee, W.R.; Pak, S.C.; Han, S.M.; Park, K.K. The protective effect of apamin on lps/fat-induced atherosclerotic mice. Evid. Based Complementary Altern. Med. Ecam 2012, 2012, 305454. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.R.; Kim, K.H.; An, H.J.; Kim, J.Y.; Lee, S.J.; Han, S.M.; Pak, S.C.; Park, K.K. Apamin inhibits hepatic fibrosis through suppression of transforming growth factor beta1-induced hepatocyte epithelial-mesenchymal transition. Biochem. Biophys. Res. Commun. 2014, 450, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.H.; An, H.J.; Kim, J.Y.; Gwon, M.G.; Gu, H.; Lee, S.J.; Park, J.Y.; Park, K.D.; Han, S.M.; Kim, M.K.; et al. Apamin inhibits tnf-alpha- and ifn-gamma-induced inflammatory cytokines and chemokines via suppressions of nf-kappab signaling pathway and stat in human keratinocytes. Pharmacol. Rep. PR 2017, 69, 1030–1035. [Google Scholar] [CrossRef]
- Proulx, E.; Power, S.K.; Oliver, D.K.; Sargin, D.; McLaurin, J.; Lambe, E.K. Apamin improves prefrontal nicotinic impairment in mouse model of alzheimer’s disease. Cereb. Cortex 2019. [Google Scholar] [CrossRef]
- Kim, S.J.; Park, J.H.; Kim, K.H.; Lee, W.R.; An, H.J.; Min, B.K.; Han, S.M.; Kim, K.S.; Park, K.K. Apamin inhibits thp-1-derived macrophage apoptosis via mitochondria-related apoptotic pathway. Exp. Mol. Pathol. 2012, 93, 129–134. [Google Scholar] [CrossRef]
- Yin, D.; Hsieh, Y.C.; Tsai, W.C.; Wu, A.Z.; Jiang, Z.; Chan, Y.H.; Xu, D.; Yang, N.; Shen, C.; Chen, Z.; et al. Role of apamin-sensitive calcium-activated small-conductance potassium currents on the mechanisms of ventricular fibrillation in pacing-induced failing rabbit hearts. Circ. Arrhythmia Electrophysiol. 2017, 10, e004434. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.Y.; An, H.J.; Kim, W.H.; Park, Y.Y.; Park, K.D.; Park, K.K. Apamin suppresses biliary fibrosis and activation of hepatic stellate cells. Int. J. Mol. Med. 2017, 39, 1188–1194. [Google Scholar] [CrossRef]
- Bae, G.S.; Heo, K.H.; Park, K.C.; Choi, S.B.; Jo, I.J.; Seo, S.H.; Kim, D.G.; Shin, J.Y.; Kang, D.G.; Lee, H.S.; et al. Apamin attenuated cerulein-induced acute pancreatitis by inhibition of jnk pathway in mice. Dig. Dis. Sci. 2013, 58, 2908–2917. [Google Scholar] [CrossRef]
- Kallarackal, A.J.; Simard, J.M.; Bailey, A.M. The effect of apamin, a small conductance calcium activated potassium (sk) channel blocker, on a mouse model of neurofibromatosis 1. Behav. Brain Res. 2013, 237, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Lam, J.; Coleman, N.; Garing, A.L.; Wulff, H. The therapeutic potential of small-conductance kca2 channels in neurodegenerative and psychiatric diseases. Expert Opin. Ther. Targets 2013, 17, 1203–1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohler, M.; Hirschberg, B.; Bond, C.T.; Kinzie, J.M.; Marrion, N.V.; Maylie, J.; Adelman, J.P. Small-conductance, calcium-activated potassium channels from mammalian brain. Science 1996, 273, 1709–1714. [Google Scholar] [CrossRef] [PubMed]
- Stocker, M. Ca(2+)-activated k+ channels: Molecular determinants and function of the sk family. Nat. Rev. Neurosci. 2004, 5, 758–770. [Google Scholar] [CrossRef]
- Berkefeld, H.; Fakler, B.; Schulte, U. Ca2+-activated k+ channels: From protein complexes to function. Physiol. Rev. 2010, 90, 1437–1459. [Google Scholar] [CrossRef] [Green Version]
- Stocker, M.; Pedarzani, P. Differential distribution of three Ca(2+)-activated k(+) channel subunits, sk1, sk2, and sk3, in the adult rat central nervous system. Mol. Cell. Neurosci. 2000, 15, 476–493. [Google Scholar] [CrossRef]
- Sailer, C.A.; Hu, H.; Kaufmann, W.A.; Trieb, M.; Schwarzer, C.; Storm, J.F.; Knaus, H.G. Regional differences in distribution and functional expression of small-conductance ca2+-activated k+ channels in rat brain. J. Neurosci. 2002, 22, 9698–9707. [Google Scholar] [CrossRef] [Green Version]
- Sailer, C.A.; Kaufmann, W.A.; Marksteiner, J.; Knaus, H.G. Comparative immunohistochemical distribution of three small-conductance ca2+-activated potassium channel subunits, sk1, sk2, and sk3 in mouse brain. Mol. Cell. Neurosci. 2004, 26, 458–469. [Google Scholar] [CrossRef]
- Banks, B.E.; Brown, C.; Burgess, G.M.; Burnstock, G.; Claret, M.; Cocks, T.M.; Jenkinson, D.H. Apamin blocks certain neurotransmitter-induced increases in potassium permeability. Nature 1979, 282, 415–417. [Google Scholar] [CrossRef]
