The Bacillus cereus Food Infection as Multifactorial Process
Abstract
:1. Introduction
2. Food Poisoning Outbreaks Associated with B. cereus
3. Prevalence and Survival of B. cereus in Foods
4. Survival of the Stomach Passage
5. Germination of Spores
6. Motility and Flagella
7. Adhesion to the Intestinal Epithelium
8. Production of Diarrheal Enterotoxins
9. Influence of Consumed Foods
10. Influence of the Intestinal Microbiota
11. Risk Evaluation of Foods Contaminated with B. cereus
12. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Halverson, L.J.; Clayton, M.K.; Handelsman, J. Variable stability of antibiotic-resistance markers in Bacillus cereus UW85 in the soybean rhizosphere in the field. Mol. Ecol. 1993, 2, 65–78. [Google Scholar] [CrossRef]
- Jensen, G.B.; Hansen, B.M.; Eilenberg, J.; Mahillon, J. The hidden lifestyles of Bacillus cereus and relatives. Environ. Microbiol. 2003, 5, 631–640. [Google Scholar] [CrossRef]
- Vilain, S.; Luo, Y.; Hildreth, M.B.; Brozel, V.S. Analysis of the life cycle of the soil saprophyte Bacillus cereus in liquid soil extract and in soil. Appl. Environ. Microbiol. 2006, 72, 4970–4977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson Borge, G.I.; Skeie, M.; Sorhaug, T.; Langsrud, T.; Granum, P.E. Growth and toxin profiles of Bacillus cereus isolated from different food sources. Int. J. Food Microbiol. 2001, 69, 237–246. [Google Scholar] [CrossRef]
- Johnson, K.M. Bacillus cereus food-borne illness. An update. Food Prot. 1984, 47, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Kramer, J.M.; Gilbert, R.J. Bacillus cereus and other Bacillus species. In Foodborne Bacterial Pathogens; Doyle, M.P., Ed.; Marcel Dekker Inc.: New York, NY, USA, 1989; pp. 21–50. [Google Scholar]
- Nicholson, W.L.; Munakata, N.; Horneck, G.; Melosh, H.J.; Setlow, P. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 2000, 64, 548–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Setlow, P. Spores of Bacillus subtilis: Their resistance to and killing by radiation, heat and chemicals. J. Appl. Microbiol. 2006, 101, 514–525. [Google Scholar] [CrossRef]
- Setlow, P. Spore Resistance Properties. Microbiol. Spectr. 2014, 2. [Google Scholar] [CrossRef] [Green Version]
- Carlin, F. Origin of bacterial spores contaminating foods. Food Microbiol. 2011, 28, 177–182. [Google Scholar] [CrossRef]
- Karunakaran, E.; Biggs, C.A. Mechanisms of Bacillus cereus biofilm formation: An investigation of the physicochemical characteristics of cell surfaces and extracellular proteins. Appl. Microbiol. Biotechnol. 2011, 89, 1161–1175. [Google Scholar] [CrossRef]
- Majed, R.; Faille, C.; Kallassy, M.; Gohar, M. Bacillus cereus biofilms-same, only different. Front. Microbiol. 2016, 7, 1054. [Google Scholar] [CrossRef] [PubMed]
- Nam, H.; Seo, H.S.; Bang, J.; Kim, H.; Beuchat, L.R.; Ryu, J.H. Efficacy of gaseous chlorine dioxide in inactivating Bacillus cereus spores attached to and in a biofilm on stainless steel. Int. J. Food Microbiol. 2014, 188, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.S.; Tsai, W.C.; Chou, C.C. Inactivation and removal of Bacillus cereus by sanitizer and detergent. Int. J. Food Microbiol. 2002, 77, 11–18. [Google Scholar] [CrossRef]
- Ryu, J.H.; Beuchat, L.R. Biofilm formation and sporulation by Bacillus cereus on a stainless steel surface and subsequent resistance of vegetative cells and spores to chlorine, chlorine dioxide, and a peroxyacetic acid-based sanitizer. J. Food Prot. 2005, 68, 2614–2622. [Google Scholar] [CrossRef]
- Andersson, A.; Rönner, U.; Granum, P.E. What problems does the food industry have with the spore-forming pathogens Bacillus cereus and Clostridium perfringens? Int. J. Food Microbiol. 1995, 28, 145–155. [Google Scholar] [CrossRef]
- De Jonghe, V.; Coorevits, A.; De Block, J.; Van Coillie, E.; Grijspeerdt, K.; Herman, L.; De Vos, P.; Heyndrickx, M. Toxinogenic and spoilage potential of aerobic spore-formers isolated from raw milk. Int. J. Food Microbiol. 2010, 136, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Heyndrickx, M.; Scheldeman, P. Bacilli associated with spoilage in dairy products and other food. In Applications and Systematics of Bacillus and Relatives; Berkeley, R., Heyndrickx, M., Logan, N., De Vos, P., Eds.; Blackwell Science Ltd.: Hoboken, NJ, USA, 2008. [Google Scholar] [CrossRef]
- Pepe, O.; Blaiotta, G.; Moschetti, G.; Greco, T.; Villani, F. Rope-producing strains of Bacillus spp. from wheat bread and strategy for their control by lactic acid bacteria. Appl. Environ. Microbiol. 2003, 69, 2321–2329. [Google Scholar] [CrossRef] [Green Version]
- Anonymous. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks 2011. EFSA J. 2013, 11, 3129. [Google Scholar] [CrossRef]
- Anonymous. The European Union Summary Report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2012. EFSA J. 2014, 12. [Google Scholar] [CrossRef]
- Anonymous. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2013. EFSA J. 2015, 13, 3991. [Google Scholar] [CrossRef] [Green Version]
- Anonymous. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2014. EFSA J. 2015, 13, 4329. [Google Scholar] [CrossRef]
- Anonymous. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2015. EFSA J. 2016, 14, 4634. [Google Scholar] [CrossRef]
- Anonymous. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne ourbreaks in 2016. EFSA J. 2017, 15, 5077. [Google Scholar] [CrossRef] [Green Version]
- Anonymous. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J. 2018, 16, 5500. [Google Scholar] [CrossRef]
- Glasset, B.; Herbin, S.; Guillier, L.; Cadel-Six, S.; Vignaud, M.L.; Grout, J.; Pairaud, S.; Michel, V.; Hennekinne, J.A.; Ramarao, N.; et al. Bacillus cereus-induced food-borne outbreaks in France, 2007 to 2014: Epidemiology and genetic characterisation. Eurosurveillance 2016, 21, 30413. [Google Scholar] [CrossRef]
- Bennett, S.D.; Walsh, K.A.; Gould, L.H. Foodborne disease outbreaks caused by Bacillus cereus, Clostridium perfringens, and Staphylococcus aureus—United States, 1998–2008. Clin. Infect. Dis. 2013, 57, 425–433. [Google Scholar] [CrossRef]
- Scallan, E.; Griffin, P.M.; Angulo, F.J.; Tauxe, R.V.; Hoekstra, R.M. Foodborne illness acquired in the United States--unspecified agents. Emerg. Infect. Dis. 2011, 17, 16–22. [Google Scholar] [CrossRef]
- Scharff, R.L. Economic burden from health losses due to foodborne illness in the United States. J. Food Prot. 2012, 75, 123–131. [Google Scholar] [CrossRef]
- Dierick, K.; Van Coillie, E.; Swiecicka, I.; Meyfroidt, G.; Devlieger, H.; Meulemans, A.; Hoedemaekers, G.; Fourie, L.; Heyndrickx, M.; Mahillon, J. Fatal family outbreak of Bacillus cereus-associated food poisoning. J. Clin. Microbiol. 2005, 43, 4277–4279. [Google Scholar] [CrossRef] [Green Version]
- Ehling-Schulz, M.; Fricker, M.; Scherer, S. Bacillus cereus, the causative agent of an emetic type of food-borne illness. Mol. Nutr. Food Res. 2004, 48, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Lund, T.; De Buyser, M.L.; Granum, P.E. A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Mol. Microbiol. 2000, 38, 254–261. [Google Scholar] [CrossRef]
- Mahler, H.; Pasi, A.; Kramer, J.M.; Schulte, P.; Scoging, A.C.; Bar, W.; Krahenbuhl, S. Fulminant liver failure in association with the emetic toxin of Bacillus cereus. N. Engl. J. Med. 1997, 336, 1142–1148. [Google Scholar] [CrossRef]
- Naranjo, M.; Denayer, S.; Botteldoorn, N.; Delbrassinne, L.; Veys, J.; Waegenaere, J.; Sirtaine, N.; Driesen, R.B.; Sipido, K.R.; Mahillon, J.; et al. Sudden death of a young adult associated with Bacillus cereus food poisoning. J. Clin. Microbiol. 2011, 49, 4379–4381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Posfay-Barbe, K.M.; Schrenzel, J.; Frey, J.; Studer, R.; Korff, C.; Belli, D.C.; Parvex, P.; Rimensberger, P.C.; Schappi, M.G. Food poisoning as a cause of acute liver failure. Pediatr. Infect. Dis. J. 2008, 27, 846–847. [Google Scholar] [CrossRef]
- Tschiedel, E.; Rath, P.M.; Steinmann, J.; Becker, H.; Dietrich, R.; Paul, A.; Felderhoff-Muser, U.; Dohna-Schwake, C. Lifesaving liver transplantation for multi-organ failure caused by Bacillus cereus food poisoning. Pediatr. Transplant. 2015, 19, E11–E14. [Google Scholar] [CrossRef] [PubMed]
- Shiota, M.; Saitou, K.; Mizumoto, H.; Matsusaka, M.; Agata, N.; Nakayama, M.; Kage, M.; Tatsumi, S.; Okamoto, A.; Yamaguchi, S.; et al. Rapid detoxification of cereulide in Bacillus cereus food poisoning. Pediatrics 2010, 125, e951–e955. [Google Scholar] [CrossRef]
- Agata, N.; Ohta, M.; Mori, M.; Isobe, M. A novel dodecadepsipeptide, cereulide, is an emetic toxin of Bacillus cereus. FEMS Microbiol. Lett. 1995, 129, 17–20. [Google Scholar] [CrossRef]
- Andersson, M.A.; Hakulinen, P.; Honkalampi-Hamalainen, U.; Hoornstra, D.; Lhuguenot, J.C.; Maki-Paakkanen, J.; Savolainen, M.; Severin, I.; Stammati, A.L.; Turco, L.; et al. Toxicological profile of cereulide, the Bacillus cereus emetic toxin, in functional assays with human, animal and bacterial cells. Toxicon 2007, 49, 351–367. [Google Scholar] [CrossRef] [PubMed]
- Ehling-Schulz, M.; Fricker, M.; Grallert, H.; Rieck, P.; Wagner, M.; Scherer, S. Cereulide synthetase gene cluster from emetic Bacillus cereus: Structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1. BMC Microbiol. 2006, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Marxen, S.; Stark, T.D.; Frenzel, E.; Rütschle, A.; Lücking, G.; Purstinger, G.; Pohl, E.E.; Scherer, S.; Ehling-Schulz, M.; Hofmann, T. Chemodiversity of cereulide, the emetic toxin of Bacillus cereus. Anal. Bioanal. Chem. 2015, 407, 2439–2453. [Google Scholar] [CrossRef]
- Mikkola, R.; Saris, N.E.; Grigoriev, P.A.; Andersson, M.A.; Salkinoja-Salonen, M.S. Ionophoretic properties and mitochondrial effects of cereulide: The emetic toxin of B. cereus. Eur. J. Biochem. 1999, 263, 112–117. [Google Scholar] [CrossRef] [Green Version]
- Rajkovic, A.; Uyttendaele, M.; Vermeulen, A.; Andjelkovic, M.; Fitz-James, I.; In’t Veld, P.; Denon, Q.; Verhe, R.; Debevere, J. Heat resistance of Bacillus cereus emetic toxin, cereulide. Lett. Appl. Microbiol. 2008, 46, 536–541. [Google Scholar] [CrossRef]
- Teplova, V.V.; Mikkola, R.; Tonshin, A.A.; Saris, N.E.; Salkinoja-Salonen, M.S. The higher toxicity of cereulide relative to valinomycin is due to its higher affinity for potassium at physiological plasma concentration. Toxicol. Appl. Pharmacol. 2006, 210, 39–46. [Google Scholar] [CrossRef]
- Anonymous. Opinion of the Scientific Panel on Biological Hazards on Bacillus cereus and other Bacillus spp. in foodstuffs. EFSA J. 2005, 175, 1–48. [Google Scholar] [CrossRef]
- Granum, P.E.; Lund, T. Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Lett. 1997, 157, 223–228. [Google Scholar] [CrossRef]
- Logan, N.A. Bacillus and relatives in foodborne illness. J. Appl. Microbiol. 2012, 112, 417–429. [Google Scholar] [CrossRef]
- Lund, T.; Granum, P.E. Characterisation of a non-haemolytic enterotoxin complex from Bacillus cereus isolated after a foodborne outbreak. FEMS Microbiol. Lett. 1996, 141, 151–156. [Google Scholar] [CrossRef]
- Beecher, D.J.; Macmillan, J.D. Characterization of the components of hemolysin BL from Bacillus cereus. Infect. Immun. 1991, 59, 1778–1784. [Google Scholar] [CrossRef] [Green Version]
- Clavel, T.; Carlin, F.; Lairon, D.; Nguyen-The, C.; Schmitt, P. Survival of Bacillus cereus spores and vegetative cells in acid media simulating human stomach. J. Appl. Microbiol. 2004, 97, 214–219. [Google Scholar] [CrossRef]
- Frankland, G.C.; Frankland, P.F. Studies in some new micro-organisms obtained from air. Philos. Trans. R. Soc. Lond. 1887, 178, 257–287. [Google Scholar] [CrossRef] [Green Version]
- Lubenau, C. Bacillus peptonificans als Erreger einer Gastroenteritis-Epidemie. Zentralb. Bacteriol. Parasitenkd. Infections-kr. Hyg. Abt. 1906, 40, 433–437. [Google Scholar]
- Hauge, S. Food poisoning caused by aerobic spore-forming bacilli. J. Appl. Bacteriol. 1955, 18, 591–595. [Google Scholar] [CrossRef]
- Melling, J.; Capel, B.J.; Turnbull, P.C.; Gilbert, R.J. Identification of a novel enterotoxigenic activity associated with Bacillus cereus. J. Clin. Pathol. 1976, 29, 938–940. [Google Scholar] [CrossRef] [Green Version]
- Mortimer, P.R.; McCann, G. Food-poisoning episodes associated with Bacillus cereus in fried rice. Lancet 1974, 1, 1043–1045. [Google Scholar] [CrossRef]
- Taylor, A.J.; Gilbert, R.J. Bacillus cereus food poisoning: A provisional serotyping scheme. J. Med. Microbiol. 1975, 8, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Kotiranta, A.; Lounatmaa, K.; Haapasalo, M. Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect. 2000, 2, 189–198. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Surveillance for foodborne disease outbreaks—United States, 2007. Morb. Mortal. Wkly. Rep. 2010, 59, 973–979. [Google Scholar]
- Centers for Disease Control and Prevention. Surveillance for foodborne disease outbreaks—United States, 2009–2010. Morb. Mortal. Wkly. Rep. 2013, 62, 41–47. [Google Scholar]
