Human Mycotoxin Biomonitoring: Conclusive Remarks on Direct or Indirect Assessment of Urinary Deoxynivalenol
Abstract
:1. Introduction
2. Results
3. Conclusions
4. Materials and Methods
4.1. Reagents and Chemicals
4.2. Sample Collection
4.3. Enzymatic Treatment
4.4. Sample Preparation and Targeted LC–MS/MS Analysis
4.5. Calculations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bensassi, F.; El Golli-Bennour, E.; Abid-Essefi, S.; Bouaziz, C.; Hajlaoui, M.R.; Bacha, H. Pathway of deoxynivalenol-induced apoptosis in human colon carcinoma cells. Toxicology 2009, 264, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Konigs, M.; Schwerdt, G.; Gekle, M.; Humpf, H.U. Effects of the mycotoxin deoxynivalenol on human primary hepatocytes. Mol. Nutr. Food Res. 2008, 52, 830–839. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.H.; Wang, X.; Yang, W.; Nussler, A.; Xiong, L.Y.; Kuca, K.; Dohnal, V.; Zhang, X.J.; Yuan, Z.H. Oxidative stress-mediated cytotoxicity and metabolism of t-2 toxin and deoxynivalenol in animals and humans: An update. Arch. Toxicol. 2014, 88, 1309–1326. [Google Scholar] [CrossRef] [PubMed]
- Pestka, J.J. Deoxynivalenol: Mechanisms of action, human exposure, and toxicological relevance. Arch. Toxicol. 2010, 84, 663–679. [Google Scholar] [CrossRef]
- De Boevre, M.; Diana Di Mavungu, J.; Maene, P.; Audenaert, K.; Deforce, D.; Haesaert, G.; Eeckhout, M.; Callebaut, A.; Berthiller, F.; Van Peteghem, C.; et al. Development and validation of an lc-ms/ms method for the simultaneous determination of deoxynivalenol, zearalenone, t-2-toxin and some masked metabolites in different cereals and cereal-derived food. Food Addit. Contam. 2012, 29, 819–835. [Google Scholar] [CrossRef]
- Cano-Sancho, G.; Gauchi, J.P.; Sanchis, V.; Marín, S.; Ramos, A.J. Quantitative dietary exposure assessment of the catalonian population (spain) to the mycotoxin deoxynivalenol. In Food Additives & Contaminants: Part A; Taylor & Francis: Abingdon, UK, 2011; Volume 28, pp. 1098–1109. [Google Scholar]
- CONTAM. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J. 2017, 15, 4718. [Google Scholar]
- EFSA. Scientific opinion on the risk to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J. 2017, 15, 345. [Google Scholar]
- Huybrechts, I.; De Saeger, S.; Claeys, L.; De Ruyck, K.; Casagrande, C.; Nicolas, G.; Korenjak, M.; Altieri, A.; Scelo, G.; Fervers, B.; et al. Impact of chronic multi-mycotoxin exposure on colorectal cancer incidence in europe. Br. Med J. 2019. [Google Scholar]
- Payros, D.; Dobrindt, U.; Martin, P.; Secher, T.; Bracarense, A.; Boury, M.; Laffitte, J.; Pinton, P.; Oswald, E.; Oswald, I.P. The food contaminant deoxynivalenol exacerbates the genotoxicity of gut microbiota. mBio 2017, 8, 11. [Google Scholar] [CrossRef] [Green Version]
- Wilson, M.R.; Jiang, Y.D.; Villalta, P.W.; Stornetta, A.; Boudreau, P.D.; Carra, A.; Brennan, C.A.; Chun, E.; Ngo, L.; Samson, L.D.; et al. The human gut bacterial genotoxin colibactin alkylates DNA. Science 2019, 363, 709. [Google Scholar] [CrossRef]
- Heyndrickx, E.; Sioen, I.; Huybrechts, B.; Callebaut, A.; De Henauw, S.; De Saeger, S. Human biomonitoring of multiple mycotoxins in the belgian population: Results of the biomyco study. Environ. Int. 2015, 84, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Vidal, A.; Cano-Sancho, G.; Marin, S.; Ramos, A.J.; Sanchis, V. Multidetection of urinary ochratoxin a, deoxynivalenol and its metabolites: Pilot time-course study and risk assessment in catalonia, spain. World Mycotoxin J. 2016, 9, 597–612. [Google Scholar] [CrossRef]