- Ngo-Anh, T.J.; Bloodgood, B.L.; Lin, M.; Sabatini, B.L.; Maylie, J.; Adelman, J.P. Sk channels and nmda receptors form a ca2+-mediated feedback loop in dendritic spines. Nat. Neurosci. 2005, 8, 642–649. [Google Scholar] [CrossRef]
- Silva, J.; Monge-Fuentes, V.; Gomes, F.; Lopes, K.; dos Anjos, L.; Campos, G.; Arenas, C.; Biolchi, A.; Goncalves, J.; Galante, P.; et al. Pharmacological alternatives for the treatment of neurodegenerative disorders: Wasp and bee venoms and their components as new neuroactive tools. Toxins 2015, 7, 3179–3209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lusis, A.J. Atherosclerosis. Nature 2000, 407, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Ross, R. The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature 1993, 362, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Greaves, D.R.; Gordon, S. Thematic review series: The immune system and atherogenesis. Recent insights into the biology of macrophage scavenger receptors. J. Lipid Res. 2005, 46, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Gerbod-Giannone, M.C.; Seitz, H.; Cui, D.; Thorp, E.; Tall, A.R.; Matsushima, G.K.; Tabas, I. Cholesterol-induced apoptotic macrophages elicit an inflammatory response in phagocytes, which is partially attenuated by the mer receptor. J. Biol. Chem. 2006, 281, 6707–6717. [Google Scholar] [CrossRef] [Green Version]
- Ross, R. Atherosclerosis—An inflammatory disease. N. Engl. J. Med. 1999, 340, 115–126. [Google Scholar] [CrossRef]
- Yao, J.; Mackman, N.; Edgington, T.S.; Fan, S.T. Lipopolysaccharide induction of the tumor necrosis factor-alpha promoter in human monocytic cells. Regulation by egr-1, c-jun, and nf-kappab transcription factors. J. Biol. Chem. 1997, 272, 17795–17801. [Google Scholar] [CrossRef] [Green Version]
- Diaz, B.; Lopez-Berestein, G. A distinct element involved in lipopolysaccharide activation of the tumor necrosis factor-alpha promoter in monocytes. J. Interferon Cytokine Res. 2000, 20, 741–748. [Google Scholar] [CrossRef]
- Chen, F.; Castranova, V.; Shi, X.; Demers, L.M. New insights into the role of nuclear factor-kappab, a ubiquitous transcription factor in the initiation of diseases. Clin. Chem. 1999, 45, 7–17. [Google Scholar] [CrossRef] [Green Version]
- de Winther, M.P.; Kanters, E.; Kraal, G.; Hofker, M.H. Nuclear factor kappab signaling in atherogenesis. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 904–914. [Google Scholar] [CrossRef] [Green Version]
- Mullen, A.; Loscher, C.E.; Roche, H.M. Anti-inflammatory effects of epa and dha are dependent upon time and dose-response elements associated with lps stimulation in thp-1-derived macrophages. J. Nutr. Biochem. 2010, 21, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Mancini, G.B. Antiatherosclerotic effects of calcium channel blockers. Prog. Cardiovasc. Dis. 2002, 45, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Parmley, W.W. Calcium channel blockers and atherogenesis. Am. J. Med. 1987, 82, 3–8. [Google Scholar] [CrossRef]
- Gotto, A.M., Jr. Calcium channel blockers and the prevention of atherosclerosis. Am. J. Hypertens. 1990, 3, 342S–346S. [Google Scholar] [CrossRef] [PubMed]
- Ovcharov, R.; Shkenderov, S.; Mihailova, S. Anti-inflammatory effects of apamin. Toxicon 1976, 14, 441–447. [Google Scholar] [CrossRef]
- Tabas, I. Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: The importance of lesion stage and phagocytic efficiency. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 2255–2264. [Google Scholar] [CrossRef]
- Dickhout, J.G.; Hossain, G.S.; Pozza, L.M.; Zhou, J.; Lhotak, S.; Austin, R.C. Peroxynitrite causes endoplasmic reticulum stress and apoptosis in human vascular endothelium: Implications in atherogenesis. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 2623–2629. [Google Scholar] [CrossRef] [Green Version]
- Canault, M.; Peiretti, F.; Kopp, F.; Bonardo, B.; Bonzi, M.F.; Coudeyre, J.C.; Alessi, M.C.; Juhan-Vague, I.; Nalbone, G. The tnf alpha converting enzyme (tace/adam17) is expressed in the atherosclerotic lesions of apolipoprotein e-deficient mice: Possible contribution to elevated plasma levels of soluble tnf alpha receptors. Atherosclerosis 2006, 187, 82–91. [Google Scholar] [CrossRef]