- Herman, K.M.; Hall, A.J.; Gould, L.H. Outbreaks attributed to fresh leafy vegetables, United States, 1973–2012. Epidemiol. Infect. 2015, 143, 3011–3021. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. Surveillance for foodborne-disease outbreaks—United States, 1998–2002. Surveill. Summ. 2006, 55, 1–42. [Google Scholar]
- Pan, T.M.; Chiou, C.S.; Hsu, S.Y.; Huang, H.C.; Wang, T.K.; Chiu, S.I.; Yea, H.L.; Lee, C.L. Food-borne disease outbreaks in Taiwan, 1994. J. Formos. Med. Assoc. 1996, 95, 417–420. [Google Scholar]
- Pan, T.M.; Wang, T.K.; Lee, C.L.; Chien, S.W.; Horng, C.B. Food-borne disease outbreaks due to bacteria in Taiwan, 1986 to 1995. J. Clin. Microbiol. 1997, 35, 1260–1262. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Duan, H.; Zhang, W.; Li, J.W. Analysis of bacterial foodborne disease outbreaks in China between 1994 and 2005. FEMS Immunol. Med. Microbiol. 2007, 51, 8–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chai, S.J.; Gu, W.; O’Connor, K.A.; Richardson, L.C.; Tauxe, R.V. Incubation periods of enteric illnesses in foodborne outbreaks, United States, 1998–2013. Epidemiol. Infect. 2019, 147, e285. [Google Scholar] [CrossRef] [Green Version]
- Portnoy, B.L.; Goepfert, J.M.; Harmon, S.M. An outbreak of Bacillus cereus food poisoning resulting from contaminated vegetable sprouts. Am. J. Epidemiol. 1976, 103, 589–594. [Google Scholar] [CrossRef]
- Giannella, R.A.; Brasile, L. A hospital food-borne outbreak of diarrhea caused by Bacillus cereus: Clinical, epidemiologic, and microbiologic studies. J. Infect. Dis. 1979, 139, 366–370. [Google Scholar] [CrossRef]
- Baddour, L.M.; Gaia, S.M.; Griffin, R.; Hudson, R. A hospital cafeteria-related food-borne outbreak due to Bacillus cereus: Unique features. Infect. Control. 1986, 7, 462–465. [Google Scholar] [CrossRef] [PubMed]
- DeBuono, B.A.; Brondum, J.; Kramer, J.M.; Gilbert, R.J.; Opal, S.M. Plasmid, serotypic, and enterotoxin analysis of Bacillus cereus in an outbreak setting. J. Clin. Microbiol. 1988, 26, 1571–1574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slaten, D.D.; Oropeza, R.I.; Werner, S.B. An outbreak of Bacillus cereus food poisoning--are caterers supervised sufficiently. Public Health Rep. 1992, 107, 477–480. [Google Scholar]
- Luby, S.; Jones, J.; Dowda, H.; Kramer, J.; Horan, J. A large outbreak of gastroenteritis caused by diarrheal toxin-producing Bacillus cereus. J. Infect. Dis. 1993, 167, 1452–1455. [Google Scholar] [CrossRef]
- Granum, P.E. An outbreak of Bacillus cereus food poisoning during the Norwegian Ski Championships for juniors. Nor. Vet. 1995, 107, 945–948. [Google Scholar]
- Gaulin, C.; Viger, Y.B.; Fillion, L. An outbreak of Bacillus cereus implicating a part-time banquet caterer. Can. J. Public Health 2002, 93, 353–355. [Google Scholar] [CrossRef]
- Ghelardi, E.; Celandroni, F.; Salvetti, S.; Barsotti, C.; Baggiani, A.; Senesi, S. Identification and characterization of toxigenic Bacillus cereus isolates responsible for two food-poisoning outbreaks. FEMS Microbiol. Lett. 2002, 208, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Hoffmaster, A.R.; Novak, R.T.; Marston, C.K.; Gee, J.E.; Helsel, L.; Pruckler, J.M.; Wilkins, P.P. Genetic diversity of clinical isolates of Bacillus cereus using multilocus sequence typing. BMC Microbiol. 2008, 8, 191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McIntyre, L.; Bernard, K.; Beniac, D.; Isaac-Renton, J.L.; Naseby, D.C. Identification of Bacillus cereus group species associated with food poisoning outbreaks in British Columbia, Canada. Appl. Environ. Microbiol. 2008, 74, 7451–7453. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, M.; Nair, G.B.; Ramamurthy, T. Phenotypic & genetic characterization of Bacillus cereus isolated from the acute diarrheal patients. Indian J. Med. Res. 2011, 133, 88–95. [Google Scholar]
- Al-Abri, S.S.; Al-Jardani, A.K.; Al-Hosni, M.S.; Kurup, P.J.; Al-Busaidi, S.; Beeching, N.J. A hospital acquired outbreak of Bacillus cereus gastroenteritis, Oman. J. Infect. Public Health 2011, 4, 180–186. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.B.; Lim, H.S.; Lee, K.; Ha, G.Y.; Jung, K.H.; Sohn, C.K. Epidemiological investigation for outbreak of food poisoning caused by Bacillus cereus among the workers at a local company in 2010. J. Prev. Med. Public Health 2011, 44, 65–73. [Google Scholar] [CrossRef]
- Sloan-Gardner, T.S.; Glynn-Robinson, A.J.; Roberts-Witteveen, A.; Krsteski, R.; Rogers, K.; Kaye, A.; Moffatt, C.R. An outbreak of gastroenteritis linked to a buffet lunch served at a Canberra restaurant. Commun. Dis. Intell. Q. Rep. 2014, 38, E273–E278. [Google Scholar]
- Zhou, G.; Bester, K.; Liao, B.; Yang, Z.; Jiang, R.; Hendriksen, N.B. Characterization of three Bacillus cereus strains involved in a major outbreak of food poisoning after consumption of fermented black beans (Douchi) in Yunan, China. Foodborne Pathog. Dis. 2014, 11, 769–774. [Google Scholar] [CrossRef]
- May, F.J.; Polkinghorne, B.G.; Fearnley, E.J. Epidemiology of bacterial toxin-mediated foodborne gastroenteritis outbreaks in Australia, 2001 to 2013. Commun. Dis. Intell. Q. Rep. 2016, 40, E460–E469. [Google Scholar]
- Schmid, D.; Rademacher, C.; Kanitz, E.E.; Frenzel, E.; Simons, E.; Allerberger, F.; Ehling-Schulz, M. Elucidation of enterotoxigenic Bacillus cereus outbreaks in Austria by complementary epidemiological and microbiological investigations, 2013. Int. J. Food. Microbiol. 2016, 232, 80–86. [Google Scholar] [CrossRef]
- Lentz, S.A.M.; Rivas, P.M.; Cardoso, M.R.I.; Morales, D.L.; Centenaro, F.C.; Martins, A.F. Bacillus cereus as the main casual agent of foodborne outbreaks in Southern Brazil: Data from 11 years. Cad. Saude Publica 2018, 34, e00057417. [Google Scholar] [CrossRef]
- Carroll, L.M.; Wiedmann, M.; Mukherjee, M.; Nicholas, D.C.; Mingle, L.A.; Dumas, N.B.; Cole, J.A.; Kovac, J. Characterization of emetic and diarrheal Bacillus cereus strains from a 2016 foodborne outbreak using whole-genome sequencing: Addressing the microbiological, epidemiological, and bioinformatic challenges. Front. Microbiol. 2019, 10, 144. [Google Scholar] [CrossRef] [Green Version]
- Thirkell, C.E.; Sloan-Gardner, T.S.; Kacmarek, M.C.; Polkinghorne, B. An outbreak of Bacillus cereus toxin-mediated emetic and diarrheal syndromes at a restaurant in Canberra, Australia 2018. Commun. Dis. Intell. 2019, 43. [Google Scholar] [CrossRef]
- Raevuori, M.; Kiutamo, T.; Niskanen, A.; Salminen, K. An outbreak of Bacillus cereus food-poisoning in Finland associated with boiled rice. J. Hyg. (Lond.) 1976, 76. [Google Scholar] [CrossRef] [Green Version]
- Takabe, F.; Oya, M. An autopsy case of food poisoning associated with Bacillus cereus. Forensic Sci. 1976, 7, 97–101. [Google Scholar] [CrossRef]
- Holmes, J.R.; Plunkett, T.; Pate, P.; Roper, W.L.; Alexander, W.J. Emetic food poisoning caused by Bacillus cereus. Arch. Intern. Med. 1981, 141, 766–767. [Google Scholar] [CrossRef]
- Tay, L.; Goh, K.T.; Tan, S.E. An outbreak of Bacillus cereus food poisoning. Singap. Med. J. 1982, 23, 214–217. [Google Scholar]
- Centers for Disease Control and Prevention. Bacillus cereus food poisoning associated with fried rice at two child day care centers—Virginia, 1993. Morb. Mortal. Wkly. Rep. 1994, 43, 177–178.
- Nishikawa, Y.; Kramer, J.M.; Hanaoka, M.; Yasukawa, A. Evaluation of serotyping, biotyping, plasmid banding pattern analysis, and HEp-2 vacuolation factor assay in the epidemiological investigation of Bacillus cereus emetic-syndrome food poisoning. Int. J. Food Microbiol. 1996, 31, 149–159. [Google Scholar] [CrossRef]
- Briley, R.T.; Teel, J.H.; Fowler, J.P. Nontypical Bacillus cereus outbreak in a child care center. J. Environ. Health 2001, 63, 9–11, 21. [Google Scholar]
- Latsios, G.; Petrogiannopoulos, C.; Hartzoulakis, G.; Kondili, L.; Bethimouti, K.; Zaharof, A. Liver abscess due to Bacillus cereus: A case report. Clin. Microbiol. Infect. 2003, 9, 1234–1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirhonen, T.I.; Andersson, M.A.; Jääskeläinen, E.L.; Salkinoja-Salonen, M.S.; Honkanen-Buzalski, T.; Johansson, T.M.L. Biochemical and toxic diversity of Bacillus cereus in a pasta and meat dish associated with a food-poisoning case. Food Microbiol. 2005, 22, 87–91. [Google Scholar] [CrossRef]
- Fricker, M.; Messelhäusser, U.; Busch, U.; Scherer, S.; Ehling-Schulz, M. Diagnostic real-time PCR assays for the detection of emetic Bacillus cereus strains in foods and recent food-borne outbreaks. Appl. Environ. Microbiol. 2007, 73, 1892–1898. [Google Scholar] [CrossRef] [Green Version]
- Ichikawa, K.; Gakumazawa, M.; Inaba, A.; Shiga, K.; Takeshita, S.; Mori, M.; Kikuchi, N. Acute encephalopathy of Bacillus cereus mimicking Reye syndrome. Brain Dev. 2010, 32, 688–690. [Google Scholar] [CrossRef]
- Kim, J.B.; Jeong, H.R.; Park, Y.B.; Kim, J.M.; Oh, D.H. Food poisoning associated with emetic-type of Bacillus cereus in Korea. Foodborne Pathog. Dis. 2010, 7, 555–563. [Google Scholar] [CrossRef]
- Domenech-Sanchez, A.; Laso, E.; Perez, M.J.; Berrocal, C.I. Emetic disease caused by Bacillus cereus after consumption of tuna fish in a beach club. Foodborne Pathog. Dis. 2011, 8, 835–837. [Google Scholar] [CrossRef] [PubMed]
- Kamga Wambo, G.O.; Burckhardt, F.; Frank, C.; Hiller, P.; Wichmann-Schauer, H.; Zuschneid, I.; Hentschke, J.; Hitzbleck, T.; Contzen, M.; Suckau, M.; et al. The proof of the pudding is in the eating: An outbreak of emetic syndrome after a kindergarten excursion, Berlin, Germany, December 2007. Eurosurveillance 2011, 16, 19839. [Google Scholar]
- Chon, J.W.; Kim, J.H.; Lee, S.J.; Hyeon, J.Y.; Song, K.Y.; Park, C.; Seo, K.H. Prevalence, phenotypic traits and molecular characterization of emetic toxin-producing Bacillus cereus strains isolated from human stools in Korea. J. Appl. Microbiol. 2012, 112, 1042–1049. [Google Scholar] [CrossRef]
- Delbrassinne, L.; Andjelkovic, M.; Rajkovic, A.; Dubois, P.; Nguessan, E.; Mahillon, J.; Van Loco, J. Determination of Bacillus cereus emetic toxin in food products by means of LC-MSA(2). Food Anal. Methods 2012, 5, 969–979. [Google Scholar] [CrossRef]
- Saleh, M.; Al Nakib, M.; Doloy, A.; Jacqmin, S.; Ghiglione, S.; Verroust, N.; Poyart, C.; Ozier, Y. Bacillus cereus, an unusual cause of fulminant liver failure: Diagnosis may prevent liver transplantation. J. Med. Microbiol. 2012, 61, 743–745. [Google Scholar] [CrossRef] [Green Version]
- Martinelli, D.; Fortunato, F.; Tafuri, S.; Cozza, V.; Chironna, M.; Germinario, C.; Pedalino, B.; Prato, R. Lessons learnt from a birthday party: A Bacillus cereus outbreak, Bari, Italy, January 2012. Ann. Ist. Super. Sanita 2013, 49, 391–394. [Google Scholar] [CrossRef]
- Messelhäusser, U.; Frenzel, E.; Blochinger, C.; Zucker, R.; Kampf, P.; Ehling-Schulz, M. Emetic Bacillus cereus are more volatile than thought: Recent foodborne outbreaks and prevalence studies in Bavaria (2007–2013). BioMed. Res. Int. 2014, 2014, 465603. [Google Scholar] [CrossRef] [Green Version]
- Lopez, A.C.; Minnaard, J.; Perez, P.F.; Alippi, A.M. A case of intoxication due to a highly cytotoxic Bacillus cereus strain isolated from cooked chicken. Food Microbiol. 2015, 46, 195–199. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, M.; Purcell, B.; Willis, C.; Amar, C.F.; Kanagarajah, S.; Chamberlain, D.; Wooldridge, D.; Morgan, J.; McLauchlin, J.; Grant, K.A.; et al. Investigation of an outbreak of vomiting in nurseries in South East England, May 2012. Epidemiol. Infect. 2016, 144, 582–590. [Google Scholar] [CrossRef] [Green Version]
- Dichtl, K.; Koeppel, M.B.; Wallner, C.P.; Marx, T.; Wagener, J.; Ney, L. Food poisoning: An underestimated cause of Boerhaave syndrome. Infection 2019, 48, 125–128. [Google Scholar] [CrossRef]
- Gilbert, R.J.; Kramer, J.M. Bacillus cereus Food Poisoning. Progress in Food Safety (Proceedings of Symposium); Cliver, D.C., Cochrane, B.A., Eds.; Food Research Institute, University of Wisconsin-Madison: Madison, WI, USA, 1986; pp. 85–93. [Google Scholar]
- Becker, H.; Schaller, G.; von Wiese, W.; Terplan, G. Bacillus cereus in infant foods and dried milk products. Int. J. Food Microbiol. 1994, 23, 1–15. [Google Scholar] [CrossRef]
- Granum, P.E.; Brynestad, S.; Kramer, J.M. Analysis of enterotoxin production by Bacillus cereus from dairy products, food poisoning incidents and non-gastrointestinal infections. Int. J. Food Microbiol. 1993, 17, 269–279. [Google Scholar] [CrossRef]
- Kamat, A.S.; Nerkar, D.P.; Nair, P.M. Bacillus cereus in some Indian foods, incidence and antibiotic, heat and radiation resistance. J. Food Saf. 1989, 10, 31–41. [Google Scholar] [CrossRef]
- Rusul, G.; Yaacob, N.H. Prevalence of Bacillus cereus in selected foods and detection of enterotoxin using TECRA-VIA and BCET-RPLA. Int. J. Food Microbiol. 1995, 25, 131–139. [Google Scholar] [CrossRef]
- Lin, S.; Schraft, H.; Odumeru, J.A.; Griffiths, M.W. Identification of contamination sources of Bacillus cereus in pasteurized milk. Int. J. Food Microbiol. 1998, 43, 159–171. [Google Scholar] [CrossRef] [Green Version]
- Schoeni, J.L.; Wong, A.C. Bacillus cereus food poisoning and its toxins. J. Food Prot. 2005, 68, 636–648. [Google Scholar] [CrossRef]