- IARC. Mycotoxins. In IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans; IARC: Lyon, France, 1993; Volume 56, p. 489. [Google Scholar]
- Vidal, A.; Claeys, L.; Mengelers, M.; Vanhoorne, V.; Vervaet, C.; Huybrechts, B.; De Saeger, S.; De Boevre, M. Humans significantly metabolize and excrete the mycotoxin deoxynivalenol and its modified form deoxynivalenol-3-glucoside within 24 hours. Sci. Rep. 2018, 8, 5255. [Google Scholar] [CrossRef] [Green Version]
- Vidal, A.; Mengelers, M.; Yang, S.; De Saeger, S.; De Boevre, M. Mycotoxin biomarkers of exposure: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1127–1155. [Google Scholar] [CrossRef] [Green Version]
- Solfrizzo, M.; Gambacorta, L.; Visconti, A. Assessment of multi-mycotoxin exposure in southern italy by urinary multi-biomarker determination. Toxins 2014, 6, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Turner, P.C.; Burley, V.J.; Rothwell, J.A.; White, K.L.M.; Cade, J.E.; Wild, C.P. Deoxynivalenol: Rationale for development and application of a urinary biomarker. In Food Additives & Contaminants: Part A; Taylor & Francis: Abingdon, UK, 2008; Volume 25, pp. 864–871. [Google Scholar]
- Prelusky, D.B.; Veira, D.M.; Trenholm, H.L.; Hartin, K.E. Excretion profiles of the mycotoxin deoxynivalenol, following oral and intravenous administration to sheep. Fundam. Appl. Toxicol. 1986, 6, 356–363. [Google Scholar] [CrossRef]
- Schwartz-Zimmermann, H.E.; Hametner, C.; Nagl, V.; Fiby, I.; Macheiner, L.; Winkler, J.; Dänicke, S.; Clark, E.; Pestka, J.J.; Berthiller, F. Glucuronidation of deoxynivalenol (don) by different animal species: Identification of iso-don glucuronides and iso-deepoxy-don glucuronides as novel don metabolites in pigs, rats, mice, and cows. Arch. Toxicol. 2017, 91, 1–16. [Google Scholar] [CrossRef]
- Uhlig, S.; Ivanova, L.; Fæste, C.K. Erratum: Enzyme-assisted synthesis and structural characterization of the 3-, 8-, and 15-glucuronides of deoxynivalenol. J. Agric. Food Chem. 2013, 61, 2006–2012. [Google Scholar] [CrossRef]
- Fuchs, E.; Binder, E.M.; Heidler, D.; Krska, R. Structural characterization of metabolites after the microbial degradation of type a trichothecenes by the bacterial strain bbsh 797. Food Addit. Contam. 2002, 19, 379–386. [Google Scholar] [CrossRef]
- Warth, B.; Sulyok, M.; Fruhmann, P.; Berthiller, F.; Schuhmacher, R.; Hametner, C.; Adam, G.; Frohlich, J.; Krska, R. Assessment of human deoxynivalenol exposure using an lc-ms/ms based biomarker method. Toxicol. Lett. 2012, 211, 85–90. [Google Scholar] [CrossRef]
- Cunha, S.C.; Fernandes, J.O. Development and validation of a gas chromatography-mass spectrometry method for determination of deoxynivalenol and its metabolites in human urine. Food Chem. Toxicol. 2012, 50, 1019–1026. [Google Scholar] [CrossRef] [PubMed]
- Solfrizzo, M.; Gambacorta, L.; Lattanzio, V.M.T.; Powers, S.; Visconti, A. Simultaneous lc-ms/ms determination of aflatoxin m-1, ochratoxin a, deoxynivalenol, de-epoxydeoxynivalenol, alpha and beta-zearalenols and fumonisin b-1 in urine as a multi-biomarker method to assess exposure to mycotoxins. Anal. Bioanal. Chem. 2011, 401, 2831–2841. [Google Scholar] [CrossRef] [PubMed]
- Srey, C.; Kimanya, M.E.; Routledge, M.N.; Shirima, C.P.; Gong, Y.Y. Deoxynivalenol exposure assessment in young children in tanzania. Molecular Nutr. Food Res. 2014, 58, 1574–1580. [Google Scholar] [CrossRef] [PubMed]