- Zadelaar, A.S.; von der Thusen, J.H.; Boesten, L.S.; Hoeben, R.C.; Kockx, M.M.; Versnel, M.A.; van Berkel, T.J.; Havekes, L.M.; Biessen, E.A.; van Vlijmen, B.J.; et al. Increased vulnerability of pre-existing atherosclerosis in apoe-deficient mice following adenovirus-mediated fas ligand gene transfer. Atherosclerosis 2005, 183, 244–250. [Google Scholar] [CrossRef] [Green Version]
- Lemasters, J.J. Dying a thousand deaths: Redundant pathways from different organelles to apoptosis and necrosis. Gastroenterology 2005, 129, 351–360. [Google Scholar] [CrossRef]
- Hegyi, L.; Hardwick, S.J.; Mitchinson, M.J.; Skepper, J.N. The presence of apoptotic cells in human atherosclerotic lesions. Am. J. Pathol. 1997, 150, 371–373. [Google Scholar]
- Janse, M.J. Electrophysiological changes in heart failure and their relationship to arrhythmogenesis. Cardiovasc. Res. 2004, 61, 208–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Everett, T.H., 4th; Wilson, E.E.; Foreman, S.; Olgin, J.E. Mechanisms of ventricular fibrillation in canine models of congestive heart failure and ischemia assessed by in vivo noncontact mapping. Circulation 2005, 112, 1532–1541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holzem, K.M.; Efimov, I.R. Arrhythmogenic remodelling of activation and repolarization in the failing human heart. Eur. Eur. PacingArrhythm. Card. Electrophysiol. 2012, 14, v50–v57. [Google Scholar] [CrossRef] [PubMed]
- Everett, T.H., 4th; Hulley, G.S.; Lee, K.W.; Chang, R.; Wilson, E.E.; Olgin, J.E. The effects of remodeling with heart failure on mode of initiation of ventricular fibrillation and its spatiotemporal organization. J. Interv. Card. Electrophysiol. 2015, 43, 205–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Rogers, J.M.; Killingsworth, C.R.; Walcott, G.P.; KenKnight, B.H.; Smith, W.M.; Ideker, R.E. Improvement of defibrillation efficacy and quantification of activation patterns during ventricular fibrillation in a canine heart failure model. Circulation 2001, 103, 1473–1478. [Google Scholar] [CrossRef] [Green Version]
- Chang, P.C.; Turker, I.; Lopshire, J.C.; Masroor, S.; Nguyen, B.L.; Tao, W.; Rubart, M.; Chen, P.S.; Chen, Z.; Ai, T. Heterogeneous upregulation of apamin-sensitive potassium currents in failing human ventricles. J. Am. Heart Assoc. 2013, 2, e004713. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.C.; Corr, C.; Shen, C.; Shelton, R.; Yadava, M.; Rhea, I.B.; Straka, S.; Fishbein, M.C.; Chen, Z.; Lin, S.F.; et al. Small conductance calcium-activated potassium current is important in transmural repolarization of failing human ventricles. Circ. Arrhythmia Electrophysiol. 2015, 8, 667–676. [Google Scholar] [CrossRef] [Green Version]
- Chua, S.K.; Chang, P.C.; Maruyama, M.; Turker, I.; Shinohara, T.; Shen, M.J.; Chen, Z.; Shen, C.; Rubart-von der Lohe, M.; Lopshire, J.C.; et al. Small-conductance calcium-activated potassium channel and recurrent ventricular fibrillation in failing rabbit ventricles. Circ. Res. 2011, 108, 971–979. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, Y.C.; Chang, P.C.; Hsueh, C.H.; Lee, Y.S.; Shen, C.; Weiss, J.N.; Chen, Z.; Ai, T.; Lin, S.F.; Chen, P.S. Apamin-sensitive potassium current modulates action potential duration restitution and arrhythmogenesis of failing rabbit ventricles. Circ. Arrhythmia Electrophysiol. 2013, 6, 410–418. [Google Scholar] [CrossRef] [Green Version]
- Chan, Y.H.; Tsai, W.C.; Ko, J.S.; Yin, D.; Chang, P.C.; Rubart, M.; Weiss, J.N.; Everett, T.H., 4th; Lin, S.F.; Chen, P.S.; et al. Small-conductance calcium-activated potassium current is activated during hypokalemia and masks short-term cardiac memory induced by ventricular pacing. Circulation 2015, 132, 1377–1386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonilla, I.M.; Long, V.P., 3rd; Vargas-Pinto, P.; Wright, P.; Belevych, A.; Lou, Q.; Mowrey, K.; Yoo, J.; Binkley, P.F.; Fedorov, V.V.; et al. Calcium-activated potassium current modulates ventricular repolarization in chronic heart failure. PLoS ONE 2014, 9, e108824. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.; Wang, T.; Zhuo, X.; Song, B.; Zhang, J.; Wei, F.; Bai, H.; Wang, X.; Yang, D.; Gao, L.; et al. Bisoprolol reversed small conductance calcium-activated potassium channel (sk) remodeling in a volume-overload rat model. Mol. Cell. Biochem. 2013, 384, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Lee, U.E.; Friedman, S.L. Mechanisms of hepatic fibrogenesis. Best Pract. Res. Clin. Gastroenterol. 2011, 25, 195–206. [Google Scholar] [CrossRef]