- Shinagawa, K. Analytical methods for Bacillus cereus and other Bacillus species. Int. J. Food Microbiol. 1990, 10, 125–141. [Google Scholar] [CrossRef]
- Altayar, M.; Sutherland, A.D. Bacillus cereus is common in the environment but emetic toxin producing isolates are rare. J. Appl. Microbiol. 2005, 100, 7–14. [Google Scholar] [CrossRef]
- Lopez, A.C.; Alippi, A.M. Enterotoxigenic gene profiles of Bacillus cereus and Bacillus megaterium isolates recovered from honey. Rev. Argent. Microbiol. 2010, 42, 216–225. [Google Scholar]
- Rowan, N.J.; Anderson, J.G. Diarrheal enterotoxin production by psychrotrophic Bacillus cereus present in reconstituted milk-based infant formulae (MIF). Lett. Appl. Microbiol. 1998, 26, 161–165. [Google Scholar] [CrossRef]
- Zeighami, H.; Nejad-Dost, G.; Parsadanians, A.; Daneshamouz, S.; Haghi, F. Frequency of hemolysin BL and non-hemolytic enterotoxin complex genes of Bacillus cereus in raw and cooked meat samples in Zanjan, Iran. Toxicol. Rep. 2020, 7, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Fangio, M.F.; Roura, S.I.; Fritz, R. Isolation and identification of Bacillus spp. and related genera from different starchy foods. J. Food Sci. 2010, 75, M218–M221. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.J.; Whyte, R.; Hudson, J.A.; Kaltovei, S.L. Presence and growth of Bacillus cereus in dehydrated potato flakes and hot-held, ready-to-eat potato products purchased in New Zealand. J. Food Prot. 2006, 69, 1173–1177. [Google Scholar] [CrossRef]
- Berthold-Pluta, A.; Pluta, A.; Garbowska, M.; Stefanska, I. Prevalence and toxicity characterization of Bacillus cereus in food products from Poland. Foods 2019, 8, 269. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Liu, X.; Dietrich, R.; Märtlbauer, E.; Cao, J.; Ding, S.; Zhu, K. Characterization of Bacillus cereus isolates from local dairy farms in China. FEMS Microbiol. Lett. 2016, 363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, T.; Ding, Y.; Wu, Q.; Wang, J.; Zhang, J.; Yu, S.; Yu, P.; Liu, C.; Kong, L.; Feng, Z.; et al. Prevalence, virulence genes, antimicrobial susceptibility, and genetic diversity of Bacillus cereus isolated from pasteurized milk in China. Front. Microbiol. 2018, 9, 533. [Google Scholar] [CrossRef] [Green Version]
- Sanchez Chica, J.; Correa, M.M.; Aceves-Diez, A.E.; Rasschaert, G.; Heyndrickx, M.; Castaneda-Sandoval, L.M. Genomic and toxigenic heterogeneity of Bacillus cereus sensu lato isolated from ready-to-eat foods and powdered milk in day care centers in Colombia. Foodborne Pathog. Dis. 2020, 17, 340–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, P.; Yu, S.; Wang, J.; Guo, H.; Zhang, Y.; Liao, X.; Zhang, J.; Wu, S.; Gu, Q.; Xue, L.; et al. Bacillus cereus isolated from vegetables in China: Incidence, genetic diversity, virulence genes, and antimicrobial resistance. Front. Microbiol. 2019, 10, 948. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Yu, P.; Wang, J.; Li, C.; Guo, H.; Liu, C.; Kong, L.; Yu, L.; Wu, S.; Lei, T.; et al. A study on prevalence and characterization of Bacillus cereus in ready-to-eat foods in China. Front. Microbiol. 2019, 10, 3043. [Google Scholar] [CrossRef] [Green Version]
- Ehling-Schulz, M.; Frenzel, E.; Gohar, M. Food-bacteria interplay: Pathometabolism of emetic Bacillus cereus. Front. Microbiol. 2015, 6, 704. [Google Scholar] [CrossRef] [Green Version]
- Anonymous. Scientific opinion on the risks for public health related to the presence of Bacillus cereus and other Bacillus spp. including Bacillus thuringiensis in foodstuffs. EFSA J. 2016, 14, 93. [Google Scholar] [CrossRef]
- Carlin, F.; Albagnac, C.; Rida, A.; Guinebretiére, M.H.; Couvert, O.; Nguyen-The, C. Variation of cardinal growth parameters and growth limits according to phylogenetic affiliation in the Bacillus cereus Group. Consequences for risk assessment. Food Microbiol. 2013, 33, 69–76. [Google Scholar] [CrossRef]
- Cetin-Karaca, H.; Newman, M.C. Antimicrobial efficacy of phytochemicals against Bacillus cereus in reconstituted infant rice cereal. Food Microbiol. 2018, 69, 189–195. [Google Scholar] [CrossRef]
- Daelman, J.; Sharma, A.; Vermeulen, A.; Uyttendaele, M.; Devlieghere, F.; Membre, J.M. Development of a time-to-detect growth model for heat-treated Bacillus cereus spores. Int. J. Food Microbiol. 2013, 165, 231–240. [Google Scholar] [CrossRef]
- Daelman, J.; Vermeulen, A.; Willemyns, T.; Ongenaert, R.; Jacxsens, L.; Uyttendaele, M.; Devlieghere, F. Growth/no growth models for heat-treated psychrotrophic Bacillus cereus spores under cold storage. Int. J. Food Microbiol. 2013, 161, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Desriac, N.; Postollec, F.; Durand, D.; Leguerinel, I.; Sohier, D.; Coroller, L. Sensitivity of Bacillus weihenstephanensis to acidic changes of the medium is not dependant on physiological state. Food Microbiol. 2013, 36, 440–446. [Google Scholar] [CrossRef]
- Fei, P.; Xu, Y.; Zhao, S.; Gong, S.; Guo, L. Olive oil polyphenol extract inhibits vegetative cells of Bacillus cereus isolated from raw milk. J. Dairy Sci. 2019, 102, 3894–3902. [Google Scholar] [CrossRef]
- Guerin, A.; Dargaignaratz, C.; Broussolle, V.; Clavel, T.; Nguyen-The, C. Combined effect of anaerobiosis, low pH and cold temperatures on the growth capacities of psychrotrophic Bacillus cereus. Food Microbiol. 2016, 59, 119–123. [Google Scholar] [CrossRef]
- Holzapfel, W.H.; Geisen, R.; Schillinger, U. Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes. Int. J. Food Microbiol. 1995, 24, 343–362. [Google Scholar] [CrossRef]
- Hussain, M.S.; Tango, C.N.; Oh, D.H. Inactivation kinetics of slightly acidic electrolyzed water combined with benzalkonium chloride and mild heat treatment on vegetative cells, spores, and biofilms of Bacillus cereus. Food Res. Int. 2019, 116, 157–167. [Google Scholar] [CrossRef]
- Jaquette, C.B.; Beuchat, L.R. Survival and growth of psychrotrophic Bacillus cereus in dry and reconstituted infant rice cereal. J. Food Prot. 1998, 61, 1629–1635. [Google Scholar] [CrossRef] [PubMed]
- Mahakarnchanakul, W.; Beuchat, L.R. Influence of temperature shifts on survival, growth, and toxin production by psychrotrophic and mesophilic strains of Bacillus cereus in potatoes and chicken gravy. Int. J. Food Microbiol. 1999, 47, 179–187. [Google Scholar] [CrossRef]
- Samapundo, S.; Heyndrickx, M.; Xhaferi, R.; de Baenst, I.; Devlieghere, F. The combined effect of pasteurization intensity, water activity, pH and incubation temperature on the survival and outgrowth of spores of Bacillus cereus and Bacillus pumilus in artificial media and food products. Int. J. Food Microbiol. 2014, 181, 10–18. [Google Scholar] [CrossRef]
- Tirloni, E.; Cattaneo, P.; Ripamonti, B.; Agazzi, A.; Bersani, C.; Stella, S. In vitro evaluation of Lactobacillus animalis SB310, Lactobacillus paracasei subsp. paracasei SB137 and their mixtures as potential bioprotective agents for raw meat. Food Control 2014, 41. [Google Scholar] [CrossRef]
- Tirloni, E.; Ghelardi, E.; Celandroni, F.; Bernardi, C.; Stella, S. Effect of dairy product environment on the growth of Bacillus cereus. J. Dairy Sci. 2017, 100, 7026–7034. [Google Scholar] [CrossRef]
- Guerin, A.; Dargaignaratz, C.; Clavel, T.; Broussolle, V.; Nguyen-The, C. Heat-resistance of psychrotolerant Bacillus cereus vegetative cells. Food Microbiol. 2017, 64, 195–201. [Google Scholar] [CrossRef]
- Alvarenga, V.O.; Campagnollo, F.B.; Pia, A.K.R.; Conceicao, D.A.; Abud, Y.; Sant’Anna, C.; Hubinger, M.D.; Sant’Ana, A.S. Quantifying the responses of three Bacillus cereus strains in isothermal conditions and during spray drying of different carrier agents. Front. Microbiol. 2018, 9, 1113. [Google Scholar] [CrossRef] [Green Version]
- Necidová, L.; Bursová, Š.; Skočková, A.; Janštová, B.; Prachařová, P.; Ševčíková, Ž.; Janštová, B. Growth and enterotoxin production of Bacillus cereus in cow, goat, and sheep milk. Acta Vet. Brno 2014, 83, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Wong, H.C.; Chen, Y.L.; Chen, C.L.F. Growth, germination and toxigenic activity of Bacillus cereus in milk products. J. Food Prot. 1988, 51, 707–710. [Google Scholar] [CrossRef]
- Afchain, A.L.; Carlin, F.; Nguyen-The, C.; Albert, I. Improving quantitative exposure assessment by considering genetic diversity of B. cereus in cooked, pasteurised and chilled foods. Int. J. Food Microbiol. 2008, 128, 165–173. [Google Scholar] [CrossRef]
- Guinebretiére, M.H.; Thompson, F.L.; Sorokin, A.; Normand, P.; Dawyndt, P.; Ehling-Schulz, M.; Svensson, B.; Sanchis, V.; Nguyen-The, C.; Heyndrickx, M.; et al. Ecological diversification in the Bacillus cereus Group. Environ. Microbiol. 2008, 10, 851–865. [Google Scholar] [CrossRef]
- De Bellis, P.; Minervini, F.; Di Biase, M.; Valerio, F.; Lavermicocca, P.; Sisto, A. Toxigenic potential and heat survival of spore-forming bacteria isolated from bread and ingredients. Int. J. Food Microbiol. 2015, 197, 30–39. [Google Scholar] [CrossRef]
- Luu-Thi, H.; Khadka, D.B.; Michiels, C.W. Thermal inactivation parameters of spores from different phylogenetic groups of Bacillus cereus. Int. J. Food Microbiol. 2014, 189, 183–188. [Google Scholar] [CrossRef]
- Zhuang, K.; Li, H.; Zhang, Z.; Wu, S.; Zhang, Y.; Fox, E.M.; Man, C.; Jiang, Y. Typing and evaluating heat resistance of Bacillus cereus sensu stricto isolated from the processing environment of powdered infant formula. J. Dairy Sci. 2019, 102, 7781–7793. [Google Scholar] [CrossRef]
- Lekogo, B.M.; Coroller, L.; Mathot, A.G.; Mafart, P.; Leguerinel, I. Modelling the influence of palmitic, palmitoleic, stearic and oleic acids on apparent heat resistance of spores of Bacillus cereus NTCC 11145 and Clostridium sporogenes Pasteur 79.3. Int. J. Food Microbiol. 2010, 141, 242–247. [Google Scholar] [CrossRef] [Green Version]
- Warda, A.K.; den Besten, H.M.; Sha, N.; Abee, T.; Nierop Groot, M.N. Influence of food matrix on outgrowth heterogeneity of heat damaged Bacillus cereus spores. Int. J. Food Microbiol. 2015, 201, 27–34. [Google Scholar] [CrossRef]
- Rajkovic, A.; Kljajic, M.; Smigic, N.; Devlieghere, F.; Uyttendaele, M. Toxin producing Bacillus cereus persist in ready-to-reheat spaghetti Bolognese mainly in vegetative state. Int. J. Food Microbiol. 2013, 167, 236–243. [Google Scholar] [CrossRef]
- Aguirre, J.S.; de Fernando, G.G.; Hierro, E.; Hospital, X.F.; Ordonez, J.A.; Fernandez, M. Estimation of the growth kinetic parameters of Bacillus cereus spores as affected by pulsed light treatment. Int. J. Food Microbiol. 2015, 202, 20–26. [Google Scholar] [CrossRef]
- Aguirre, J.S.; Ordonez, J.A.; Garcia de Fernando, G.D. A comparison of the effects of E-beam irradiation and heat treatment on the variability of Bacillus cereus inactivation and lag phase duration of surviving cells. Int. J. Food Microbiol. 2012, 153, 444–452. [Google Scholar] [CrossRef]
- Valero, M.; Sarrias, J.A.; Alvarez, D.; Salmeron, M.C. Modeling the influence of electron beam irradiation on the heat resistance of Bacillus cereus spores. Food Microbiol. 2006, 23, 367–371. [Google Scholar] [CrossRef]
- Ryang, J.H.; Kim, N.H.; Lee, B.S.; Kim, C.T.; Lee, S.H.; Hwang, I.G.; Rhee, M.S. Inactivation of Bacillus cereus spores in a tsuyu sauce using continuous ohmic heating with five sequential elbow-type electrodes. J. Appl. Microbiol. 2016, 120, 175–184. [Google Scholar] [CrossRef]
- Ryang, J.H.; Kim, N.H.; Lee, B.S.; Kim, C.T.; Rhee, M.S. Destruction of Bacillus cereus spores in a thick soy bean paste (doenjang) by continuous ohmic heating with five sequential electrodes. Lett. Appl. Microbiol. 2016, 63, 66–73. [Google Scholar] [CrossRef]
- Tian, X.; Yu, Q.; Wu, W.; Dai, R. Inactivation of microorganisms in foods by ohmic heating: A review. J. Food Prot. 2018, 81, 1093–1107. [Google Scholar] [CrossRef]
- Bi Jeon, E.; Choi, M.S.; Kim, J.Y.; Park, S.Y. Synergistic effects of mild heating and dielectric barrier discharge plasma on the reduction of Bacillus cereus in red pepper powder. Foods 2020, 9, 171. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Li, B.; Jadeja, R.; Hung, Y.C. Effects of electrolyzed oxidizing water on inactivation of Bacillus subtilis and Bacillus cereus spores in suspension and on carriers. J. Food Sci. 2016, 81, M144–M149. [Google Scholar] [CrossRef]
- Lv, R.; Muhammad, A.I.; Zou, M.; Yu, Y.; Fan, L.; Zhou, J.; Ding, T.; Ye, X.; Guo, M.; Liu, D. Hurdle enhancement of acidic electrolyzed water antimicrobial efficacy on Bacillus cereus spores using ultrasonication. Appl. Microbiol. Biotechnol. 2020, 104, 4505–4513. [Google Scholar] [CrossRef]
- Tango, C.N.; Wang, J.; Oh, D.H. Modeling of Bacillus cereus growth in brown rice submitted to a combination of ultrasonication and slightly acidic electrolyzed water treatment. J. Food Prot. 2014, 77, 2043–2053. [Google Scholar] [CrossRef] [PubMed]
- Begyn, K.; Kim, T.D.; Heyndrickx, M.; Michiels, C.; Aertsen, A.; Rajkovic, A.; Devlieghere, F. Directed evolution by UV-C treatment of Bacillus cereus spores. Int. J. Food Microbiol. 2020, 317, 108424. [Google Scholar] [CrossRef]
