Comparative Transcriptome Analysis of Toxic and Non-Toxic Nassarius Communities and Identification of Genes Involved in TTX-Adaptation
Abstract
:1. Introduction
2. Results
2.1. Quality of RNA-Seq Data and de Novo Transcriptome Assembly
2.2. Gene Functional Annotation, CDS, SSR, and SNP Detection
2.3. Genetic Expression Patterns, Different Expressed Genes, and qRT-PCR Validation
2.4. Mutation in Sodium Channel Genes
3. Discussion
Availability of Data and Materials
4. Materials and Methods
4.1. Sample Collection, Treatment and Toxicity Test
4.2. RNA Isolation, Library Construction, and RNA-Seq
4.3. Data Preprocessing and Transcriptome Assembly
4.4. Gene Annotation and Expression, DEG, CDS, SSR, and SNP Detection
4.5. Validation of DEGs by qRT-PCR
4.6. Detection of Sodium Channels Genes
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Cernohorsky, W.O. Indo-Pacific Nassariidae (Mollusca: Gastropoda). Rec. Auckland Inst. Mus. 1972, 9, 125–194. [Google Scholar]
- Zou, S.; Li, Q.; Kong, L. Monophyly, distance and character–based multigene barcoding reveal extraordinary cryptic diversity in nassarius: A complex and dangerous community. PLoS ONE 2012, 7, e47276. [Google Scholar] [CrossRef] [Green Version]
- Svavarsson, J.; Granmo, A.; Ekelund, R. Occurrence and effects of organotins on adult common whelk (Buccinum undatum) (Mollusca:Gastropoda) in harbours and in a simulated dredging situation. Marine Poll. Bulletinmi 2001, 42, 370–376. [Google Scholar] [CrossRef]
- Xu, J.; Xu, G.; Chen, Y. Correlation between toxicity of poisonous Nassarius sp. and their habitats. Chin. J. Health Lab. Tech. 2007, 17, 63–67. [Google Scholar]
- Zhang, N.; Su, J.; Liu, H.; Ye, S.; Li, L.F. The species and toxicities of Nassariidae collected from the coast of Southeast China sea. Asian J. Ecotoxic. 2009, 4, 289–294. [Google Scholar]
- Lisa, G.; Andrea, M.; Valentina, M.; Laura, G.; Daniele, N.; Andrea, A. A global retrospective study on human cases of Tetrodotoxin (TTX) poisoning after seafood consumption. Food Rev. Intern. 2020, 36, 645–667. [Google Scholar]
- Narahashi, T.; Moore, J.W.; Poston, R.N. Tetrodotoxin derivatives: Chemical structure and blockage of nerve membrane conductance. Science 1967, 156, 976–979. [Google Scholar] [CrossRef]
- Kao, C.Y. Actions of nortetrodotoxin on frog muscle and squid axon. Toxic. Offic. J. Intern. Soc. Toxin. 1982, 20, 1043–1050. [Google Scholar] [CrossRef]
- Soong, T.W.; Venkatesh, B. Adaptive evolution of tetrodotoxin resistance in animals. Trends Genet. 2006, 22, 621–626. [Google Scholar] [CrossRef]
- Noguchi, T.; Uzu, A.; Koyama, K.; Maruyama, J.; Nagashima, Y.; Hashimot, K. Occurrence of tetrodotoxin as the major toxin in a xanthid crab, Atergatis floridus. Bull. Jpn. Soc. Sci. Fish. Bull. 1983, 49, 1887–1892. [Google Scholar] [CrossRef] [Green Version]
- Sheumack, D.D.; Howden, M.E.H.; Spence, I. Occurrence of a tetrodotoxin-like compound in the eggs of the venomous blue-ringed octopus (Hapalochlaena maculosa). Toxic. Offic. J. Intern. Soc. Toxi. 1984, 22, 811–881. [Google Scholar] [CrossRef]
- Tarvin, R.D.; Borghese, C.M.; Sachs, W.; Santos, J.C.; Lu, Y.; O’Connell, L.A.; Cannatell, D.C.; Harris, R.A.; Zakon, H.H. Interacting amino acid replacements allow poison frogs to evolve epibatidine resistance. Science 2017, 357, 1261–1266. [Google Scholar] [CrossRef] [Green Version]