- Gonzalez-Sanchez, E.; Firrincieli, D.; Housset, C.; Chignard, N. Nuclear receptors in acute and chronic cholestasis. Dig Dis 2015, 33, 357–366. [Google Scholar] [CrossRef]
- Zollner, G.; Marschall, H.U.; Wagner, M.; Trauner, M. Role of nuclear receptors in the adaptive response to bile acids and cholestasis: Pathogenetic and therapeutic considerations. Mol. Pharm. 2006, 3, 231–251. [Google Scholar] [CrossRef]
- Glaser, S.S.; Gaudio, E.; Miller, T.; Alvaro, D.; Alpini, G. Cholangiocyte proliferation and liver fibrosis. Expert Rev. Mol. Med. 2009, 11, e7. [Google Scholar] [CrossRef]
- Lindor, K.D.; Gershwin, M.E.; Poupon, R.; Kaplan, M.; Bergasa, N.V.; Heathcote, E.J. Primary biliary cirrhosis. Hepatology 2009, 50, 291–308. [Google Scholar] [CrossRef] [PubMed]
- Friedman, S.L. Mechanisms of hepatic fibrogenesis. Gastroenterology 2008, 134, 1655–1669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiler-Normann, C.; Herkel, J.; Lohse, A.W. Mouse models of liver fibrosis. Z. Fur Gastroenterol. 2007, 45, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Popov, Y.; Schuppan, D. Targeting liver fibrosis: Strategies for development and validation of antifibrotic therapies. Hepatology 2009, 50, 1294–1306. [Google Scholar] [CrossRef] [PubMed]
- Copple, B.L. Hypoxia stimulates hepatocyte epithelial to mesenchymal transition by hypoxia-inducible factor and transforming growth factor-beta-dependent mechanisms. Liver Int. 2010, 30, 669–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.Y.; Kim, K.H.; Lee, W.R.; An, H.J.; Lee, S.J.; Han, S.M.; Lee, K.G.; Park, Y.Y.; Kim, K.S.; Lee, Y.S.; et al. Apamin inhibits pdgf-bb-induced vascular smooth muscle cell proliferation and migration through suppressions of activated akt and erk signaling pathway. Vasc. Pharmacol. 2015, 70, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Kum, Y.S.; Lee, T.I.; Kim, S.J.; Lee, W.R.; Kim, B.I.; Kim, H.S.; Kim, K.H.; Park, K.K. Melittin attenuates liver injury in thioacetamide-treated mice through modulating inflammation and fibrogenesis. Exp. Biol. Med. Maywood 2011, 236, 1306–1313. [Google Scholar] [CrossRef] [PubMed]
- Freise, C.; Heldwein, S.; Erben, U.; Hoyer, J.; Kohler, R.; Johrens, K.; Patsenker, E.; Ruehl, M.; Seehofer, D.; Stickel, F.; et al. K(+)-channel inhibition reduces portal perfusion pressure in fibrotic rats and fibrosis associated characteristics of hepatic stellate cells. Liver Int. 2015, 35, 1244–1252. [Google Scholar] [CrossRef]
- Møller, L.S.; Fialla, A.D.; Schierwagen, R.; Biagini, M.; Liedtke, C.; Laleman, W.; Klein, S.; Reul, W.; Hansen, L.K.; Rabjerg, M. The calcium-activated potassium channel kca3. 1 is an important modulator of hepatic injury. Sci. Rep. 2016, 6, 28770. [Google Scholar] [CrossRef] [Green Version]
- Roach, K.M.; Bradding, P. Ca(2+) signalling in fibroblasts and the therapeutic potential of kca 3.1 channel blockers in fibrotic diseases. Br. J. Pharmacol. 2020, 177, 1003–1024. [Google Scholar] [CrossRef] [Green Version]
- Kusske, A.M.; Rongione, A.J.; Reber, H.A. Cytokines and acute pancreatitis. Gastroenterology 1996, 110, 639–642. [Google Scholar] [CrossRef]
- Bhatia, M.; Wong, F.L.; Cao, Y.; Lau, H.Y.; Huang, J.; Puneet, P.; Chevali, L. Pathophysiology of acute pancreatitis. Pancreatology 2005, 5, 132–144. [Google Scholar] [CrossRef]
- Norman, J.; Franz, M.; Messina, J.; Riker, A.; Fabri, P.J.; Rosemurgy, A.S.; Gower, W.R., Jr. Interleukin-1 receptor antagonist decreases severity of experimental acute pancreatitis. Surgery 1995, 117, 648–655. [Google Scholar] [CrossRef]
- Buchler, M.W.; Gloor, B.; Muller, C.A.; Friess, H.; Seiler, C.A.; Uhl, W. Acute necrotizing pancreatitis: Treatment strategy according to the status of infection. Ann. Surg. 2000, 232, 619–626. [Google Scholar] [CrossRef] [PubMed]
- van der Staay, F.J.; Fanelli, R.J.; Blokland, A.; Schmidt, B.H. Behavioral effects of apamin, a selective inhibitor of the sk(ca)-channel, in mice and rats. Neurosci. Biobehav. Rev. 1999, 23, 1087–1110. [Google Scholar] [CrossRef]