- Pendyala, B.; Patras, A.; Gopisetty, V.V.S.; Sasges, M.; Balamurugan, S. Inactivation of Bacillus and Clostridium spores in coconut water by ultraviolet light. Foodborne Pathog. Dis. 2019, 16, 704–711. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.E.; Choi, H.S.; Lee, D.U.; Min, S.C. Effects of processing parameters on the inactivation of Bacillus cereus spores on red pepper (Capsicum annum L.) flakes by microwave-combined cold plasma treatment. Int. J. Food Microbiol. 2017, 263, 61–66. [Google Scholar] [CrossRef]
- Jo, Y.; Bae, H.; Kim, S.S.; Ban, C.; Kim, S.O.; Choi, Y.J. Inactivation of Bacillus cereus ATCC 14579 spore on garlic with combination treatments of germinant compounds and superheated steam. J. Food Prot. 2019, 82, 691–695. [Google Scholar] [CrossRef]
- Gilbert, R.J.; Stringer, M.F.; Peace, T.C. The survival and growth of Bacillus cereus in boiled and fried rice in relation to outbreaks of food poisoning. J. Hyg. Camb. 1974, 73, 433. [Google Scholar] [CrossRef] [Green Version]
- Hwang, C.A.; Huang, L. Growth and survival of Bacillus cereus from spores in cooked rice—One-step dynamic analysis and predictive modeling. Food Control 2019, 96, 403–409. [Google Scholar] [CrossRef]
- Kwon, M.J.; Lee, C.L.; Yoon, K.S. Risk comparison of the diarrheal and emetic type of Bacillus cereus in tofu. Microorganisms 2019, 7, 536. [Google Scholar] [CrossRef] [Green Version]
- Kwon, M.J.; Rhee, M.S.; Yoon, K.S. A risk assessment study of Bacillus cereus in packaged tofu at a retail market in Korea. Food Sci. Biotechnol. 2020, 29, 339–350. [Google Scholar] [CrossRef]
- Lechner, S.; Mayr, R.; Francis, K.P.; Prüss, B.M.; Kaplan, T.; Wiessner-Gunkel, E.; Stewart, G.S.; Scherer, S. Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int. J. Syst. Bacteriol. 1998, 48 Pt 4, 1373–1382. [Google Scholar] [CrossRef] [Green Version]
- Choma, C.; Guinebretiére, M.H.; Carlin, F.; Schmitt, P.; Velge, P.; Granum, P.E.; Nguyen-The, C. Prevalence, characterization and growth of Bacillus cereus in commercial cooked chilled foods containing vegetables. J. Appl. Microbiol. 2000, 88, 617–625. [Google Scholar] [CrossRef]
- Guinebretiére, M.H.; Velge, P.; Couvert, O.; Carlin, F.; Debuyser, M.L.; Nguyen-The, C. Ability of Bacillus cereus group strains to cause food poisoning varies according to phylogenetic affiliation (groups I to VII) rather than species affiliation. J. Clin. Microbiol. 2010, 48, 3388–3391. [Google Scholar] [CrossRef] [Green Version]
- Samapundo, S.; Heyndrickx, M.; Xhaferi, R.; Devlieghere, F. Incidence, diversity and toxin gene characteristics of Bacillus cereus group strains isolated from food products marketed in Belgium. Int. J. Food Microbiol. 2011, 150, 34–41. [Google Scholar] [CrossRef]
- Stenfors Arnesen, L.P.; O’Sullivan, K.; Granum, P.E. Food poisoning potential of Bacillus cereus strains from Norwegian dairies. Int. J. Food Microbiol. 2007, 116, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Stenfors, L.P.; Granum, P.E. Psychrotolerant species from the Bacillus cereus group are not necessarily Bacillus weihenstephanensis. FEMS Microbiol. Lett. 2001, 197, 223–228. [Google Scholar] [CrossRef] [Green Version]
- Valero, M.; Leontidis, S.; Fernandez, P.S.; Martinez, A.; Salmero, M.C. Growth of Bacillus cereus in natural and acidified carrot substrates over the temperature range 5–30 °C. Food Microbiol. 2000, 17, 605–612. [Google Scholar] [CrossRef]
- Valero, M.; Fernandez, P.S.; Salmero, M.C. Influence of pH and temperature on growth of Bacillus cereus in vegetable substrates. Int. J. Food Microbiol. 2003, 82, 71–79. [Google Scholar] [CrossRef]
- de Sarrau, B.; Clavel, T.; Zwickel, N.; Despres, J.; Dupont, S.; Beney, L.; Tourdot-Marechal, R.; Nguyen-The, C. Unsaturated fatty acids from food and in the growth medium improve growth of Bacillus cereus under cold and anaerobic conditions. Food Microbiol. 2013, 36, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Spanu, C.; Scarano, C.; Spanu, V.; Pala, C.; Casti, D.; Lamon, S.; Cossu, F.; Ibba, M.; Nieddu, G.; De Santis, E.P. Occurrence and behavior of Bacillus cereus in naturally contaminated ricotta salata cheese during refrigerated storage. Food Microbiol. 2016, 58, 135–138. [Google Scholar] [CrossRef]
- International Commission for the Microbiological Specifications of Foods (ICMSF). Bacillus cereus. In: Microbiological specifications of food pathogens, microorganisms in foods. Blackie Acad. Prof. (Lond.) 2005, 5, 20–35. [Google Scholar]
- Claus, D.; Berkeley, R.C.W. Genus Bacillus Cohn, 1872. In Bergey’s Manual of Systematic Bacteriology; Sneath, P.H.A., Mair, N.S., Sharpe, M.E., Holt, J.G., Eds.; The Williams & Wilkins Co.: Baltimore, MD, USA, 1986; Volume 2, pp. 1105–1139. [Google Scholar]
- Hassan, G.M.; Al-Ashmawy, M.A.M.; Meshref, A.M.S.; Afify, S.I. Studies on enterotoxigenic Bacillus cereus in raw milk and some dairy products. J. Food Saf. 2010, 30, 569–583. [Google Scholar] [CrossRef]
- Duport, C.; Jobin, M.; Schmitt, P. Adaptation in Bacillus cereus: From stress to disease. Front. Microbiol. 2016, 7, 1550. [Google Scholar] [CrossRef] [Green Version]
- Pandiani, F.; Chamot, S.; Brillard, J.; Carlin, F.; Nguyen-the, C.; Broussolle, V. Role of the five RNA helicases in the adaptive response of Bacillus cereus ATCC 14579 cells to temperature, pH, and oxidative stresses. Appl. Environ. Microbiol. 2011, 77, 5604–5609. [Google Scholar] [CrossRef] [Green Version]
- Senouci-Rezkallah, K.; Jobin, M.P.; Schmitt, P. Adaptive responses of Bacillus cereus ATCC14579 cells upon exposure to acid conditions involve ATPase activity to maintain their internal pH. Microbiologyopen 2015, 4, 313–322. [Google Scholar] [CrossRef]
- Senouci-Rezkallah, K.; Schmitt, P.; Jobin, M.P. Amino acids improve acid tolerance and internal pH maintenance in Bacillus cereus ATCC14579 strain. Food Microbiol. 2011, 28, 364–372. [Google Scholar] [CrossRef]
- Chen, J.L.; Chiang, M.L.; Chou, C.C. Survival of the acid-adapted Bacillus cereus in acidic environments. Int. J. Food Microbiol. 2009, 128, 424–428. [Google Scholar] [CrossRef]
- Chen, J.L.; Chiang, M.L.; Chou, C.C. The effect of acid adaptation on the susceptibility of Bacillus cereus to the stresses of temperature and H2O2 as well as enterotoxin production. Foodborne Pathog. Dis. 2009, 6, 71–79. [Google Scholar] [CrossRef]
- Mols, M.; Abee, T. Bacillus cereus responses to acid stress. Environ. Microbiol. 2011, 13, 2835–2843. [Google Scholar] [CrossRef]
- Thomassin, S.; Jobin, M.P.; Schmitt, P. The acid tolerance response of Bacillus cereus ATCC14579 is dependent on culture pH, growth rate and intracellular pH. Arch. Microbiol. 2006, 186, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.C.; Chen, Y.L. Effects of lactic acid bacteria and organic acids on growth and germination of Bacillus cereus. Appl. Environ. Microbiol. 1988, 54, 2179–2184. [Google Scholar] [CrossRef] [Green Version]
- Van Melis, C.C.J.; Nierop Groot, N.M.; Tempelaars, M.H.; Moezelaar, R.; Abee, T. Characterization of germination and outgrowth of sorbic acid-stressed Bacillus cereus ATCC 14579 spores: Phenotype and transcriptome analysis. Food Microbiol. 2011, 28, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Pia, A.K.R.; Pereira, A.P.M.; Costa, R.A.; Alvarenga, V.O.; Freire, L.; Carlin, F.; Sant’Ana, A.S. The fate of Bacillus cereus and Geobacillus stearothermophilus during alkalization of cocoa as affected by alkali concentration and use of pre-roasted nibs. Food Microbiol. 2019, 82, 99–106. [Google Scholar] [CrossRef]
- Humblot, C.; Perez-Pulido, R.; Akaki, D.; Loiseau, G.; Guyot, J.P. Prevalence and fate of Bacillus cereus in African traditional cereal-based foods used as infant foods. J. Food Prot. 2012, 75, 1642–1645. [Google Scholar] [CrossRef]
- Irlinger, F.; Mounier, J. Microbial interactions in cheese: Implications for cheese quality and safety. Curr. Opin. Biotechnol. 2009, 20, 142–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Little, C.L.; Knochel, S. Growth and survival of Yersinia enterocolitica, Salmonella and Bacillus cereus in Brie stored at 4, 8 and 20 degrees C. Int. J. Food Microbiol. 1994, 24, 137–145. [Google Scholar] [CrossRef]
- Rajkovic, A.; Uyttendaele, M.; Ombregt, S.A.; Jaaskelainen, E.; Salkinoja-Salonen, M.; Debevere, J. Influence of type of food on the kinetics and overall production of Bacillus cereus emetic toxin. J. Food Prot. 2006, 69, 847–852. [Google Scholar] [CrossRef]
- Rukure, G.; Bester, B. Survival and growth of Bacillus cereus during Gouda cheese manufacturing. Food Control 2001, 12, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Tirloni, E.; Bernardi, C.; Ghelardi, E.; Celandroni, F.; Andrighetto, C.; Rota, N.; Stella, S. Biopreservation as a potential hurdle for Bacillus cereus growth in fresh cheese. J. Dairy Sci. 2020, 103, 150–160. [Google Scholar] [CrossRef] [Green Version]
- Coroller, L.; Leguerinel, I.; Mafart, P. Effect of water activities of heating and recovery media on apparent heat resistance of Bacillus cereus spores. Appl. Environ. Microbiol. 2001, 67, 317–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazas, M.; Martinez, S.; Lopez, M.; Alvarez, A.B.; Martin, R. Thermal inactivation of Bacillus cereus spores affected by the solutes used to control water activity of the heating medium. Int. J. Food Microbiol. 1999, 53, 61–67. [Google Scholar] [CrossRef]
- Mellefont, L.A.; McMeekin, T.A.; Ross, T. Effect of relative inoculum concentration on Listeria monocytogenes growth in co-culture. Int. J. Food Microbiol. 2008, 121, 157–168. [Google Scholar] [CrossRef]
- Ostergaard, N.B.; Eklow, A.; Dalgaard, P. Modelling the effect of lactic acid bacteria from starter- and aroma culture on growth of Listeria monocytogenes in cottage cheese. Int. J. Food Microbiol. 2014, 188, 15–25. [Google Scholar] [CrossRef]
- Kim, S.A.; Kim, N.H.; Lee, S.H.; Hwang, I.G.; Rhee, M.S. Survival of foodborne pathogenic bacteria (Bacillus cereus, Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, Staphylococcus aureus, and Listeria monocytogenes) and Bacillus cereus spores in fermented alcoholic beverages (beer and refined rice wine). J. Food Prot. 2014, 77, 419–426. [Google Scholar] [CrossRef]
- Thanh, M.D.; Frentzel, H.; Fetsch, A.; Krause, G.; Appel, B.; Mader, A. Tenacity of Bacillus cereus and Staphylococcus aureus in dried spices and herbs. Food Control 2018, 83, 75–84. [Google Scholar] [CrossRef]
- Gonzalez, I.; Lopez, M.; Martinez, S.; Bernardo, A.; Gonzalez, J. Thermal inactivation of Bacillus cereus spores formed at different temperatures. Int. J. Food Microbiol. 1999, 51, 81–84. [Google Scholar] [CrossRef]
- Te Giffel, M.C.; Beumer, R.R.; Granum, P.E.; Rombouts, F.M. Isolation and characterisation of Bacillus cereus from pasteurised milk in household refrigerators in The Netherlands. Int. J. Food Microbiol. 1997, 34, 307–318. [Google Scholar] [CrossRef]
- Rowan, N.J.; Anderson, J.G. Growth and enterotoxin production by diarrheagenic Bacillus cereus in dietary supplements prepared for hospitalized HIV patients. J. Hosp. Infect. 1998, 38, 139–146. [Google Scholar] [CrossRef]
- Smith, D.P.; Berrang, M.E.; Feldner, P.W.; Phillips, R.W.; Meinersmann, R.J. Detection of Bacillus cereus on selected retail chicken products. J. Food Prot. 2004, 67, 1770–1773. [Google Scholar] [CrossRef]
- Wijnands, L.M.; Dufrenne, J.B.; Rombouts, F.M.; In’t Veld, P.H.; Van Leusden, F.M. Prevalence of potentially pathogenic Bacillus cereus in food commodities in The Netherlands. J. Food Prot. 2006, 69, 2587–2594. [Google Scholar] [CrossRef]
- Reyes, J.E.; Bastias, J.M.; Gutierrez, M.R.; Rodriguez Mde, L. Prevalence of Bacillus cereus in dried milk products used by Chilean School Feeding Program. Food Microbiol. 2007, 24, 1–6. [Google Scholar] [CrossRef]
- Bartoszewicz, M.; Hansen, B.M.; Swiecicka, I. The members of the Bacillus cereus group are commonly present contaminants of fresh and heat-treated milk. Food Microbiol. 2008, 25, 588–596. [Google Scholar] [CrossRef]
- Ouoba, L.I.; Thorsen, L.; Varnam, A.H. Enterotoxins and emetic toxins production by Bacillus cereus and other species of Bacillus isolated from Soumbala and Bikalga, African alkaline fermented food condiments. Int. J. Food Microbiol. 2008, 124, 224–230. [Google Scholar] [CrossRef]
- Zhou, G.; Liu, H.; He, J.; Yuan, Y.; Yuan, Z. The occurrence of Bacillus cereus, B. thuringiensis and B. mycoides in Chinese pasteurized full fat milk. Int. J. Food Microbiol. 2008, 121, 195–200. [Google Scholar] [CrossRef]
- Ankolekar, C.; Rahmati, T.; Labbe, R.G. Detection of toxigenic Bacillus cereus and Bacillus thuringiensis spores in U.S. rice. Int. J. Food Microbiol. 2009, 128, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Batchoun, R.; Al-Sha’er, A.I.; Khabour, O.F. Molecular characterization of Bacillus cereus toxigenic strains isolated from different food matrices in Jordan. Foodborne Pathog. Dis. 2011, 8, 1153–1158. [Google Scholar] [CrossRef]
- Thorsen, L.; Azokpota, P.; Munk Hansen, B.; Ronsbo, M.H.; Nielsen, K.F.; Hounhouigan, D.J.; Jakobsen, M. Formation of cereulide and enterotoxins by Bacillus cereus in fermented African locust beans. Food Microbiol. 2011, 28, 1441–1447. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.; Sun, J.M.; Kwon, K.Y.; Kim, H.J.; Koo, M.; Chun, H.S. Genetic diversity, antimicrobial resistance, and toxigenic profiles of Bacillus cereus strains isolated from Sunsik. J. Food Prot. 2012, 75, 225–230. [Google Scholar] [CrossRef]