- Noguchi, T.; Hashimoto, Y. Isolation of tetrodotoxin from a goby gobius criniger. Toxic. Offic. J. Intern. Soci. Toxi. 1973, 11, 305–307. [Google Scholar] [CrossRef]
- Kim, Y.; Brown, G.; Mosher, F. Tetrodotoxin: Occurrence in atelopid frogs of costa rica. Science 1975, 189, 151–152. [Google Scholar] [CrossRef]
- Lee, J.H.; Kondo, H.; Sato, S.; Akimoto, S.; Saito, T.; Kodama, M.; Watabe, S. Identification of novel genes related to tetrodotoxin intoxication in pufferfish. Toxicon 2007, 49, 939–953. [Google Scholar] [CrossRef]
- Yotsu-Yamashita, M.; Yamaki, H.; Okoshi, N.; Araki, N. Distribution of homologous proteins to puffer fish saxitoxin and tetrodotoxin binding protein in the plasma of puffer fish and among the tissues of fugu pardalis examined by western blot analysis. Toxicon 2010, 55, 1119–1124. [Google Scholar] [CrossRef]
- Yotsu-Yamashita, M.; Okoshi, N.; Watanabe, K.; Araki, N.; Yamaki, H.; Shoji, Y.; Terakawa, T. Localization of pufferfish saxitoxin and tetrodotoxin binding protein (pstbp) in the tissues of the pufferfish, takifugu pardalis, analyzed by immunohistochemical staining. Toxicon 2013, 72, 23–28. [Google Scholar] [CrossRef]
- Feroudj, H.; Matsumoto, T.; Kurosu, Y.; Kaneko, G.; Watabe, S. Dna microarray analysis on gene candidates possibly related to tetrodotoxin accumulation in pufferfish. Toxicon 2013, 77, 68–72. [Google Scholar] [CrossRef]
- Venkatesh, B.; Lu, S.Q.; Dandona, N.; See, S.; Brenner, S.; Soong, T.W. Genetic basis of tetrodotoxin resistance in pufferfishes. Current Biol. 2005, 1, 2069–2072. [Google Scholar] [CrossRef] [Green Version]
- Mcglothlin, J.W.; Chuckalovcak, J.P.; Janes, D.E.; Chuckalovcak, D.E.; Janes, S. Parallel evolution of tetrodotoxin resistance in three voltage-gated sodium channel genes in the garter snake thamnophis sirtalis. Mol. Biol. Evol. 2014, 11. [Google Scholar] [CrossRef] [Green Version]
- Geffeney, S.L.; Fujimoto, E.; Brodie, E.D.; Brodie, E.D.; Ruben, P.C. Evolutionary diversification of ttx-resistant sodium channels in a predator–prey interaction. Nature 2005, 434, 759–763. [Google Scholar] [CrossRef]
- Jost, M.C.; Hillis, D.M.; Lu, Y.; Kyle, J.W.; Fozzard, H.A.; Zakon, H.H. Toxin-resistant sodium channels: Parallel adaptive evolution across a complete gene family. Mol. Biol. Evolut. 2008, 25, 1016–1024. [Google Scholar] [CrossRef] [Green Version]
- Hanifin, C.T.; Gilly, W.F. Evolutionary history of a complex adaptation: Tetrodotoxin resistance in salamanders. Evolution 2015, 69, 232–244. [Google Scholar] [CrossRef] [Green Version]
- Hille, B. Ion Channels of Excitable Membranes, 3rd ed.; Sinauer Associates: Sunderland, MA, USA, 2001. [Google Scholar]
- Kaneko, Y.; Matsumoto, G.; Hanyu, Y. TTX resistivity of Na+ channel in newt retinal neuron. Biochemic. Biophysic. Res. Comm. 1997, 240, 651–656. [Google Scholar] [CrossRef]
- Yotsu-Yamashita, M.; Nishimori, K.; Nitanai, Y.; Isemura, M.; Sugimoto, A.; Yasumoto, T. Binding properties of 3h-pbtx-3 and 3h-saxitoxin to brain membranes and to skeletal muscle membranes of puffer fish fugu pardalis and the primary structure of a voltage-gated na+ channel α-subunit (fmna1) from skeletal muscle off. pardalis. Biochemic. Biophysic. Res. Comm. 2000, 267, 403–412. [Google Scholar] [CrossRef]
- Monica, B.V.; Laurie, C.; Keiichi, K.; Scott, M.; Todd, S.; Catterall, W.A.; Trainer, V.L. Sodium channel mutation leading to saxitoxin resistance in clams increases risk of psp. Nature 2005, 434, 763–767. [Google Scholar]