- Lazdunski, M.; Romey, G.; Schmid-Antomarchi, H.; Renaud, J.; Mourre, C.; Hugues, M.; Fosset, M. The apamin-sensitive Ca2+-dependent k+ channel: Molecular properties, differentiation, involvement in muscle disease, and endogeneous ligands in mammalian brain. In Calcium in Drug Actions; Springer: Berlin, Germany, 1988; pp. 135–145. [Google Scholar]
- Erickson, K.R.; Ronnekleiv, O.K.; Kelly, M.J. Role of a t-type calcium current in supporting a depolarizing potential, damped oscillations, and phasic firing in vasopressinergic guinea pig supraoptic neurons. Neuroendocrinology 1993, 57, 789–800. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, K.; Bourque, C.W. Activity dependence and functional role of the apamin-sensitive k+ current in rat supraoptic neurones in vitro. J. Physiol. 1996, 494, 389–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habermann, E. Apamin. Pharmacol. Ther. 1984, 25, 255–270. [Google Scholar] [CrossRef]
- Lazdunski, M. Apamin, a neurotoxin specific for one class of ca2+-dependent k+ channels. Cell Calcium 1983, 4, 421–428. [Google Scholar] [CrossRef]
- Lazdunski, M.; Fosset, M.; Hughes, M.; Mourre, C.; Romey, G.; Schmid-Antomarchi, H. The apamin-sensitive ca2+-dependent k+ channel molecular properties, differentiation and endogenous ligands in mammalian brain. Biochem. Soc. Symp. 1985, 50, 31–42. [Google Scholar]
- Begenisich, T.; Nakamoto, T.; Ovitt, C.E.; Nehrke, K.; Brugnara, C.; Alper, S.L.; Melvin, J.E. Physiological roles of the intermediate conductance, ca2+-activated potassium channel kcnn4. J. Biol. Chem. 2004, 279, 47681–47687. [Google Scholar] [CrossRef] [Green Version]
- Han, S.; Lee, K.; Yeo, J.; Kweon, H.; Woo, S.; Lee, M.; Baek, H.; Kim, S.; Park, K. Effect of honey bee venom on microglial cells nitric oxide and tumor necrosis factor-alpha production stimulated by lps. J. Ethnopharmacol. 2007, 111, 176–181. [Google Scholar] [CrossRef]
- Schlichter, L.C.; Kaushal, V.; Moxon-Emre, I.; Sivagnanam, V.; Vincent, C. The ca 2+ activated sk3 channel is expressed in microglia in the rat striatum and contributes to microglia-mediated neurotoxicity in vitro. J. Neuroinflammation 2010, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.I.; Yang, E.J.; Lee, M.S.; Kim, Y.S.; Huh, Y.; Cho, I.H.; Kang, S.; Koh, H.K. Bee venom reduces neuroinflammation in the mptp-induced model of parkinson’s disease. Int. J. Neurosci. 2011, 121, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Faber, E.S.; Delaney, A.J.; Sah, P. Sk channels regulate excitatory synaptic transmission and plasticity in the lateral amygdala. Nat. Neurosci. 2005, 8, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Perry, R.J.; Hodges, J.R. Attention and executive deficits in alzheimer’s disease. A critical review. Brain 1999, 122, 383–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzo, M.; Anderson, S.W.; Dawson, J.; Myers, R.; Ball, K. Visual attention impairments in alzheimer’s disease. Neurology 2000, 54, 1954–1959. [Google Scholar] [CrossRef]
- Baddeley, A.D.; Baddeley, H.; Bucks, R.; Wilcock, G. Attentional control in alzheimer’s disease. Brain 2001, 124, 1492–1508. [Google Scholar] [CrossRef] [Green Version]
- Bracco, L.; Bessi, V.; Padiglioni, S.; Marini, S.; Pepeu, G. Do cholinesterase inhibitors act primarily on attention deficit? A naturalistic study in alzheimer’s disease patients. J. Alzheimer’s Dis. JAD 2014, 40, 737–742. [Google Scholar] [CrossRef]
- Huntley, J.D.; Hampshire, A.; Bor, D.; Owen, A.M.; Howard, R.J. The importance of sustained attention in early alzheimer’s disease. Int. J. Geriatr. Psychiatry 2017, 32, 860–867. [Google Scholar] [CrossRef]
- Romberg, C.; Mattson, M.P.; Mughal, M.R.; Bussey, T.J.; Saksida, L.M. Impaired attention in the 3xtgad mouse model of alzheimer’s disease: Rescue by donepezil (aricept). J. Neurosci. 2011, 31, 3500–3507. [Google Scholar] [CrossRef] [Green Version]
- Romberg, C.; Horner, A.E.; Bussey, T.J.; Saksida, L.M. A touch screen-automated cognitive test battery reveals impaired attention, memory abnormalities, and increased response inhibition in the tgcrnd8 mouse model of alzheimer’s disease. Neurobiol. Aging 2013, 34, 731–744. [Google Scholar] [CrossRef] [Green Version]