- Ahaotu, I.; Anyogu, A.; Njoku, O.H.; Odu, N.N.; Sutherland, J.P.; Ouoba, L.I. Molecular identification and safety of Bacillus species involved in the fermentation of African oil beans (Pentaclethra macrophylla Benth) for production of Ugba. Int. J. Food Microbiol. 2013, 162, 95–104. [Google Scholar] [CrossRef]
- Arslan, S.; Eyi, A.; Kucuksari, R. Toxigenic genes, spoilage potential, and antimicrobial resistance of Bacillus cereus group strains from ice cream. Anaerobe 2014, 25, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Contzen, M.; Hailer, M.; Rau, J. Isolation of Bacillus cytotoxicus from various commercial potato products. Int. J. Food Microbiol. 2014, 174, 19–22. [Google Scholar] [CrossRef]
- Flores-Urban, K.A.; Natividad-Bonifacio, I.; Vazquez-Quinones, C.R.; Vazquez-Salinas, C.; Quinones-Ramirez, E.I. Detection of toxigenic Bacillus cereus strains isolated from vegetables in Mexico City. J. Food Prot. 2014, 77, 2144–2147. [Google Scholar] [CrossRef]
- Forghani, F.; Kim, J.B.; Oh, D.H. Enterotoxigenic profiling of emetic toxin- and enterotoxin-producing Bacillus cereus, isolated from food, environmental, and clinical samples by multiplex PCR. J. Food Sci. 2014, 79, M2288–M2293. [Google Scholar] [CrossRef] [PubMed]
- Chon, J.W.; Yim, J.H.; Kim, H.S.; Kim, D.H.; Kim, H.; Oh, D.H.; Kim, S.K.; Seo, K.H. Quantitative prevalence and toxin gene profile of Bacillus cereus from ready-to-eat vegetables in South Korea. Foodborne Pathog. Dis. 2015, 12, 795–799. [Google Scholar] [CrossRef]
- Hariram, U.; Labbe, R. Spore prevalence and toxigenicity of Bacillus cereus and Bacillus thuringiensis isolates from U.S. retail spices. J. Food Prot. 2015, 78, 590–596. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Park, J.H. Characteristics of enterotoxin distribution, hemolysis, lecithinase, and starch hydrolysis of Bacillus cereus isolated from infant formulas and ready-to-eat foods. J. Dairy Sci. 2015, 98, 1652–1660. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.W.; Cho, S.H.; Kang, S.H.; Park, Y.B.; Yoon, M.H.; Lee, J.B.; No, W.S.; Kim, J.B. Prevalence, genetic diversity, and antibiotic resistance of Bacillus cereus isolated from Korean fermented soybean products. J. Food Sci. 2015, 80, M123–M128. [Google Scholar] [CrossRef]
- Tewari, A.; Singh, S.P.; Singh, R. Incidence and enterotoxigenic profile of Bacillus cereus in meat and meat products of Uttarakhand, India. J. Food Sci. Technol. 2015, 52, 1796–1801. [Google Scholar] [CrossRef] [Green Version]
- Yim, J.H.; Kim, K.Y.; Chon, J.W.; Kim, D.H.; Kim, H.S.; Choi, D.S.; Choi, I.S.; Seo, K.H. Incidence, antibiotic susceptibility, and toxin profiles of Bacillus cereus sensu lato isolated from Korean fermented soybean products. J. Food Sci. 2015, 80, M1266–M1270. [Google Scholar] [CrossRef]
- Biesta-Peters, E.G.; Dissel, S.; Reij, M.W.; Zwietering, M.H.; In’t Veld, P.H. Characterization and exposure assessment of emetic Bacillus cereus and cereulide production in food products on the Dutch market. J. Food Prot. 2016, 79, 230–238. [Google Scholar] [CrossRef]
- Park, K.M.; Kim, H.J.; Jeong, M.C.; Koo, M. Occurrence of toxigenic Bacillus cereus and Bacillus thuringiensis in doenjang, a Korean fermented soybean paste. J. Food Prot. 2016, 79, 605–612. [Google Scholar] [CrossRef]
- Zhu, K.; Hölzel, C.S.; Cui, Y.; Mayer, R.; Wang, Y.; Dietrich, R.; Didier, A.; Bassitta, R.; Märtlbauer, E.; Ding, S. Probiotic Bacillus cereus strains, a potential risk for public health in China. Front. Microbiol. 2016, 7, 718. [Google Scholar] [CrossRef]
- Chaves, J.Q.; de Paiva, E.P.; Rabinovitch, L.; Vivoni, A.M. Molecular characterization and risk assessment of Bacillus cereus sensu lato isolated from ultrahigh-temperature and pasteurized milk marketed in Rio de Janeiro, Brazil. J. Food Prot. 2017, 80, 1060–1065. [Google Scholar] [CrossRef]
- Owusu-Kwarteng, J.; Wuni, A.; Akabanda, F.; Tano-Debrah, K.; Jespersen, L. Prevalence, virulence factor genes and antibiotic resistance of Bacillus cereus sensu lato isolated from dairy farms and traditional dairy products. BMC Microbiol. 2017, 17, 65. [Google Scholar] [CrossRef] [Green Version]
- Saleh-Lakha, S.; Leon-Velarde, C.G.; Chen, S.; Lee, S.; Shannon, K.; Fabri, M.; Downing, G.; Keown, B. A study to assess the numbers and prevalence of Bacillus cereus and its toxins in pasteurized fluid milk. J. Food Prot. 2017, 80, 1085–1089. [Google Scholar] [CrossRef] [PubMed]
- Shawish, R.; Tarabees, R. Prevalence and antimicrobial resistance of Bacillus cereus isolated from beef products in Egypt. Open Vet. J. 2017, 7, 337–341. [Google Scholar] [CrossRef] [Green Version]
- Carter, L.; Chase, H.R.; Gieseker, C.M.; Hasbrouck, N.R.; Stine, C.B.; Khan, A.; Ewing-Peeples, L.J.; Tall, B.D.; Gopinath, G.R. Analysis of enterotoxigenic Bacillus cereus strains from dried foods using whole genome sequencing, multi-locus sequence analysis and toxin gene prevalence and distribution using endpoint PCR analysis. Int. J. Food Microbiol. 2018, 284, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Fasolato, L.; Cardazzo, B.; Carraro, L.; Fontana, F.; Novelli, E.; Balzan, S. Edible processed insects from e-commerce: Food safety with a focus on the Bacillus cereus group. Food Microbiol. 2018, 76, 296–303. [Google Scholar] [CrossRef]
- Heini, N.; Stephan, R.; Ehling-Schulz, M.; Johler, S. Characterization of Bacillus cereus group isolates from powdered food products. Int. J. Food Microbiol. 2018, 283, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Heini, N.; Stephan, R.; Johler, S. Toxin genes and cytotoxicity levels detected in Bacillus cereus isolates collected from cooked food products delivered by Swiss Army catering facilities. Ital. J. Food Saf. 2018, 7, 7323. [Google Scholar] [CrossRef]
- Park, K.M.; Jeong, M.; Park, K.J.; Koo, M. Prevalence, enterotoxin genes, and antibiotic resistance of Bacillus cereus isolated from raw vegetables in Korea. J. Food Prot. 2018, 81, 1590–1597. [Google Scholar] [CrossRef]
- Rossi, G.A.M.; Silva, H.O.; Aguilar, C.E.G.; Rochetti, A.L.; Pascoe, B.; Meric, G.; Mourkas, E.; Hitchings, M.D.; Mathias, L.A.; de Azevedo Ruiz, V.L.; et al. Comparative genomic survey of Bacillus cereus sensu stricto isolates from the dairy production chain in Brazil. FEMS Microbiol. Lett. 2018, 365. [Google Scholar] [CrossRef]
- Fiedler, G.; Schneider, C.; Igbinosa, E.O.; Kabisch, J.; Brinks, E.; Becker, B.; Stoll, D.A.; Cho, G.S.; Huch, M.; Franz, C. Antibiotics resistance and toxin profiles of Bacillus cereus-group isolates from fresh vegetables from German retail markets. BMC Microbiol. 2019, 19, 250. [Google Scholar] [CrossRef]
- Gdoura-Ben Amor, M.; Jan, S.; Baron, F.; Grosset, N.; Culot, A.; Gdoura, R.; Gautier, M.; Techer, C. Toxigenic potential and antimicrobial susceptibility of Bacillus cereus group bacteria isolated from Tunisian foodstuffs. BMC Microbiol. 2019, 19, 196. [Google Scholar] [CrossRef]
- Kindle, P.; Etter, D.; Stephan, R.; Johler, S. Population structure and toxin gene profiles of Bacillus cereus sensu lato isolated from flour products. FEMS Microbiol. Lett. 2019, 366. [Google Scholar] [CrossRef]
- Kone, K.M.; Douamba, Z.; Halleux, M.; Bougoudogo, F.; Mahillon, J. Prevalence and diversity of the thermotolerant bacterium Bacillus cytotoxicus among dried food products. J. Food Prot. 2019, 82, 1210–1216. [Google Scholar] [CrossRef]
- Özdemir, F.; Arslan, S. Molecular characterization and toxin profiles of Bacillus spp. isolated from retail fish and ground beef. J. Food Sci. 2019, 84, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Abdeen, E.E.; Hussien, H.; Hadad, G.A.E.; Mousa, W.S. Prevalence of virulence determinants among Bacillus cereus isolated from milk products with potential public health concern. Pak. J. Biol. Sci. 2020, 23, 206–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adame-Gomez, R.; Munoz-Barrios, S.; Castro-Alarcon, N.; Leyva-Vazquez, M.A.; Toribio-Jimenez, J.; Ramirez-Peralta, A. Prevalence of the strains of Bacillus cereus group in artisanal Mexican cheese. Foodborne Pathog. Dis. 2020, 17, 8–14. [Google Scholar] [CrossRef]
- Park, K.M.; Kim, H.J.; Jeong, M.; Koo, M. Enterotoxin genes, antibiotic susceptibility, and biofilm formation of low-temperature-tolerant Bacillus cereus isolated from green leaf lettuce in the cold chain. Foods 2020, 9, 249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, S.; Chen, J.; Fei, P.; Feng, H.; Wang, Y.; Ali, M.A.; Li, S.; Jing, H.; Yang, W. Prevalence, molecular characterization, and antibiotic susceptibility of Bacillus cereus isolated from dairy products in China. J. Dairy Sci. 2020, 103, 3994–4001. [Google Scholar] [CrossRef]
- Hoton, F.M.; Fornelos, N.; N’Guessan, E.; Hu, X.; Swiecicka, I.; Dierick, K.; Jaaskelainen, E.; Salkinoja-Salonen, M.; Mahillon, J. Family portrait of Bacillus cereus and Bacillus weihenstephanensis cereulide-producing strains. Environ. Microbiol. Rep. 2009, 1, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Hoornstra, D.; Andersson, M.A.; Teplova, V.V.; Mikkola, R.; Uotila, L.M.; Andersson, L.C.; Roivainen, M.; Gahmberg, C.G.; Salkinoja-Salonen, M.S. Potato crop as a source of emetic Bacillus cereus and cereulide-induced mammalian cell toxicity. Appl. Environ. Microbiol. 2013, 79, 3534–3543. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Gu, H.; Yu, X.; Zhan, L.; Chen, J.; Luo, Y.; Zhang, Y.; Zhang, Y.; Lu, Y.; Jiang, J.; et al. Genotypic heterogeneity of emetic toxin producing Bacillus cereus isolates from China. FEMS Microbiol. Lett. 2017, 364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dressman, J.B.; Berardi, R.R.; Dermentzoglou, L.C.; Russell, T.L.; Schmaltz, S.P.; Barnett, J.L.; Jarvenpaa, K.M. Upper gastrointestinal (GI) pH in young, healthy men and women. Pharm. Res. 1990, 7, 756–761. [Google Scholar] [CrossRef]
- Clavel, T.; Carlin, F.; Dargaignaratz, C.; Lairon, D.; Nguyen-The, C.; Schmitt, P. Effects of porcine bile on survival of Bacillus cereus vegetative cells and Haemolysin BL enterotoxin production in reconstituted human small intestine media. J. Appl. Microbiol. 2007, 103, 1568–1575. [Google Scholar] [CrossRef]
- Da Riol, C.; Dietrich, R.; Märtlbauer, E.; Jessberger, N. Consumed foodstuffs have a crucial impact on the toxic activity of enteropathogenic Bacillus cereus. Front. Microbiol. 2018, 9, 1946. [Google Scholar] [CrossRef] [Green Version]
- Wijnands, L.M.; Pielaat, A.; Dufrenne, J.B.; Zwietering, M.H.; Van Leusden, F.M. Modelling the number of viable vegetative cells of Bacillus cereus passing through the stomach. J. Appl. Microbiol. 2008, 106, 258–267. [Google Scholar] [CrossRef]
- Ceuppens, S.; Boon, N.; Rajkovic, A.; Heyndrickx, M.; Van de Wiele, T.; Uyttendaele, M. Quantification methods for Bacillus cereus vegetative cells and spores in the gastrointestinal environment. J. Microbiol. Methods 2010, 83, 202–210. [Google Scholar] [CrossRef]
- Ceuppens, S.; Uyttendaele, M.; Drieskens, K.; Heyndrickx, M.; Rajkovic, A.; Boon, N.; Van de Wiele, T. Survival and germination of Bacillus cereus spores without outgrowth or enterotoxin production during in vitro simulation of gastrointestinal transit. Appl. Environ. Microbiol. 2012, 78, 7698–7705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilcks, A.; Hansen, B.M.; Hendriksen, N.B.; Licht, T.R. Fate and effect of ingested Bacillus cereus spores and vegetative cells in the intestinal tract of human-flora-associated rats. FEMS Immunol. Med. Microbiol. 2006, 46, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Ceuppens, S.; Van de Wiele, T.; Rajkovic, A.; Ferrer-Cabaceran, T.; Heyndrickx, M.; Boon, N.; Uyttendaele, M. Impact of intestinal microbiota and gastrointestinal conditions on the in vitro survival and growth of Bacillus cereus. Int. J. Food Microbiol. 2012, 155, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Berthold-Pluta, A.; Pluta, A.; Garbowska, M. The effect of selected factors on the survival of Bacillus cereus in the human gastrointestinal tract. Microb. Pathog. 2015, 82, 7–14. [Google Scholar] [CrossRef]
- Ceuppens, S.; Uyttendaele, M.; Drieskens, K.; Rajkovic, A.; Boon, N.; Wiele, T.V. Survival of Bacillus cereus vegetative cells and spores during in vitro simulation of gastric passage. J. Food Prot. 2012, 75, 690–694. [Google Scholar] [CrossRef]
- Wijnands, L.M.; Dufrenne, J.B.; Zwietering, M.H.; Van Leusden, F.M. Spores from mesophilic Bacillus cereus strains germinate better and grow faster in simulated gastro-intestinal conditions than spores from psychrotrophic strains. Int. J. Food Microbiol. 2006, 112, 120–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wijnands, L.M.; Dufrenne, J.B.; Van Leusden, F.M. Bacillus cereus: Characteristics, behaviour in the gastro-intestinal tract, and interaction with Caco-2 cells. In RIVM Report 250912003/2005; National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2005; Available online: www.rivm.openrepository.com/handle/10029/260584 (accessed on 30 October 2020).