- Shephard, G.S.; Burger, H.M.; Gambacorta, L.; Gong, Y.Y.; Krska, R.; Rheeder, J.P.; Solfrizzo, M.; Srey, C.; Sulyok, M.; Visconti, A.; et al. Multiple mycotoxin exposure determined by urinary biomarkers in rural subsistence farmers in the former transkei, south africa. Food Chem. Toxicol. 2013, 62, 217–225. [Google Scholar] [CrossRef]
- Warth, B.; Sulyok, M.; Berthiller, F.; Schuhmacher, R.; Krska, R. New insights into the human metabolism of the fusarium mycotoxins deoxynivalenol and zearalenone. Toxicol. Lett. 2013, 220, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Hepworth, S.J.; Hardie, L.J.; Fraser, L.K.; Burley, V.J.; Mijal, R.S.; Wild, C.P.; Azad, R.; Mckinney, P.A.; Turner, P.C. Deoxynivalenol exposure assessment in a cohort of pregnant women from bradford, uk. In Food Additives & Contaminants: Part A; Taylor & Francis: Abingdon, UK, 2011; Volume 29, pp. 269–276. [Google Scholar]
- Piekkola, S.; Turner, P.C.; Abdel-Hamid, M.; Ezzat, S.; El-Daly, M.; El-Kafrawy, S.; Savchenko, E.; Poussa, T.; Woo, J.C.S.; Mykkänen, H.; et al. Characterisation of aflatoxin and deoxynivalenol exposure among pregnant egyptian women. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2012, 29, 962–971. [Google Scholar] [CrossRef]
- Lattanzio, V.M.T.; Solfrizzo, M.; De Girolamo, A.; Chulze, S.N.; Torres, A.M.; Visconti, A. Lc-ms/ms characterization of the urinary excretion profile of the mycotoxin deoxynivalenol in human and rat. J. Chromatogr. B-Anal. Technol. Biomed. Life Sci. 2011, 879, 707–715. [Google Scholar] [CrossRef]
- Turner, P.C.; Hopton, R.P.; White, K.L.M.; Fisher, J.; Cade, J.E.; Wild, C.P. Assessment of deoxynivalenol metabolite profiles in uk adults. Food Chem. Toxicol. 2011, 49, 132–135. [Google Scholar] [CrossRef] [Green Version]
- Turner, P.C.; White, K.L.M.; Burley, V.J.; Hopton, R.P.; Rajendram, A.; Fisher, J.; Cade, J.E.; Wild, C.P. A comparison of deoxynivalenol intake and urinary deoxynivalenol in uk adults. Biomarkers 2010, 15, 553–562. [Google Scholar] [CrossRef]
- Turner, P.C.; Burley, V.J.; Rothwell, J.A.; White, K.L.M.; Cade, J.E.; Wild, C.P. Dietary wheat reduction decreases the level of urinary deoxynivalenol in uk adults. J. Expo. Sci. Environ. Epidemiol. 2008, 18, 392–399. [Google Scholar] [CrossRef] [Green Version]
- Turner, P.C.; Rothwell, J.A.; White, K.L.M.; Gong, Y.; Cade, J.E.; Wild, C.P. Urinary deoxynivalenol is correlated with cereal intake in individuals from the united kingdom. Environ. Health Perspect. 2008, 116, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Franco, L.T.; Petta, T.; Rottinghaus, G.E.; Bordin, K.; Gomes, G.A.; Alvito, P.; Assunção, R.; Oliveira, C.A.F. Assessment of mycotoxin exposure and risk characterization using occurrence data in foods and urinary biomarkers in brazil. Food Chem. Toxicol. 2019, 128, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Li, C.; Zhou, S.; Wang, X.; Xu, H.; Wang, D.; Gong, Y.Y.; Routledge, M.N.; Zhao, Y.; Wu, Y. Risk assessment of deoxynivalenol in high-risk area of china by human biomonitoring using an improved high throughput uplc-ms/ms method. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, M.; Wells, L.; Williams, C.; White, K.L.M.; De Santis, B.; Liu, Y.; Debegnach, F.; Miano, B.; Moretti, G.; Greetham, S.; et al. Occurrence of deoxynivalenol in an elderly cohort in the uk: A biomonitoring approach. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2018, 35, 2032–2044. [Google Scholar] [CrossRef]