- Romberg, C.; Bussey, T.J.; Saksida, L.M. Paying more attention to attention: Towards more comprehensive cognitive translation using mouse models of alzheimer’s disease. Brain Res. Bull. 2013, 92, 49–55. [Google Scholar] [CrossRef]
- Parikh, V.; Kozak, R.; Martinez, V.; Sarter, M. Prefrontal acetylcholine release controls cue detection on multiple timescales. Neuron 2007, 56, 141–154. [Google Scholar] [CrossRef] [Green Version]
- Bailey, C.D.; De Biasi, M.; Fletcher, P.J.; Lambe, E.K. The nicotinic acetylcholine receptor alpha5 subunit plays a key role in attention circuitry and accuracy. J. Neurosci. 2010, 30, 9241–9252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guillem, K.; Bloem, B.; Poorthuis, R.B.; Loos, M.; Smit, A.B.; Maskos, U.; Spijker, S.; Mansvelder, H.D. Nicotinic acetylcholine receptor beta2 subunits in the medial prefrontal cortex control attention. Science 2011, 333, 888–891. [Google Scholar] [CrossRef] [PubMed]
- Tapia, L.; Kuryatov, A.; Lindstrom, J. Ca2+ permeability of the (alpha4)3(beta2)2 stoichiometry greatly exceeds that of (alpha4)2(beta2)3 human acetylcholine receptors. Mol. Pharmacol. 2007, 71, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Kuryatov, A.; Onksen, J.; Lindstrom, J. Roles of accessory subunits in alpha4beta2(*) nicotinic receptors. Mol. Pharmacol. 2008, 74, 132–143. [Google Scholar] [CrossRef]
- Proulx, E.; Fraser, P.; McLaurin, J.; Lambe, E.K. Impaired cholinergic excitation of prefrontal attention circuitry in the tgcrnd8 model of alzheimer’s disease. J. Neurosci. 2015, 35, 12779–12791. [Google Scholar] [CrossRef]
- Messier, C.; Mourre, C.; Bontempi, B.; Sif, J.; Lazdunski, M.; Destrade, C. Effect of apamin, a toxin that inhibits ca2+-dependent k+ channels, on learning and memory processes. Brain Res. 1991, 551, 322–326. [Google Scholar] [CrossRef]
- Deschaux, O.; Bizot, J.C. Effect of apamin, a selective blocker of ca2+-activated k+-channel, on habituation and passive avoidance responses in rats. Neurosci. Lett. 1997, 227, 57–60. [Google Scholar] [CrossRef]
- Tzounopoulos, T.; Stackman, R. Enhancing synaptic plasticity and memory: A role for small-conductance Ca(2+)-activated k+ channels. Neuroscientist 2003, 9, 434–439. [Google Scholar] [CrossRef]
- Graulich, A.; Lamy, C.; Alleva, L.; Dilly, S.; Chavatte, P.; Wouters, J.; Seutin, V.; Liegeois, J.F. Bis-tetrahydroisoquinoline derivatives: Ag525e1, a new step in the search for non-quaternary non-peptidic small conductance Ca(2+)-activated k(+) channel blockers. Bioorganic Med. Chem. Lett. 2008, 18, 3440–3445. [Google Scholar] [CrossRef]
- Dauer, W.; Przedborski, S. Parkinson’s disease: Mechanisms and models. Neuron 2003, 39, 889–909. [Google Scholar] [CrossRef] [Green Version]
- Rascol, O.; Lozano, A.; Stern, M.; Poewe, W. Milestones in parkinson’s disease therapeutics. Mov. Disord. 2011, 26, 1072–1082. [Google Scholar] [CrossRef]
- Alvarez-Fischer, D.; Guerreiro, S.; Hunot, S.; Saurini, F.; Marien, M.; Sokoloff, P.; Hirsch, E.C.; Hartmann, A.; Michel, P.P. Modelling parkinson-like neurodegeneration via osmotic minipump delivery of mptp and probenecid. J. Neurochem. 2008, 107, 701–711. [Google Scholar] [CrossRef] [PubMed]
- Meredith, G.E.; Totterdell, S.; Potashkin, J.A.; Surmeier, D.J. Modeling pd pathogenesis in mice: Advantages of a chronic mptp protocol. Parkinsonism Relat. Disord. 2008, 14, S112–S115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salthun-Lassalle, B.; Hirsch, E.C.; Wolfart, J.; Ruberg, M.; Michel, P.P. Rescue of mesencephalic dopaminergic neurons in culture by low-level stimulation of voltage-gated sodium channels. J. Neurosci. 2004, 24, 5922–5930. [Google Scholar] [CrossRef] [Green Version]
- Toulorge, D.; Guerreiro, S.; Hild, A.; Maskos, U.; Hirsch, E.C.; Michel, P.P. Neuroprotection of midbrain dopamine neurons by nicotine is gated by cytoplasmic ca2+. FASEB J. 2011, 25, 2563–2573. [Google Scholar] [CrossRef]
- Pedarzani, P.; Stocker, M. Molecular and cellular basis of small- and intermediate-conductance, calcium-activated potassium channel function in the brain. Cell. Mol. Life Sci. CMLS 2008, 65, 3196–3217. [Google Scholar] [CrossRef] [Green Version]