- Li, Y.; Sun, X.; Hu, X.; Xun, X.; Zhang, J.; Guo, X.; Jiao, W.; Zhang, L.; Liu, W.; Wang, J. Scallop genome reveals molecular adaptations to semi-sessile life and neurotoxins. Nat. Commun. 2017, 8, 1721. [Google Scholar] [CrossRef]
- Zou, S.; Song, J.; Wang, C.; Wang, C.H. The relationships between toxicity, species and populations in nassarius based on toxin detection and multiple gene barcoding. J. Ocean Univ. China 2019, 18, 1515–1522. [Google Scholar] [CrossRef]
- Fabienne, F.; Bernard, F. Role of endoplasmic reticulum stress in drug-induced toxicity. Pharmacol. Res. Perspec. 2016, 4, e00211. [Google Scholar]
- Sprooten, J.; Garg, A.D. Type I interferons and endoplasmic reticulum stress in health and disease. Intern. Rev. Cell Mol. Biol. 2020, 350, 63–118. [Google Scholar]
- Luo, X. Toxicity dynamics and toxin composition of Nassarius spp. along the coast of China [D]. Chin. Acad. Sci. 2008, 1–86. [Google Scholar]
- Wang, X. Studies on the origin of tetrodoxin in gastropod (Nassarius spp.) [D]. Chin. Acad. Sci. 2008, 1–90. [Google Scholar]
- Shi, C.Y.; Wan, X.C.; Jiang, C.J.; Sun, J. Method for high-quality total RNA isolation from tea plants (Camellia sinensis (L.) O. Kuntze). J. Anhui Agricult. Univ. 2007, 34, 360–363. [Google Scholar]
- Conesa, A.; Madrigal, P.; Tarazona, S.; Gomez-Cabrero, D.; Cervera, A.; McPherson, A.; Szcześniak, M.W.; Gaffney, D.J.; Elo, L.L.; Zhang, X.; et al. A survey of best practices for rna-seq data analysis. Genome Biol. 2016, 17, 181. [Google Scholar] [CrossRef] [Green Version]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from rna-seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [Green Version]
- Haas, B.J.; Papanicolaou, A.; Yassour, M.; Grabherr, M.G.; Blood, P.D.; Bowden, J.; Couger, M.B.; Eccles, D.; Li, B.; Lieber, M.; et al. De novo transcript sequence reconstruction from rna-seq using the trinity platform for reference generation and analysis. Nat. Protoc. 2013, 8, 1494–1512. [Google Scholar] [CrossRef]
- Dewey, C.N.; Bo, L. RSEM: Accurate transcript quantification from rna-seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar]
- Conesa, A.; Gotz, S.; Garcia-Gomez, J.M.; Terol, J.; Talon, M.; Robles, M. Blast2go: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21, 3674–3676. [Google Scholar] [CrossRef] [Green Version]
- Audic, S.; Claverie, J.M. The significance of digital gene expression profiles. Genome Res. 1997, 7, 986–995. [Google Scholar] [CrossRef]
- Iseli, C.; Jongeneel, C.V.; Bucher, P. ESTScan: A program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Int. Conf. Intell. Syst. Mol. Boil. 1999, 99, 138–148. [Google Scholar]
- Thiel, T.; Michalek, W.; Varshney, R.; Graner, A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor. App. Genet. 2003, 106, 411–422. [Google Scholar] [CrossRef]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [Green Version]
Sample | Total Number | Total Length (bp) | Mean Length (bp) | N50 | GC (%) |
---|---|---|---|---|---|
Transcripts | |||||
HL1 | 102,960 | 53,331,724 | 517 | 616 | 41.81 |
HL2 | 105,347 | 55,526,297 | 527 | 632 | 41.67 |
HL3 | 139,998 | 80,687,307 | 576 | 735 | 43.02 |
HD1 | 100,186 | 54,213,432 | 541 | 664 | 41.44 |
HD2 | 109,003 | 58,814,502 | 539 | 664 | 42.32 |