- Ceuppens, S.; Uyttendaele, M.; Hamelink, S.; Boon, N.; Van de Wiele, T. Inactivation of Bacillus cereus vegetative cells by gastric acid and bile during in vitro gastrointestinal transit. Gut Pathog. 2012, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Kristoffersen, S.M.; Ravnum, S.; Tourasse, N.J.; Økstad, O.A.; Kolstø, A.B.; Davies, W. Low concentrations of bile salts induce stress responses and reduce motility in Bacillus cereus ATCC 14579. J. Bacteriol. 2007, 189, 5302–5313. [Google Scholar] [CrossRef] [Green Version]
- Mols, M.; Pier, I.; Zwietering, M.H.; Abee, T. The impact of oxygen availability on stress survival and radical formation of Bacillus cereus. Int. J. Food Microbiol. 2009, 135, 303–311. [Google Scholar] [CrossRef]
- Rosenfeld, E.; Duport, C.; Zigha, A.; Schmitt, P. Characterization of aerobic and anaerobic vegetative growth of the food-borne pathogen Bacillus cereus F4430/73 strain. Can. J. Microbiol. 2005, 51, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Abee, T.; Groot, M.N.; Tempelaars, M.; Zwietering, M.H.; Moezelaar, R.; Van der Voort, M. Germination and outgrowth of spores of Bacillus cereus group members: Diversity and role of germinant receptors. Food Microbiol. 2011, 28, 199–208. [Google Scholar] [CrossRef]
- Rao, L.; Feeherry, F.E.; Ghosh, S.; Liao, X.; Lin, X.; Zhang, P.; Li, Y.; Doona, C.J.; Setlow, P. Effects of lowering water activity by various humectants on germination of spores of Bacillus species with different germinants. Food Microbiol. 2018, 72, 112–127. [Google Scholar] [CrossRef]
- Soni, A.; Oey, I.; Silcock, P.; Permina, E.; Bremer, P.J. Differential gene expression for investigation of the effect of germinants and heat activation to induce germination in Bacillus cereus spores. Food Res. Int. 2019, 119, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Van Melis, C.C.; Almeida, C.B.; Kort, R.; Groot, M.N.; Abee, T. Germination inhibition of Bacillus cereus spores: Impact of the lipophilic character of inhibiting compounds. Int. J. Food Microbiol. 2012, 160, 124–130. [Google Scholar] [CrossRef]
- Warda, A.K.; Tempelaars, M.H.; Boekhorst, J.; Abee, T.; Nierop Groot, M.N. Identification of CdnL, a putative transcriptional regulator involved in repair and outgrowth of heat-damaged Bacillus cereus spores. PLoS ONE 2016, 11, e0148670. [Google Scholar] [CrossRef]
- Hornstra, L.M.; de Vries, Y.P.; Wells-Bennik, M.H.; de Vos, W.M.; Abee, T. Characterization of germination receptors of Bacillus cereus ATCC 14579. Appl. Environ. Microbiol. 2006, 72, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Warda, A.K.; Xiao, Y.; Boekhorst, J.; Wells-Bennik, M.H.J.; Nierop Groot, M.N.; Abee, T. Analysis of germination capacity and germinant receptor (sub)clusters of genome-sequenced Bacillus cereus environmental isolates and model strains. Appl. Environ. Microbiol. 2017, 83. [Google Scholar] [CrossRef] [Green Version]
- Barlass, P.J.; Houston, C.W.; Clements, M.O.; Moir, A. Germination of Bacillus cereus spores in response to L-alanine and to inosine: The roles of gerL and gerQ operons. Microbiology 2002, 148, 2089–2095. [Google Scholar] [CrossRef] [Green Version]
- Hornstra, L.M.; de Vries, Y.P.; de Vos, W.M.; Abee, T.; Wells-Bennik, M.H. gerR, a novel ger operon involved in L-alanine- and inosine-initiated germination of Bacillus cereus ATCC 14579. Appl. Environ. Microbiol. 2005, 71, 774–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wijnands, L.M.; Dufrenne, J.B.; Van Leusden, F.M.; Abee, T. Germination of Bacillus cereus spores is induced by germinants from differentiated Caco-2 Cells, a human cell line mimicking the epithelial cells of the small intestine. Appl. Environ. Microbiol. 2007, 73, 5052–5054. [Google Scholar] [CrossRef] [Green Version]
- Hornstra, L.M.; Van der Voort, M.; Wijnands, L.M.; Roubos-van den Hil, P.J.; Abee, T. Role of germinant receptors in Caco-2 cell-initiated germination of Bacillus cereus ATCC 14579 endospores. Appl. Environ. Microbiol. 2009, 75, 1201–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jessberger, N.; Dietrich, R.; Mohr, A.K.; Da Riol, C.; Märtlbauer, E. Porcine gastric mucin triggers toxin production of enteropathogenic Bacillus cereus. Infect. Immun. 2019, 87, e00765-18. [Google Scholar] [CrossRef] [Green Version]
- Jessberger, N.; Kranzler, M.; Da Riol, C.; Schwenk, V.; Buchacher, T.; Dietrich, R.; Ehling-Schulz, M.; Märtlbauer, E. Assessing the toxic potential of enteropathogenic Bacillus cereus. Food Microbiol. 2019, 84, 103276. [Google Scholar] [CrossRef]
- Broussolle, V.; Gauillard, F.; Nguyen-The, C.; Carlin, F. Diversity of spore germination in response to inosine and L-alanine and its interaction with NaCl and pH in the Bacillus cereus group. J. Appl. Microbiol. 2008, 105, 1081–1090. [Google Scholar] [CrossRef]
- Carlin, F.; Fricker, M.; Pielaat, A.; Heisterkamp, S.; Shaheen, R.; Salonen, M.S.; Svensson, B.; Nguyen-The, C.; Ehling-Schulz, M. Emetic toxin-producing strains of Bacillus cereus show distinct characteristics within the Bacillus cereus group. Int. J. Food Microbiol. 2006, 109, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Van der Voort, M.; Garcia, D.; Moezelaar, R.; Abee, T. Germinant receptor diversity and germination responses of four strains of the Bacillus cereus group. Int. J. Food Microbiol. 2010, 139, 108–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moir, A.; Cooper, G. Spore Germination. Microbiol. Spectr. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Setlow, P. Germination of spores of Bacillus species: What we know and do not know. J. Bacteriol. 2014, 196, 1297–1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bressuire-Isoard, C.; Broussolle, V.; Carlin, F. Sporulation environment influences spore properties in Bacillus: Evidence and insights on underlying molecular and physiological mechanisms. FEMS Microbiol. Rev. 2018, 42, 614–626. [Google Scholar] [CrossRef] [Green Version]
- de Vries, Y.P.; Atmadja, R.D.; Hornstra, L.M.; de Vos, W.M.; Abee, T. Influence of glutamate on growth, sporulation, and spore properties of Bacillus cereus ATCC 14579 in defined medium. Appl. Environ. Microbiol. 2005, 71, 3248–3254. [Google Scholar] [CrossRef] [Green Version]
- Hornstra, L.M.; de Vries, Y.P.; de Vos, W.M.; Abee, T. Influence of sporulation medium composition on transcription of ger operons and the germination response of spores of Bacillus cereus ATCC 14579. Appl. Environ. Microbiol. 2006, 72, 3746–3749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Planchon, S.; Dargaignaratz, C.; Levy, C.; Ginies, C.; Broussolle, V.; Carlin, F. Spores of Bacillus cereus strain KBAB4 produced at 10 degrees C and 30 degrees C display variations in their properties. Food Microbiol. 2011, 28, 291–297. [Google Scholar] [CrossRef]
- Josenhans, C.; Suerbaum, S. The role of motility as a virulence factor in bacteria. Int. J. Med. Microbiol. 2002, 291, 605–614. [Google Scholar] [CrossRef]
- Ottemann, K.M.; Miller, J.F. Roles for motility in bacterial-host interactions. Mol. Microbiol. 1997, 24, 1109–1117. [Google Scholar] [CrossRef]
- Matilla, M.A.; Krell, T. The effect of bacterial chemotaxis on host infection and pathogenicity. FEMS Microbiol. Rev. 2018, 42. [Google Scholar] [CrossRef] [Green Version]
- Chaban, B.; Hughes, H.V.; Beeby, M. The flagellum in bacterial pathogens: For motility and a whole lot more. Semin. Cell Dev. Biol. 2015, 46, 91–103. [Google Scholar] [CrossRef] [Green Version]
- O’Neil, H.S.; Marquis, H. Listeria monocytogenes flagella are used for motility, not as adhesins, to increase host cell invasion. Infect. Immun. 2006, 74, 6675–6681. [Google Scholar] [CrossRef] [Green Version]
- Kamp, H.D.; Higgins, D.E. A protein thermometer controls temperature-dependent transcription of flagellar motility genes in Listeria monocytogenes. PLoS Pathog. 2011, 7, e1002153. [Google Scholar] [CrossRef]
- Kamar, R.; Gohar, M.; Jehanno, I.; Rejasse, A.; Kallassy, M.; Lereclus, D.; Sanchis, V.; Ramarao, N. Pathogenic potential of Bacillus cereus strains as revealed by phenotypic analysis. J. Clin. Microbiol. 2013, 51, 320–323. [Google Scholar] [CrossRef] [Green Version]
- Duan, Q.; Zhou, M.; Zhu, L.; Zhu, G. Flagella and bacterial pathogenicity. J. Basic Microbiol. 2013, 53, 1–8. [Google Scholar] [CrossRef]
- Kim, M.I.; Lee, C.; Park, J.; Jeon, B.-Y.; Hong, M. Crystal structure of Bacillus cereus flagellin and structure-guided fusion-protein designs. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef]
- Nakamura, S.; Minamino, T. Flagella-driven motility of bacteria. Biomolecules 2019, 9, 279. [Google Scholar] [CrossRef] [Green Version]
- Ghelardi, E.; Celandroni, F.; Salvetti, S.; Ceragioli, M.; Beecher, D.J.; Senesi, S.; Wong, A.C. Swarming behavior of and hemolysin BL secretion by Bacillus cereus. Appl. Environ. Microbiol. 2007, 73, 4089–4093. [Google Scholar] [CrossRef] [Green Version]
- Ghelardi, E.; Celandroni, F.; Salvetti, S.; Beecher, D.J.; Gominet, M.; Lereclus, D.; Wong, A.C.; Senesi, S. Requirement of flhA for swarming differentiation, flagellin export, and secretion of virulence-associated proteins in Bacillus thuringiensis. J. Bacteriol. 2002, 184, 6424–6433. [Google Scholar] [CrossRef] [Green Version]
- Bouillaut, L.; Ramarao, N.; Buisson, C.; Gilois, N.; Gohar, M.; Lereclus, D.; Nielsen-Leroux, C. FlhA influences Bacillus thuringiensis PlcR-regulated gene transcription, protein production, and virulence. Appl. Environ. Microbiol. 2005, 71, 8903–8910. [Google Scholar] [CrossRef] [Green Version]
- Salvetti, S.; Faegri, K.; Ghelardi, E.; Kolstø, A.B.; Senesi, S. Global gene expression profile for swarming Bacillus cereus bacteria. Appl. Environ. Microbiol. 2011, 77, 5149–5156. [Google Scholar] [CrossRef] [Green Version]
- Mazzantini, D.; Celandroni, F.; Salvetti, S.; Gueye, S.A.; Lupetti, A.; Senesi, S.; Ghelardi, E. FlhF is required for swarming motility and full pathogenicity of Bacillus cereus. Front. Microbiol. 2016, 7, 1644. [Google Scholar] [CrossRef]
- Salvetti, S.; Ghelardi, E.; Celandroni, F.; Ceragioli, M.; Giannessi, F.; Senesi, S. FlhF, a signal recognition particle-like GTPase, is involved in the regulation of flagellar arrangement, motility behaviour and protein secretion in Bacillus cereus. Microbiology 2007, 153, 2541–2552. [Google Scholar] [CrossRef] [Green Version]
- Senesi, S.; Salvetti, S.; Celandroni, F.; Ghelardi, E. Features of Bacillus cereus swarm cells. Res. Microbiol. 2010, 161, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Senesi, S.; Celandroni, F.; Salvetti, S.; Beecher, D.J.; Wong, A.C.L.; Ghelardi, E. Swarming motility in Bacillus cereus and characterization of a fliY mutant impaired in swarm cell differentiation. Microbiology 2002, 148, 1785–1794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayrapetyan, H.; Tempelaars, M.; Nierop Groot, M.; Abee, T. Bacillus cereus ATCC 14579 RpoN (sigma 54) is a pleiotropic regulator of growth, carbohydrate metabolism, motility, biofilm formation and toxin production. PLoS ONE 2015, 10, e0134872. [Google Scholar] [CrossRef] [Green Version]
- Houry, A.; Briandet, R.; Aymerich, S.; Gohar, M. Involvement of motility and flagella in Bacillus cereus biofilm formation. Microbiology 2010, 156, 1009–1018. [Google Scholar] [CrossRef] [Green Version]
- Okshevsky, M.; Greve Louw, M.; Otero Lamela, E.; Nilsson, M.; Tolker-Nielsen, T.; Meyer, R.L. A transposon mutant library of Bacillus cereus ATCC 10987 reveals novel genes required for biofilm formation and implicates motility as an important factor for pellicle-biofilm formation. Microbiologyopen 2017, 7, e00552. [Google Scholar] [CrossRef]
- Callegan, M.C.; Novosad, B.D.; Ramirez, R.; Ghelardi, E.; Senesi, S. Role of swarming migration in the pathogenesis of bacillus endophthalmitis. Invest. Ophthalmol. Vis. Sci. 2006, 47, 4461–4467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callegan, M.C.; Parkunan, S.M.; Randall, C.B.; Coburn, P.S.; Miller, F.C.; LaGrow, A.L.; Astley, R.A.; Land, C.; Oh, S.Y.; Schneewind, O. The role of pili in Bacillus cereus intraocular infection. Exp. Eye Res. 2017, 159, 69–76. [Google Scholar] [CrossRef]
- Callegan, M.C.; Kane, S.T.; Cochran, D.C.; Novosad, B.; Gilmore, M.S.; Gominet, M.; Lereclus, D. Bacillus endophthalmitis: Roles of bacterial toxins and motility during infection. Investig. Ophthalmol. Vis. Sci. 2005, 46, 3233–3238. [Google Scholar] [CrossRef]
- Derrien, M.; Van Passel, M.W.; Van de Bovenkamp, J.H.; Schipper, R.G.; de Vos, W.M.; Dekker, J. Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes 2010, 1, 254–268. [Google Scholar] [CrossRef] [Green Version]
- Naughton, J.; Duggan, G.; Bourke, B.; Clyne, M. Interaction of microbes with mucus and mucins: Recent developments. Gut Microbes 2014, 5, 48–52. [Google Scholar] [CrossRef] [Green Version]
- Pizarro-Cerda, J.; Cossart, P. Bacterial adhesion and entry into host cells. Cell 2006, 124, 715–727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribet, D.; Cossart, P. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect. 2015, 17, 173–183. [Google Scholar] [CrossRef]
- Stones, D.H.; Krachler, A.M. Against the tide: The role of bacterial adhesion in host colonization. Biochem. Soc. Trans. 2016, 44, 1571–1580. [Google Scholar] [CrossRef] [Green Version]
- Linden, S.K.; Sutton, P.; Karlsson, N.G.; Korolik, V.; McGuckin, M.A. Mucins in the mucosal barrier to infection. Mucosal Immunol. 2008, 1, 183–197. [Google Scholar] [CrossRef] [Green Version]
- McGuckin, M.A.; Linden, S.K.; Sutton, P.; Florin, T.H. Mucin dynamics and enteric pathogens. Nat. Rev. Microbiol. 2011, 9, 265–278. [Google Scholar] [CrossRef] [PubMed]
- Alemka, A.; Corcionivoschi, N.; Bourke, B. Defense and adaptation: The complex inter-relationship between Campylobacter jejuni and mucus. Front. Cell. Infect. Microbiol. 2012, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- Naughton, J.A.; Mariño, K.; Dolan, B.; Reid, C.; Gough, R.; Gallagher, M.E.; Kilcoyne, M.; Gerlach, J.Q.; Joshi, L.; Rudd, P.; et al. Divergent mechanisms of interaction of Helicobacter pylori and Campylobacter jejuni with mucus and mucins. Infect. Immun. 2013, 81, 2838–2850. [Google Scholar] [CrossRef] [Green Version]
- Sperandio, B.; Fischer, N.; Sansonetti, P.J. Mucosal physical and chemical innate barriers: Lessons from microbial evasion strategies. Semin. Immunol. 2015, 27, 111–118. [Google Scholar] [CrossRef]