- Papageorgiou, M.; Wells, L.; Williams, C.; White, K.; De Santis, B.; Liu, Y.; Debegnach, F.; Miano, B.; Moretti, G.; Greetham, S.; et al. Assessment of urinary deoxynivalenol biomarkers in uk children and adolescents. Toxins 2018, 10, 50. [Google Scholar] [CrossRef] [Green Version]
- Turner, P.C.; Solfrizzo, M.; Gost, A.; Gambacorta, L.; Olsen, M.; Wallin, S.; Kotova, N. Comparison of data from a single-analyte and a multianalyte method for determination of urinary total deoxynivalenol in human samples. J. Agric. Food Chem. 2017, 65, 7115–7120. [Google Scholar] [CrossRef]
- Wells, L.; Hardie, L.; Williams, C.; White, K.; Liu, Y.; De Santis, B.; Debegnach, F.; Moretti, G.; Greetham, S.; Brera, C.; et al. Deoxynivalenol biomarkers in the urine of uk vegetarians. Toxins 2017, 9, 196. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Carrasco, Y.; Moltó, J.C.; Mañes, J.; Berrada, H. Development of microextraction techniques in combination with gc–ms/ms for the determination of mycotoxins and metabolites in human urine. J. Sep. Sci. 2017, 40, 1572–1582. [Google Scholar] [CrossRef]
- Föllmann, W.; Ali, N.; Blaszkewicz, M.; Degen, G.H. Biomonitoring of mycotoxins in urine: Pilot study in mill workers. J. Toxicol. Environ. Health Part A Curr. Issues 2016, 79, 1015–1025. [Google Scholar] [CrossRef]
- Wells, L.; Hardie, L.; Williams, C.; White, K.; Liu, Y.; De Santis, B.; Debegnach, F.; Moretti, G.; Greetham, S.; Brera, C.; et al. Determination of deoxynivalenol in the urine of pregnant women in the uk. Toxins 2016, 8, 306. [Google Scholar] [CrossRef] [Green Version]
- Ali, N.; Blaszkewicz, M.; Degen, G.H. Assessment of deoxynivalenol exposure among bangladeshi and german adults by a biomarker-based approach. Toxicol. Lett. 2016, 258, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Blaszkewicz, M.; Al Nahid, A.; Rahman, M.; Degen, G.H. Deoxynivalenol exposure assessment for pregnant women in bangladesh. Toxins 2015, 7, 3845–3857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallin, S.; Gambacorta, L.; Kotova, N.; Warensjö Lemming, E.; Nälsén, C.; Solfrizzo, M.; Olsen, M. Biomonitoring of concurrent mycotoxin exposure among adults in sweden through urinary multi-biomarker analysis. Food Chem. Toxicol. 2015, 83, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Spanjer, M.C.; Rensen, P.M.; Scholten, J.M. Lc-ms/ms multi-method for mycotoxins after single extraction, with validation data for peanut, pistachio, wheat, maize, cornflakes, raisins and figs. Food Addit. Contam. 2008, 25, 472–489. [Google Scholar] [CrossRef] [PubMed]
- 2002/657/EC. Commission decision 2002/657/ec implementing council directive 96/23/ec concerning the performance of analytical methods and the interpretation of results. Off. J. Eur. Communities 2002, L221, 8–36. [Google Scholar]
Method | Free DON | DON-3-GLUCURONIDE | DON-15-GLUCURONIDE | Total DON | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Presence (%) * | Mean ± SD (nmol) | Max. (nmol) | Presence (%) | Mean ± SD (nmol) | Max. (nmol) | Presence (%) | Mean ± SD (nmol) | Max. (nmol) | Presence (%) | Mean ± SD (nmol) | Max. (nmol) | |
Direct | 43 | 4.18 ± 2.63 | 18.23 | 71 | 7.51 ± 6.98 | 74.27 | 94.0 | 32.76 ± 30.19 | 147.86 | 95.2 | 37.95 ± 37.21 | 223.57 |
Indirect | 71 | 23.89 ± 8.61 | 44.62 | 33 | 2.07 ± 1.67 | 17.74 | 92.0 | 8.38 ± 7.60 | 42.09 | 95.2 | 27.69 ± 26.64 | 150.56 |