- Wolfart, J.; Neuhoff, H.; Franz, O.; Roeper, J. Differential expression of the small-conductance, calcium-activated potassium channel sk3 is critical for pacemaker control in dopaminergic midbrain neurons. J. Neurosci. 2001, 21, 3443–3456. [Google Scholar] [CrossRef] [Green Version]
- Deignan, J.; Lujan, R.; Bond, C.; Riegel, A.; Watanabe, M.; Williams, J.T.; Maylie, J.; Adelman, J.P. Sk2 and sk3 expression differentially affect firing frequency and precision in dopamine neurons. Neuroscience 2012, 217, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Bond, C.T.; Herson, P.S.; Strassmaier, T.; Hammond, R.; Stackman, R.; Maylie, J.; Adelman, J.P. Small conductance ca2+-activated k+ channel knock-out mice reveal the identity of calcium-dependent afterhyperpolarization currents. J. Neurosci. 2004, 24, 5301–5306. [Google Scholar] [CrossRef] [Green Version]
- Stackman, R.W.; Hammond, R.S.; Linardatos, E.; Gerlach, A.; Maylie, J.; Adelman, J.P.; Tzounopoulos, T. Small conductance ca2+-activated k+ channels modulate synaptic plasticity and memory encoding. J. Neurosci. 2002, 22, 10163–10171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gati, C.D.; Mortari, M.R.; Schwartz, E.F. Towards therapeutic applications of arthropod venom k(+)-channel blockers in cns neurologic diseases involving memory acquisition and storage. J. Toxicol. 2012, 2012, 756358. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Ito, M.; Kageyama, K.; Kuwahara, K.; Yamashita, K.; Takiguchi, Y.; Kitamura, S.; Terada, H.; Shinohara, Y. Mastoparan peptide causes mitochondrial permeability transition not by interacting with specific membrane proteins but by interacting with the phospholipid phase. FEBS J. 2014, 281, 3933–3944. [Google Scholar] [CrossRef]
- Thomas, N.; Justin, D. Composition for Treatins Parkinsin’s. Disease. Patent WO2013083574A1, 13 June 2013. [Google Scholar]
- Zhu, Y.; Parada, L.F. A particular gap in mind. Nat. Genet. 2001, 27, 354–355. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J.M. Neurofibromatosis 1: Clinical manifestations and diagnostic criteria. J. Child Neurol. 2002, 17, 548–554, discussion 571–542, 646–551. [Google Scholar] [CrossRef]
- North, K.; Joy, P.; Yuille, D.; Cocks, N.; Mobbs, E.; Hutchins, P.; McHugh, K.; de Silva, M. Specific learning disability in children with neurofibromatosis type 1: Significance of mri abnormalities. Neurology 1994, 44, 878–883. [Google Scholar] [CrossRef]
- Eldridge, R.; Denckla, M.B.; Bien, E.; Myers, S.; Kaiser-Kupfer, M.I.; Pikus, A.; Schlesinger, S.L.; Parry, D.M.; Dambrosia, J.M.; Zasloff, M.A.; et al. Neurofibromatosis type 1 (recklinghausen’s disease): Neurologic and cognitive assessment with sibling controls. Am. J. Dis. Child. 1989, 143, 833–837. [Google Scholar] [CrossRef]
- Moore, B.D., 3rd; Ater, J.L.; Needle, M.N.; Slopis, J.; Copeland, D.R. Neuropsychological profile of children with neurofibromatosis, brain tumor, or both. J. Child Neurol. 1994, 9, 368–377. [Google Scholar] [CrossRef]
- Cutting, L.E.; Koth, C.W.; Denckla, M.B. How children with neurofibromatosis type 1 differ from “typical” learning disabled clinic attenders: Nonverbal learning disabilities revisited. Dev. Neuropsychol. 2000, 17, 29–47. [Google Scholar] [CrossRef]
- Joy, P.; Roberts, C.; North, K.; de Silva, M. Neuropsychological function and mri abnormalities in neurofibromatosis type 1. Dev. Med. Child Neurol. 1995, 37, 906–914. [Google Scholar] [CrossRef]
- Kayl, A.E.; Moore, B.D., 3rd. Behavioral phenotype of neurofibromatosis, type 1. Ment. Retard. Dev. Disabil. Res. Rev. 2000, 6, 117–124. [Google Scholar] [CrossRef]
- Silva, A.J.; Frankland, P.W.; Marowitz, Z.; Friedman, E.; Laszlo, G.S.; Cioffi, D.; Jacks, T.; Bourtchuladze, R. A mouse model for the learning and memory deficits associated with neurofibromatosis type i. Nat Genet 1997, 15, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Bond, C.T.; Maylie, J.; Adelman, J.P. Sk channels in excitability, pacemaking and synaptic integration. Curr. Opin. Neurobiol. 2005, 15, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Vick, K.A.T.; Guidi, M.; Stackman, R.W., Jr. In vivo pharmacological manipulation of small conductance ca(2+)-activated k(+) channels influences motor behavior, object memory and fear conditioning. Neuropharmacology 2010, 58, 650–659. [Google Scholar] [CrossRef] [Green Version]