- Sanchez, B.; Arias, S.; Chaignepain, S.; Denayrolles, M.; Schmitter, J.M.; Bressollier, P.; Urdaci, M.C. Identification of surface proteins involved in the adhesion of a probiotic Bacillus cereus strain to mucin and fibronectin. Microbiology 2009, 155, 1708–1716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsilia, V.; Kerckhof, F.M.; Rajkovic, A.; Heyndrickx, M.; Van de Wiele, T. Bacillus cereus NVH 0500/00 can adhere to mucin but cannot produce enterotoxins during gastrointestinal simulation. Appl. Environ. Microbiol. 2016, 82, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Tsilia, V.; Uyttendaele, M.; Kerckhof, F.M.; Rajkovic, A.; Heyndrickx, M.; Van de Wiele, T. Bacillus cereus adhesion to simulated intestinal mucus is determined by its growth on mucin, rather than intestinal environmental parameters. Foodborne Pathog. Dis. 2015, 12, 904–913. [Google Scholar] [CrossRef] [PubMed]
- Miura, T.; Okamoto, K.; Yanase, H. Purification and characterization of extracellular 1,2-alpha-L-fucosidase from Bacillus cereus. J. Biosci. Bioeng. 2005, 99, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Andersson, A.; Granum, P.E.; Rönner, U. The adhesion of Bacillus cereus spores to epithelial cells might be an additional virulence mechanism. Int. J. Food Microbiol. 1998, 39, 93–99. [Google Scholar] [CrossRef]
- Auger, S.; Ramarao, N.; Faille, C.; Fouet, A.; Aymerich, S.; Gohar, M. Biofilm formation and cell surface properties among pathogenic and nonpathogenic strains of the Bacillus cereus group. Appl. Environ. Microbiol. 2009, 75, 6616–6618. [Google Scholar] [CrossRef] [Green Version]
- Ramarao, N.; Lereclus, D. Adhesion and cytotoxicity of Bacillus cereus and Bacillus thuringiensis to epithelial cells are FlhA and PlcR dependent, respectively. Microbes Infect. 2006, 8, 1483–1491. [Google Scholar] [CrossRef]
- Ghebrehiwet, B.; Tantral, L.; Titmus, M.A.; Panessa-Warren, B.J.; Tortora, G.T.; Wong, S.S.; Warren, J.B. The exosporium of B. cereus contains a binding site for gC1qR/p33: Implication in spore attachment and/or entry. Adv. Exp. Med. Biol. 2007, 598, 181–197. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Ni, C.; Huang, W.; Hao, H.; Jiang, H.; Lv, Q.; Zheng, Y.; Liu, P.; Kong, D.; Jiang, Y. The interaction between flagellin and the glycosphingolipid Gb3 on host cells contributes to Bacillus cereus acute infection. Virulence 2020, 11, 769–780. [Google Scholar] [CrossRef]
- Kotiranta, A.; Haapasalo, M.; Kari, K.; Kerosuo, E.; Olsen, I.; Sorsa, T.; Meurman, J.H.; Lounatmaa, K. Surface structure, hydrophobicity, phagocytosis, and adherence to matrix proteins of Bacillus cereus cells with and without the crystalline surface protein layer. Infect. Immun. 1998, 66, 4895–4902. [Google Scholar] [CrossRef] [Green Version]
- DesRosier, J.P.; Lara, J.C. Isolation and properties of pili from spores of Bacillus cereus. J. Bacteriol. 1981, 145, 613–619. [Google Scholar] [CrossRef] [Green Version]
- Husmark, U.; Rönner, U. The influence of hydrophobic, electrostatic and morphologic properties on the adhesion of Bacillus spores. Biofouling 1992, 5, 335–344. [Google Scholar] [CrossRef]
- Stalheim, T.; Granum, P.E. Characterization of spore appendages from Bacillus cereus strains. J. Appl. Microbiol. 2001, 91, 839–845. [Google Scholar] [CrossRef] [Green Version]
- Tran, S.L.; Guillemet, E.; Gohar, M.; Lereclus, D.; Ramarao, N. CwpFM (EntFM) is a Bacillus cereus potential cell wall peptidase implicated in adhesion, biofilm formation, and virulence. J. Bacteriol. 2010, 192, 2638–2642. [Google Scholar] [CrossRef] [Green Version]
- Faille, C.; Lequette, Y.; Ronse, A.; Slomianny, C.; Garenaux, E.; Guerardel, Y. Morphology and physico-chemical properties of Bacillus spores surrounded or not with an exosporium: Consequences on their ability to adhere to stainless steel. Int. J. Food Microbiol. 2010, 143, 125–135. [Google Scholar] [CrossRef]
- Peng, J.S.; Tsai, W.C.; Chou, C.C. Surface characteristics of Bacillus cereus and its adhesion to stainless steel. Int. J. Food Microbiol. 2001, 65, 105–111. [Google Scholar] [CrossRef]
- Tauveron, G.; Slomianny, C.; Henry, C.; Faille, C. Variability among Bacillus cereus strains in spore surface properties and influence on their ability to contaminate food surface equipment. Int. J. Food Microbiol. 2006, 110, 254–262. [Google Scholar] [CrossRef]
- Ankolekar, C.; Labbe, R.G. Physical characteristics of spores of food-associated isolates of the Bacillus cereus group. Appl. Environ. Microbiol. 2010, 76, 982–984. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, B.; Liedtke, J.; Sleutel, M.; Lindbäck, T.; Llarena, A.K.; Brynildsrud, O.; Aspholm, M.; Remaut, H. Bacillus endospore appendages form a novel family of disulfide-linked pili. BioRxiv 2020. [Google Scholar] [CrossRef]
- Dietrich, R.; Jessberger, N.; Ehling-Schulz, M.; Märtlbauer, E.; Granum, P.E. The food poisoning toxins of Bacillus cereus. Toxins (Basel) 2020. in preparation. [Google Scholar]
- Clair, G.; Roussi, S.; Armengaud, J.; Duport, C. Expanding the known repertoire of virulence factors produced by Bacillus cereus through early secretome profiling in three redox conditions. Mol. Cell. Proteom. 2010, 9, 1486–1498. [Google Scholar] [CrossRef] [Green Version]
- Duport, C.; Thomassin, S.; Bourel, G.; Schmitt, P. Anaerobiosis and low specific growth rates enhance hemolysin BL production by Bacillus cereus F4430/73. Arch. Microbiol. 2004, 182, 90–95. [Google Scholar] [CrossRef]
- Duport, C.; Zigha, A.; Rosenfeld, E.; Schmitt, P. Control of enterotoxin gene expression in Bacillus cereus F4430/73 involves the redox-sensitive ResDE signal transduction system. J. Bacteriol. 2006, 188, 6640–6651. [Google Scholar] [CrossRef] [Green Version]
- Fermanian, C.; Lapeyre, C.; Fremy, J.M.; Claisse, M. Diarrheal toxin production at low temperature by selected strains of Bacillus cereus. J. Dairy Res. 1997, 64, 551–559. [Google Scholar] [CrossRef]
- Frenzel, E.; Doll, V.; Pauthner, M.; Lücking, G.; Scherer, S.; Ehling-Schulz, M. CodY orchestrates the expression of virulence determinants in emetic Bacillus cereus by impacting key regulatory circuits. Mol. Microbiol. 2012, 85, 67–88. [Google Scholar] [CrossRef]
- Gohar, M.; Faegri, K.; Perchat, S.; Ravnum, S.; Økstad, O.A.; Gominet, M.; Kolstø, A.B.; Lereclus, D. The PlcR virulence regulon of Bacillus cereus. PLoS ONE 2008, 3, e2793. [Google Scholar] [CrossRef]
- Jessberger, N.; Rademacher, C.; Krey, V.M.; Dietrich, R.; Mohr, A.K.; Böhm, M.E.; Scherer, S.; Ehling-Schulz, M.; Märtlbauer, E. Simulating intestinal growth conditions enhances toxin production of enteropathogenic Bacillus cereus. Front. Microbiol. 2017, 8, 627. [Google Scholar] [CrossRef] [Green Version]
- Lereclus, D.; Agaisse, H.; Grandvalet, C.; Salamitou, S.; Gominet, M. Regulation of toxin and virulence gene transcription in Bacillus thuringiensis. Int. J. Med. Microbiol. 2000, 290, 295–299. [Google Scholar] [CrossRef]
- Ouhib, O.; Clavel, T.; Schmitt, P. The production of Bacillus cereus enterotoxins is influenced by carbohydrate and growth rate. Curr. Microbiol. 2006, 53, 222–226. [Google Scholar] [CrossRef]
- Ouhib-Jacobs, O.; Lindley, N.D.; Schmitt, P.; Clavel, T. Fructose and glucose mediates enterotoxin production and anaerobic metabolism of Bacillus cereus ATCC14579(T). J. Appl. Microbiol. 2009, 107, 821–829. [Google Scholar] [CrossRef]
- Rejasse, A.; Gilois, N.; Barbosa, I.; Huillet, E.; Bevilacqua, C.; Tran, S.; Ramarao, N.; Stenfors Arnesen, L.P.; Sanchis, V. Temperature-dependent production of various PlcR-controlled virulence factors in Bacillus weihenstephanensis strain KBAB4. Appl. Environ. Microbiol. 2012, 78, 2553–2561. [Google Scholar] [CrossRef] [Green Version]
- Van der Voort, M.; Abee, T. Transcriptional regulation of metabolic pathways, alternative respiration and enterotoxin genes in anaerobic growth of Bacillus cereus ATCC 14579. J. Appl. Microbiol. 2009, 107, 795–804. [Google Scholar] [CrossRef]
- Van Netten, P.; Van De Moosdijk, A.; Van Hoensel, P.; Mossel, D.A.; Perales, I. Psychrotrophic strains of Bacillus cereus producing enterotoxin. J. Appl. Bacteriol. 1990, 69, 73–79. [Google Scholar] [CrossRef]
- Zigha, A.; Rosenfeld, E.; Schmitt, P.; Duport, C. The redox regulator Fnr is required for fermentative growth and enterotoxin synthesis in Bacillus cereus F4430/73. J. Bacteriol. 2007, 189, 2813–2824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Böhm, M.E.; Krey, V.M.; Jessberger, N.; Frenzel, E.; Scherer, S. Comparative bioinformatics and experimental analysis of the intergenic regulatory regions of Bacillus cereus hbl and nhe enterotoxin operons and the impact of CodY on virulence heterogeneity. Front. Microbiol. 2016, 7, 768. [Google Scholar] [CrossRef]
- Esbelin, J.; Armengaud, J.; Zigha, A.; Duport, C. ResDE-dependent regulation of enterotoxin gene expression in Bacillus cereus: Evidence for multiple modes of binding for ResD and interaction with Fnr. J. Bacteriol. 2009, 191, 4419–4426. [Google Scholar] [CrossRef] [Green Version]
- Esbelin, J.; Jouanneau, Y.; Armengaud, J.; Duport, C. ApoFnr binds as a monomer to promoters regulating the expression of enterotoxin genes of Bacillus cereus. J. Bacteriol. 2008, 190, 4242–4251. [Google Scholar] [CrossRef] [Green Version]
- Esbelin, J.; Jouanneau, Y.; Duport, C. Bacillus cereus Fnr binds a [4Fe-4S] cluster and forms a ternary complex with ResD and PlcR. BMC Microbiol. 2012, 12, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fagerlund, A.; Dubois, T.; Økstad, O.A.; Verplaetse, E.; Gilois, N.; Bennaceur, I.; Perchat, S.; Gominet, M.; Aymerich, S.; Kolstø, A.B.; et al. SinR controls enterotoxin expression in Bacillus thuringiensis biofilms. PLoS ONE 2014, 9, e87532. [Google Scholar] [CrossRef]
- Messaoudi, K.; Clavel, T.; Schmitt, P.; Duport, C. Fnr mediates carbohydrate-dependent regulation of catabolic and enterotoxin genes in Bacillus cereus F4430/73. Res. Microbiol. 2010, 161, 30–39. [Google Scholar] [CrossRef]
- Van der Voort, M.; Kuipers, O.P.; Buist, G.; de Vos, W.M.; Abee, T. Assessment of CcpA-mediated catabolite control of gene expression in Bacillus cereus ATCC 14579. BMC Microbiol. 2008, 8, 62. [Google Scholar] [CrossRef] [Green Version]
- Jessberger, N.; Krey, V.M.; Rademacher, C.; Böhm, M.E.; Mohr, A.K.; Ehling-Schulz, M.; Scherer, S.; Märtlbauer, E. From genome to toxicity: A combinatory approach highlights the complexity of enterotoxin production in Bacillus cereus. Front. Microbiol. 2015, 6, 560. [Google Scholar] [CrossRef] [Green Version]
- Guinebretiére, M.H.; Broussolle, V.; Nguyen-The, C. Enterotoxigenic profiles of food-poisoning and food-borne Bacillus cereus strains. J. Clin. Microbiol. 2002, 40, 3053–3056. [Google Scholar] [CrossRef] [Green Version]
- Moravek, M.; Dietrich, R.; Bürk, C.; Broussolle, V.; Guinebretiére, M.H.; Granum, P.E.; Nguyen-The, C.; Märtlbauer, E. Determination of the toxic potential of Bacillus cereus isolates by quantitative enterotoxin analyses. FEMS Microbiol. Lett. 2006, 257, 293–298. [Google Scholar] [CrossRef] [Green Version]
- Wehrle, E.; Moravek, M.; Dietrich, R.; Bürk, C.; Didier, A.; Märtlbauer, E. Comparison of multiplex PCR, enzyme immunoassay and cell culture methods for the detection of enterotoxinogenic Bacillus cereus. J. Microbiol. Methods 2009, 78, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Fagerlund, A.; Lindbäck, T.; Storset, A.K.; Granum, P.E.; Hardy, S.P. Bacillus cereus Nhe is a pore-forming toxin with structural and functional properties similar to the ClyA (HlyE, SheA) family of haemolysins, able to induce osmotic lysis in epithelia. Microbiology 2008, 154, 693–704. [Google Scholar] [CrossRef] [Green Version]
- Granum, P.E.; O’Sullivan, K.; Lund, T. The sequence of the non-haemolytic enterotoxin operon from Bacillus cereus. FEMS Microbiol. Lett. 1999, 177, 225–229. [Google Scholar] [CrossRef] [Green Version]
- Ryan, P.A.; Macmillan, J.D.; Zilinskas, B.A. Molecular cloning and characterization of the genes encoding the L1 and L2 components of hemolysin BL from Bacillus cereus. J. Bacteriol. 1997, 179, 2551–2556. [Google Scholar] [CrossRef] [Green Version]
- Ganash, M.; Phung, D.; Sedelnikova, S.E.; Lindbäck, T.; Granum, P.E.; Artymiuk, P.J. Structure of the NheA component of the Nhe toxin from Bacillus cereus: Implications for function. PLoS ONE 2013, 8, e74748. [Google Scholar] [CrossRef]
- Madegowda, M.; Eswaramoorthy, S.; Burley, S.K.; Swaminathan, S. X-ray crystal structure of the B component of Hemolysin BL from Bacillus cereus. Proteins 2008, 71, 534–540. [Google Scholar] [CrossRef] [Green Version]
- Mueller, M.; Grauschopf, U.; Maier, T.; Glockshuber, R.; Ban, N. The structure of a cytolytic alpha-helical toxin pore reveals its assembly mechanism. Nature 2009, 459, 726–730. [Google Scholar] [CrossRef]
- Phung, D.; Ganash, M.; Sedelnikova, S.E.; Lindbäck, T.; Granum, P.E.; Artymiuk, P.J. Crystallization and preliminary crystallographic analysis of the NheA component of the Nhe toxin from Bacillus cereus. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2012, 68, 1073–1076. [Google Scholar] [CrossRef]
- Didier, A.; Dietrich, R.; Gruber, S.; Bock, S.; Moravek, M.; Nakamura, T.; Lindbäck, T.; Granum, P.E.; Märtlbauer, E. Monoclonal antibodies neutralize Bacillus cereus Nhe enterotoxin by inhibiting ordered binding of its three exoprotein components. Infect. Immun. 2012, 80, 832–838. [Google Scholar] [CrossRef] [Green Version]
- Didier, A.; Dietrich, R.; Märtlbauer, E. Antibody binding studies reveal conformational flexibility of the Bacillus cereus non-hemolytic enterotoxin (Nhe) A-component. PLoS ONE 2016, 11, e0165135. [Google Scholar] [CrossRef] [Green Version]
- Heilkenbrinker, U.; Dietrich, R.; Didier, A.; Zhu, K.; Lindbäck, T.; Granum, P.E.; Märtlbauer, E. Complex formation between NheB and NheC is necessary to induce cytotoxic activity by the three-component Bacillus cereus Nhe enterotoxin. PLoS ONE 2013, 8, e63104. [Google Scholar] [CrossRef] [Green Version]
- Jessberger, N.; Dietrich, R.; Bock, S.; Didier, A.; Märtlbauer, E. Bacillus cereus enterotoxins act as major virulence factors and exhibit distinct cytotoxicity to different human cell lines. Toxicon 2014, 77, 49–57. [Google Scholar] [CrossRef]
- Jessberger, N.; Dietrich, R.; Schwemmer, S.; Tausch, F.; Schwenk, V.; Didier, A.; Märtlbauer, E. Binding to the target cell surface is the crucial step in pore formation of hemolysin BL from Bacillus cereus. Toxins (Basel) 2019, 11, 281. [Google Scholar] [CrossRef] [Green Version]
- Lindbäck, T.; Hardy, S.P.; Dietrich, R.; Sodring, M.; Didier, A.; Moravek, M.; Fagerlund, A.; Bock, S.; Nielsen, C.; Casteel, M.; et al. Cytotoxicity of the Bacillus cereus Nhe enterotoxin requires specific binding order of its three exoprotein components. Infect. Immun. 2010, 78, 3813–3821. [Google Scholar] [CrossRef] [Green Version]
- Sastalla, I.; Fattah, R.; Coppage, N.; Nandy, P.; Crown, D.; Pomerantsev, A.P.; Leppla, S.H. The Bacillus cereus Hbl and Nhe tripartite enterotoxin components assemble sequentially on the surface of target cells and are not interchangeable. PLoS ONE 2013, 8, e76955. [Google Scholar] [CrossRef]