pH | Time | Enzyme type | Enzyme concentration (units/mL) | Max DON concentration (ng/mL) | Reference |
---|---|---|---|---|---|
- | 18 h | Helix pomatia (Type H-2) | 6510 | 67.4 | [17] |
- | Overnight | Helix pomatia (Type H-2) | 6510 | 14.2 | [25] |
- | Overnight | - | 5750 | 152.6 | [26] |
- | Overnight | Helix pomatia (Type H-2) | 6510 | 353.0 | [27] |
7.4 | 18 h | Escherichia coli (Type IX) | 6000 | 40.0 | [28] |
7.4 | 18 h | Escherichia coli (Type IX) | 6000 | 19.5 | [23] |
5.0 | 18 h | Helix pomatia (Type I) | 5000/10,000 | 26.2 | [24] |
7.4 | 18 h | Escherichia coli (Type IX) | 5000/10,000 | 26.2 | |
6.8 | 18 h | Patella vulgate (Type L-II) | 5000/10,000 | 26.2 | |
- | - | Escherichia coli (Type IX) | 5750 | 116.7 | [29] |
7.4 | 18 h | - | 7000 | 59.9 | [30] |
7.4 | 18 h | Escherichia coli (Type IX-A) | 4500 | 7.0 | [31] |
Overnight | - | 5750 | 78.2 | [32] | |
7.4 | 18 h | Escherichia coli (Type IX-A) | 5750 | 28.8 | [33] |
6.8 | 18 h | Escherichia coli (Type IX-A) | 5750 | 10.5 | [34] |
7.2 | 18 h | Escherichia coli (Type IX-A) | 5750 | 48.2 | [35] |
- | Overnight | Helix pomatia (Type H-2) | 6510 | 72,439.0 | [36] |
6.8 | 18 h | Escherichia coli (Type IX) | 2000 | 247 | [37] |
6.8 | 18 h | Escherichia coli (Type IX-A) | 23,000 | 13.8 | [38] |
6.8 | 18 h | Escherichia coli (Type IX-A) | 23,000 | 140.9 | [39] |
7.4 | Overnight | Escherichia coli (Type IX-A) | 1750 | 135.2 | [40] |
6.8 | 18 h | Escherichia coli (Type IX-A) | 23,000 | 135.0 | [41] |
5.0 | 18 h | Helix pomatia (Type H-1) | 4000 | 84.1 | [42] |
5.0 | Overnight | Helix pomatia | 0.044 | 14.6 | [43] |
6.8 | 18 h | Escherichia coli (Type IX) | 23,000 | 436.0 | [44] |
5.0 | Overnight | Helix pomatia | 0.044 | 1.8 | [45] |
5.0 | Overnight | Helix pomatia | 0.073 | 7.2 | [46] |
- | 18 h | Helix pomatia (Type H-2) | 6510 | >20.0 | [47] |
Mycotoxin | Precursor ion (m/z) | Product ions a (m/z) | CE a,b (eV) | CV c (V) | Retention time (min) | LOD d (ng/mL) | LOQ e (ng/mL) |
---|---|---|---|---|---|---|---|
DON | 297.0 | 249.0/231.0 | 9/9 | 40 | 3.99 | 0.2 | 0.4 |
DON-3-glucoside | 459.1 | 168.1/132.0 | 10/9 | 15 | 3.90 | 0.3 | 0.6 |
DON-3-glucuronide/ DON-15-glucuronide | 471.0 | 113.0/193.0 | 30/24 | 60 | 3.65/3.78 | 0.5 | 1.0 |
3-ADON/15-ADON | 339.0 | 231.0/203.1 | 15/9 | 15 | 5.69 | 0.1 | 0.2 |
DOM-1 | 281.1 | 215.1/233.1 | 9/9 | 40 | 4.83 | 0.6 | 1.2 |
13C15 DON | 311.9 | 262.9/130.5 | 10/10 | 30 | 3.99 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidal, A.; Bouzaghnane, N.; De Saeger, S.; De Boevre, M. Human Mycotoxin Biomonitoring: Conclusive Remarks on Direct or Indirect Assessment of Urinary Deoxynivalenol. Toxins 2020, 12, 139. https://doi.org/10.3390/toxins12020139
Vidal A, Bouzaghnane N, De Saeger S, De Boevre M. Human Mycotoxin Biomonitoring: Conclusive Remarks on Direct or Indirect Assessment of Urinary Deoxynivalenol. Toxins. 2020; 12(2):139. https://doi.org/10.3390/toxins12020139
Chicago/Turabian StyleVidal, Arnau, Nabila Bouzaghnane, Sarah De Saeger, and Marthe De Boevre. 2020. "Human Mycotoxin Biomonitoring: Conclusive Remarks on Direct or Indirect Assessment of Urinary Deoxynivalenol" Toxins 12, no. 2: 139. https://doi.org/10.3390/toxins12020139
APA StyleVidal, A., Bouzaghnane, N., De Saeger, S., & De Boevre, M. (2020). Human Mycotoxin Biomonitoring: Conclusive Remarks on Direct or Indirect Assessment of Urinary Deoxynivalenol. Toxins, 12(2), 139. https://doi.org/10.3390/toxins12020139