- Bieber, T. Atopic dermatitis. N. Engl. J. Med. 2008, 358, 1483–1494. [Google Scholar] [CrossRef]
- Kalish, R.S. Immunological and pharmacological aspects of atopic and contact eczema. Arch. Dermatol. 1992, 128, 1561. [Google Scholar] [CrossRef]
- Homey, B.; Steinhoff, M.; Ruzicka, T.; Leung, D.Y. Cytokines and chemokines orchestrate atopic skin inflammation. J. Allergy Clin. Immunol. 2006, 118, 178–189. [Google Scholar] [CrossRef]
- Toshitani, A.; Ansel, J.C.; Chan, S.C.; Li, S.H.; Hanifin, J.M. Increased interleukin 6 production by t cells derived from patients with atopic dermatitis. J. Investig. Dermatol. 1993, 100, 299–304. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Kim, M.S.; Jeong, G.S.; Yoon, J. Xanthii fructus extract inhibits tnf-alpha/ifn-gamma-induced th2-chemokines production via blockade of nf-kappab, stat1 and p38-mapk activation in human epidermal keratinocytes. J. Ethnopharmacol. 2015, 171, 85–93. [Google Scholar] [CrossRef]
- Shimada, Y.; Takehara, K.; Sato, S. Both th2 and th1 chemokines (tarc/ccl17, mdc/ccl22, and mig/cxcl9) are elevated in sera from patients with atopic dermatitis. J. Dermatol. Sci. 2004, 34, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.; Siddiqi, M.H.; Aceituno, V.C.; Simu, S.Y.; Zhang, J.; Jimenez Perez, Z.E.; Kim, Y.J.; Yang, D.C. Ginsenoside rg5:Rk1 attenuates tnf-alpha/ifn-gamma-induced production of thymus- and activation-regulated chemokine (tarc/ccl17) and lps-induced no production via downregulation of nf-kappab/p38 mapk/stat1 signaling in human keratinocytes and macrophages. Cell. Dev. Biol. Anim. 2016, 52, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Kang, G.-J.; Lee, H.-J.; Yoon, W.-J.; Yang, E.-J.; Park, S.-S.; Kang, H.-K.; Park, M.-H.; Yoo, E.-S. Prunus yedoensis inhibits the inflammatory chemokines, mdc and tarc, by regulating the stat1-signaling pathway in ifn-γ-stimulated hacat human keratinocytes. Biomol. Ther. 2008, 16, 394–402. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.; Liu, J.; Wang, J.; Luo, Q.; Zhang, H.; Liu, B.; Xu, F.; Pang, Q.; Liu, Y.; Dong, J. Icariin inhibits tnf-alpha/ifn-gamma induced inflammatory response via inhibition of the substance p and p38-mapk signaling pathway in human keratinocytes. Int. Immunopharmacol. 2015, 29, 401–407. [Google Scholar] [CrossRef] [PubMed]
Disease Entity | Experimental Model | Biological Role | Molecular Mechanisms | Reference |
---|---|---|---|---|
Atherosclerosis | - THP-1 cell treated with oxLDL - LPS injection with high fat diet | Inhibited apoptosis | Decreased NF-κB signaling pathway | [17] |
Heart failure | Pacing-induced heart failure | Increased the action potential duration | SK channel blockade | [18] |
Liver fibrosis | - AML12 cell treated with TGF-β1 - DDC-fed or CCl4-injection mice | Suppressed hepatic fibrosis | Inhibited MAPK, Smad, and TGF-β1 signaling pathway | [14,19] |
Pancreatitis | Cerulein-injected mice | Attenuated cytokine production | Suppressed JNK activation | [20] |
Alzheimer’s disease | Transgenic mice | Improved memory acquisition | Improved efficiency of nicotinic signaling | [16] |
Parkinson’s disease | MPTP/probenecid-injection PD mice | Hypercholinergic state to DA denervation | SK channel blockade | [12] |
Neurofibromatosis | Heterozygous Nf1+/− mouse model | Increased membrane potential in postsynaptic cell | SK channel blockade | [21] |
Atopic dermatitis | HaCaT cell treated with TNF-α/IFN-γ | Suppressed inflammatory cytokines | Inhibited JAK/STAT and NF-κB signaling pathway | [15] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, H.; Han, S.M.; Park, K.-K. Therapeutic Effects of Apamin as a Bee Venom Component for Non-Neoplastic Disease. Toxins 2020, 12, 195. https://doi.org/10.3390/toxins12030195
Gu H, Han SM, Park K-K. Therapeutic Effects of Apamin as a Bee Venom Component for Non-Neoplastic Disease. Toxins. 2020; 12(3):195. https://doi.org/10.3390/toxins12030195
Chicago/Turabian StyleGu, Hyemin, Sang Mi Han, and Kwan-Kyu Park. 2020. "Therapeutic Effects of Apamin as a Bee Venom Component for Non-Neoplastic Disease" Toxins 12, no. 3: 195. https://doi.org/10.3390/toxins12030195
APA StyleGu, H., Han, S. M., & Park, K.-K. (2020). Therapeutic Effects of Apamin as a Bee Venom Component for Non-Neoplastic Disease. Toxins, 12(3), 195. https://doi.org/10.3390/toxins12030195