HD3 | 100,235 | 52,686,293 | 525 | 633 | 41.76 |
ZL1 | 127,934 | 59,028,848 | 461 | 564 | 40.73 |
ZL2 | 146,655 | 67,758,333 | 462 | 568 | 40.74 |
ZL3 | 149,196 | 66,729,017 | 447 | 534 | 40.7 |
ZD1 | 120,572 | 54,632,419 | 453 | 538 | 40.82 |
ZD2 | 107,543 | 47,553,693 | 442 | 521 | 41.1 |
ZD3 | 127,451 | 54,918,390 | 430 | 496 | 41.11 |
Unigenes | |||||
HL1 | 67,940 | 39,732,836 | 584 | 773 | 42.26 |
HL2 | 68,665 | 41,007,566 | 597 | 795 | 42.16 |
HL3 | 88,796 | 60,545,304 | 681 | 1001 | 43.49 |
HD1 | 66,739 | 41,080,421 | 615 | 844 | 41.76 |
HD2 | 72,368 | 44,546,054 | 615 | 841 | 42.79 |
HD3 | 69,148 | 40,744,957 | 589 | 783 | 42.09 |
H-All-Unigene | 165,681 | 120,168,668 | 725 | 1160 | 43.13 |
ZL1 | 65,474 | 40,591,850 | 619 | 879 | 41.04 |
ZL2 | 74,256 | 46,318,502 | 623 | 894 | 41.06 |
ZL3 | 75,204 | 45,575,216 | 606 | 854 | 40.99 |
ZD1 | 66,720 | 38,813,305 | 581 | 790 | 41.01 |
ZD2 | 59,005 | 33,677,252 | 570 | 768 | 41.28 |
ZD3 | 68,165 | 38,195,019 | 560 | 740 | 41.37 |
Z-All-Unigene | 153,357 | 107,209,071 | 699 | 1179 | 40.9 |
Gene ID | Length (bp) | Primer Sequence (5′-3′) | Annotation |
---|---|---|---|
Unigene108268_All | |||
CL11714.Contig1 | 127 | F: AGGGCTTCTGAGAGGGTGG | testicular haploid expression protein |
R: GCAGTCTAAGGGAGGCAACAT | |||
CL4523.Contig2 | 111 | F: CCATACCTTACAGCCAACTCATT | basic proline-rich protein-like |
R: GCTTCGTGCCTTCGTTCTT | |||
Unigene104043 | 135 | F: GCTGCGGAAGGTGTCTATGT | Cytochrome P450 |
R: CTCAACTTTGTGCCGATGC | |||
Unigene24870 | 224 | F: ATGCCCATTGTGGACCCTA | NA |
R: CCTAATGGAAGACCACCACCTA | |||
CL3628.Contig6_All | 188 | F: TTTGGCTCATTCGCCTGTA | coagulation factor II |
R: GTCTATTCCGCTTCTTCTCACTC | |||
Unigene24071_All | 149 | F: GTACAAGTAATAGTGTCATTGT | myosin binding subunit |
R: TCGGATGATAAGAATTT | |||
CL16813.Contig2_All | F: GTCATGTGACTTGTCATGTG | carnitine O-palmitoyltransferase 1 | |
R: CTACGCAACAGGTTGTAATATG | |||
CL8767.Contig3 | 170 | F: CTTCTGCACAGACCGACCAT | NA |
R: ACAACAGCCAGCCAACACTAT | |||
Unigene75818_All | 189 | F: TGCCTACTAGAGCCTGCTA | RNA-binding protein 25-like |
R: CCTACCTCGAAAGTGGTGTT | |||
Unigene7204 | 164 | F: TAGCCCAGCCGACTATGAAA | coagulation factor V |
R: CTCACACAACACGCCACACT | |||
Unigene41935_All | 158 | F: ATGGGCTGCTGTTGTTTCGTA | NA |
R: GCAGATGGACATGACGCCAC | |||
CL7165.Contig3 | 135 | F: CCACCTTGGCGTTGATGTT | antigen-like |
R: CGTCCACCTACGGCTATCTT | |||
18S | 126 | F: CATCTTTCAAATGTCTGCCCTA | |
R: TGGATGTGGTAGCCGTTTCT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, S. Comparative Transcriptome Analysis of Toxic and Non-Toxic Nassarius Communities and Identification of Genes Involved in TTX-Adaptation. Toxins 2020, 12, 761. https://doi.org/10.3390/toxins12120761
Zou S. Comparative Transcriptome Analysis of Toxic and Non-Toxic Nassarius Communities and Identification of Genes Involved in TTX-Adaptation. Toxins. 2020; 12(12):761. https://doi.org/10.3390/toxins12120761
Chicago/Turabian StyleZou, Shanmei. 2020. "Comparative Transcriptome Analysis of Toxic and Non-Toxic Nassarius Communities and Identification of Genes Involved in TTX-Adaptation" Toxins 12, no. 12: 761. https://doi.org/10.3390/toxins12120761
APA StyleZou, S. (2020). Comparative Transcriptome Analysis of Toxic and Non-Toxic Nassarius Communities and Identification of Genes Involved in TTX-Adaptation. Toxins, 12(12), 761. https://doi.org/10.3390/toxins12120761