- Tausch, F.; Dietrich, R.; Schauer, K.; Janowski, R.; Niessing, D.; Märtlbauer, E.; Jessberger, N. Evidence for complex formation of the Bacillus cereus haemolysin BL components in solution. Toxins (Basel) 2017, 9, 288. [Google Scholar] [CrossRef] [Green Version]
- Zhu, K.; Didier, A.; Dietrich, R.; Heilkenbrinker, U.; Waltenberger, E.; Jessberger, N.; Märtlbauer, E.; Benz, R. Formation of small transmembrane pores: An intermediate stage on the way to Bacillus cereus non-hemolytic enterotoxin (Nhe) full pores in the absence of NheA. Biochem. Biophys. Res. Commun. 2016, 469, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Fagerlund, A.; Ween, O.; Lund, T.; Hardy, S.P.; Granum, P.E. Genetic and functional analysis of the cytK family of genes in Bacillus cereus. Microbiology 2004, 150, 2689–2697. [Google Scholar] [CrossRef] [Green Version]
- Guinebretiére, M.H.; Auger, S.; Galleron, N.; Contzen, M.; De Sarrau, B.; De Buyser, M.L.; Lamberet, G.; Fagerlund, A.; Granum, P.E.; Lereclus, D.; et al. Bacillus cytotoxicus sp. nov. is a novel thermotolerant species of the Bacillus cereus Group occasionally associated with food poisoning. Int. J. Syst. Evol. Microbiol. 2013, 63, 31–40. [Google Scholar] [CrossRef]
- Guinebretiére, M.H.; Fagerlund, A.; Granum, P.E.; Nguyen-The, C. Rapid discrimination of cytK-1 and cytK-2 genes in Bacillus cereus strains by a novel duplex PCR system. FEMS Microbiol. Lett. 2006, 259, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Hardy, S.P.; Lund, T.; Granum, P.E. CytK toxin of Bacillus cereus forms pores in planar lipid bilayers and is cytotoxic to intestinal epithelia. FEMS Microbiol. Lett. 2001, 197, 47–51. [Google Scholar] [CrossRef]
- Ramarao, N.; Sanchis, V. The pore-forming haemolysins of Bacillus cereus: A review. Toxins (Basel) 2013, 5, 1119–1139. [Google Scholar] [CrossRef] [Green Version]
- Asano, S.I.; Nukumizu, Y.; Bando, H.; Iizuka, T.; Yamamoto, T. Cloning of novel enterotoxin genes from Bacillus cereus and Bacillus thuringiensis. Appl. Environ. Microbiol. 1997, 63, 1054–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baida, G.; Budarina, Z.I.; Kuzmin, N.P.; Solonin, A.S. Complete nucleotide sequence and molecular characterization of hemolysin II gene from Bacillus cereus. FEMS Microbiol. Lett. 1999, 180, 7–14. [Google Scholar] [CrossRef]
- Baida, G.E.; Kuzmin, N.P. Cloning and primary structure of a new hemolysin gene from Bacillus cereus. Biochim. Biophys. Acta 1995, 1264, 151–154. [Google Scholar] [CrossRef]
- Baida, G.E.; Kuzmin, N.P. Mechanism of action of hemolysin III from Bacillus cereus. Biochim. Biophys. Acta 1996, 1284, 122–124. [Google Scholar] [CrossRef] [Green Version]
- Cadot, C.; Tran, S.L.; Vignaud, M.L.; De Buyser, M.L.; Kolstø, A.B.; Brisabois, A.; Nguyen-The, C.; Lereclus, D.; Guinebretiére, M.H.; Ramarao, N. InhA1, NprA, and HlyII as candidates for markers to differentiate pathogenic from nonpathogenic Bacillus cereus strains. J. Clin. Microbiol. 2010, 48, 1358–1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doll, V.M.; Ehling-Schulz, M.; Vogelmann, R. Concerted action of sphingomyelinase and non-hemolytic enterotoxin in pathogenic Bacillus cereus. PLoS ONE 2013, 8, e61404. [Google Scholar] [CrossRef] [Green Version]
- Guillemet, E.; Cadot, C.; Tran, S.L.; Guinebretiére, M.H.; Lereclus, D.; Ramarao, N. The InhA metalloproteases of Bacillus cereus contribute concomitantly to virulence. J. Bacteriol. 2010, 192, 286–294. [Google Scholar] [CrossRef] [Green Version]
- Kreft, J.; Berger, H.; Hartlein, M.; Müller, B.; Weidinger, G.; Goebel, W. Cloning and expression in Escherichia coli and Bacillus subtilis of the hemolysin (cereolysin) determinant from Bacillus cereus. J. Bacteriol. 1983, 155, 681–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuppe, A.; Evans, L.M.; McMillen, D.A.; Griffith, O.H. Phosphatidylinositol-specific phospholipase C of Bacillus cereus: Cloning, sequencing, and relationship to other phospholipases. J. Bacteriol. 1989, 171, 6077–6083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, D.; Mathur, A.; Xue, Y.; Liu, Y.; Tan, W.H.; Feng, S.; Pandey, A.; Ngo, C.; Hayward, J.A.; Atmosukarto, I.I.; et al. Bacillus cereus non-haemolytic enterotoxin activates the NLRP3 inflammasome. Nat. Commun. 2020, 11, 760. [Google Scholar] [CrossRef]
- Gray, K.M.; Banada, P.P.; O’Neal, E.; Bhunia, A.K. Rapid Ped-2E9 cell-based cytotoxicity analysis and genotyping of Bacillus species. J. Clin. Microbiol. 2005, 43, 5865–5872. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zuo, Z.; Sastalla, I.; Liu, C.; Jang, J.Y.; Sekine, Y.; Li, Y.; Pirooznia, M.; Leppla, S.H.; Finkel, T.; et al. Sequential CRISPR-based screens identify LITAF and CDIP1 as the Bacillus cereus hemolysin BL toxin host receptors. Cell Host Microbe 2020, 28, 402–410.e5. [Google Scholar] [CrossRef]
- Lund, T.; Granum, P.E. Comparison of biological effect of the two different enterotoxin complexes isolated from three different strains of Bacillus cereus. Microbiology 1997, 143, 3329–3336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathur, A.; Feng, S.; Hayward, J.A.; Ngo, C.; Fox, D.; Atmosukarto, I.I.; Price, J.D.; Schauer, K.; Märtlbauer, E.; Robertson, A.A.B.; et al. A multicomponent toxin from Bacillus cereus incites inflammation and shapes host outcome via the NLRP3 inflammasome. Nat. Microbiol. 2019, 4, 362–374. [Google Scholar] [CrossRef]
- Rolny, I.S.; Tiscornia, I.; Racedo, S.M.; Perez, P.F.; Bollati-Fogolin, M. Lactobacillus delbrueckii subsp lactis CIDCA 133 modulates response of human epithelial and dendritic cells infected with Bacillus cereus. Benef. Microbes 2016, 7, 749–760. [Google Scholar] [CrossRef]
- Jessberger, N.; Dietrich, R.; Schauer, K.; Schwemmer, S.; Märtlbauer, E.; Benz, R. Characteristics of the protein complexes and pores formed by Bacillus cereus hemolysin BL. Toxins (Basel) 2020, 12, 672. [Google Scholar] [CrossRef] [PubMed]
- Ramm, F.; Dondapati, S.K.; Thoring, L.; Zemella, A.; Wustenhagen, D.A.; Frentzel, H.; Stech, M.; Kubick, S. Mammalian cell-free protein expression promotes the functional characterization of the tripartite non-hemolytic enterotoxin from Bacillus cereus. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef] [Green Version]
- Jung, D.; Yum, S.J.; Yu, Y.C.; Kim, J.H.; Lee, B.H.; Jang, H.N.; Jeong, H. Antimicrobial activities of actinonin against Bacillus cereus. Korean J. Food Sci. Technol. 2017, 48, 560–564. [Google Scholar] [CrossRef]
- Liu, X.; Ding, S.; Shi, P.; Dietrich, R.; Märtlbauer, E.; Zhu, K. Non-hemolytic enterotoxin of Bacillus cereus induces apoptosis in Vero cells. Cell. Microbiol. 2016, 19, e12684. [Google Scholar] [CrossRef] [PubMed]
- Antonation, K.S.; Grutzmacher, K.; Dupke, S.; Mabon, P.; Zimmermann, F.; Lankester, F.; Peller, T.; Feistner, A.; Todd, A.; Herbinger, I.; et al. Bacillus cereus biovar anthracis causing anthrax in sub-Saharan Africa-chromosomal monophyly and broad geographic distribution. PLoS Negl. Trop. Dis. 2016, 10, e0004923. [Google Scholar] [CrossRef]
- Brezillon, C.; Haustant, M.; Dupke, S.; Corre, J.P.; Lander, A.; Franz, T.; Monot, M.; Couture-Tosi, E.; Jouvion, G.; Leendertz, F.H.; et al. Capsules, toxins and AtxA as virulence factors of emerging Bacillus cereus biovar anthracis. PLoS Negl. Trop. Dis. 2015, 9, e0003455. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention, Department of Health and Human Services. Possession, use, and transfer of select agents and toxins—Addition of Bacillus cereus biovar anthracis to the HHS list of select agents and toxins. Interim final rule and request for comments. Fed. Regist. 2016, 81, 63138–63143. [Google Scholar]
- Dupke, S.; Schubert, G.; Beudje, F.; Barduhn, A.; Pauly, M.; Couacy-Hymann, E.; Grunow, R.; Akoua-Koffi, C.; Leendertz, F.H.; Klee, S.R. Serological evidence for human exposure to Bacillus cereus biovar anthracis in the villages around Tai National Park, Cote d’Ivoire. PLoS Negl. Trop. Dis. 2020, 14, e0008292. [Google Scholar] [CrossRef]
- Hoffmann, C.; Zimmermann, F.; Biek, R.; Kuehl, H.; Nowak, K.; Mundry, R.; Agbor, A.; Angedakin, S.; Arandjelovic, M.; Blankenburg, A.; et al. Persistent anthrax as a major driver of wildlife mortality in a tropical rainforest. Nature 2017, 548, 82–86. [Google Scholar] [CrossRef] [Green Version]
- Hoffmaster, A.R.; Hill, K.K.; Gee, J.E.; Marston, C.K.; De, B.K.; Popovic, T.; Sue, D.; Wilkins, P.P.; Avashia, S.B.; Drumgoole, R.; et al. Characterization of Bacillus cereus isolates associated with fatal pneumonias: Strains are closely related to Bacillus anthracis and harbor B. anthracis virulence genes. J. Clin. Microbiol. 2006, 44, 3352–3360. [Google Scholar] [CrossRef] [Green Version]
- Klee, S.R.; Ozel, M.; Appel, B.; Boesch, C.; Ellerbrok, H.; Jacob, D.; Holland, G.; Leendertz, F.H.; Pauli, G.; Grunow, R.; et al. Characterization of Bacillus anthracis-like bacteria isolated from wild great apes from Cote d’Ivoire and Cameroon. J. Bacteriol. 2006, 188, 5333–5344. [Google Scholar] [CrossRef] [Green Version]
- Klee, S.R.; Brzuszkiewicz, E.B.; Nattermann, H.; Bruggemann, H.; Dupke, S.; Wollherr, A.; Franz, T.; Pauli, G.; Appel, B.; Liebl, W.; et al. The genome of a Bacillus isolate causing anthrax in chimpanzees combines chromosomal properties of B. cereus with B. anthracis virulence plasmids. PLoS ONE 2010, 5, e10986. [Google Scholar] [CrossRef] [PubMed]
- Romero-Alvarez, D.; Peterson, A.T.; Salzer, J.S.; Pittiglio, C.; Shadomy, S.; Traxler, R.; Vieira, A.R.; Bower, W.A.; Walke, H.; Campbell, L.P. Potential distributions of Bacillus anthracis and Bacillus cereus biovar anthracis causing anthrax in Africa. PLoS Negl. Trop. Dis. 2020, 14, e0008131. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, F.; Kohler, S.M.; Nowak, K.; Dupke, S.; Barduhn, A.; Dux, A.; Lang, A.; De Nys, H.M.; Gogarten, J.F.; Grunow, R.; et al. Low antibody prevalence against Bacillus cereus biovar anthracis in Tai National Park, Cote d’Ivoire, indicates high rate of lethal infections in wildlife. PLoS Negl. Trop. Dis. 2017, 11, e0005960. [Google Scholar] [CrossRef] [Green Version]
- Berthold-Pluta, A.; Pluta, A.; Molska, I.; Dolega, E. Study on the survival of Bacillus cereus in media simulating the human stomach environment. Med. Weter. 2014, 70, 437–441. [Google Scholar]
- Vaz, M.; Hogg, T.; Couto, J.A. The antimicrobial effect of wine on Bacillus cereus in simulated gastro-intestinal conditions. Food Control 2012, 28, 230–236. [Google Scholar] [CrossRef]
- Sanz-Puig, M.; Pina-Perez, M.; Criado, M.N.; Rodrigo, D.; Martinez-Lopez, A. Antimicrobial potential of cauliflower, broccoli, and okara byproducts against foodborne bacteria. Foodborne Pathog. Dis. 2015, 12, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.M.; Griffiths, M.W. Evidence for increased thermostability of Bacillus cereus enterotoxin in milk. J. Food Prot. 1995, 58, 443–445. [Google Scholar] [CrossRef] [PubMed]
- Medrano, M.; Hamet, M.F.; Abraham, A.G.; Perez, P.F. Kefiran protects Caco-2 cells from cytopathic effects induced by Bacillus cereus infection. Antonie Van Leeuwenhoek 2009, 96, 505–513. [Google Scholar] [CrossRef]
- Medrano, M.; Perez, P.F.; Abraham, A.G. Kefiran antagonizes cytopathic effects of Bacillus cereus extracellular factors. Int. J. Food Microbiol. 2008, 122, 1–7. [Google Scholar] [CrossRef]
- Bibbo, S.; Ianiro, G.; Giorgio, V.; Scaldaferri, F.; Masucci, L.; Gasbarrini, A.; Cammarota, G. The role of diet on gut microbiota composition. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 4742–4749. [Google Scholar]
- Milani, C.; Duranti, S.; Bottacini, F.; Casey, E.; Turroni, F.; Mahony, J.; Belzer, C.; Delgado Palacio, S.; Arboleya Montes, S.; Mancabelli, L.; et al. The first microbial colonizers of the human gut: Composition, activities, and health implications of the infant gut microbiota. Microbiol. Mol. Biol. Rev. 2017, 81. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Tian, Y.; Guo, L.; Ano, T.; Lux, R.; Zusman, D.R.; Shi, W. In vitro communities derived from oral and gut microbial floras inhibit the growth of bacteria of foreign origins. Microb. Ecol. 2010, 60, 665–676. [Google Scholar] [CrossRef] [Green Version]
- Alemka, A.; Clyne, M.; Shanahan, F.; Tompkins, T.; Corcionivoschi, N.; Bourke, B. Probiotic colonization of the adherent mucus layer of HT29MTXE12 cells attenuates Campylobacter jejuni virulence properties. Infect. Immun. 2010, 78, 2812–2822. [Google Scholar] [CrossRef] [Green Version]
- Collado, M.C.; Jalonen, L.; Meriluoto, J.; Salminen, S. Protection mechanism of probiotic combination against human pathogens: In vitro adhesion to human intestinal mucus. Asia Pac. J. Clin. Nutr. 2006, 15, 570–575. [Google Scholar] [PubMed]
- Johnson-Henry, K.C.; Hagen, K.E.; Gordonpour, M.; Tompkins, T.A.; Sherman, P.M. Surface-layer protein extracts from Lactobacillus helveticus inhibit enterohaemorrhagic Escherichia coli O157:H7 adhesion to epithelial cells. Cell. Microbiol. 2007, 9, 356–367. [Google Scholar] [CrossRef]
- Mohan, V. The role of probiotics in the inhibition of Campylobacter jejuni colonization and virulence attenuation. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 1503–1513. [Google Scholar] [CrossRef] [PubMed]
- Servin, A.L.; Coconnier, M.H. Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract. Res. Clin. Gastroenterol. 2003, 17, 741–754. [Google Scholar] [CrossRef]
- Wine, E.; Gareau, M.G.; Johnson-Henry, K.; Sherman, P.M. Strain-specific probiotic (Lactobacillus helveticus) inhibition of Campylobacter jejuni invasion of human intestinal epithelial cells. FEMS Microbiol. Lett. 2009, 300, 146–152. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Tao, X.; Shah, N.P.; Wei, H. Antagonistics against pathogenic Bacillus cereus in milk fermentation by Lactobacillus plantarum ZDY2013 and its anti-adhesion effect on Caco-2 cells against pathogens. J. Dairy Sci. 2016, 99, 2666–2674. [Google Scholar] [CrossRef] [Green Version]
- Coconnier, M.H.; Lievin, V.; Bernet-Camard, M.F.; Hudault, S.; Servin, A.L. Antibacterial effect of the adhering human Lactobacillus acidophilus strain LB. Antimicrob. Agents Chemother. 1997, 41, 1046–1052. [Google Scholar] [CrossRef] [Green Version]
- Rossland, E.; Andersen Borge, G.I.; Langsrud, T.; Sorhaug, T. Inhibition of Bacillus cereus by strains of Lactobacillus and Lactococcus in milk. Int. J. Food Microbiol. 2003, 89, 205–212. [Google Scholar] [CrossRef]
- Rossland, E.; Langsrud, T.; Granum, P.E.; Sorhaug, T. Production of antimicrobial metabolites by strains of Lactobacillus or Lactococcus co-cultured with Bacillus cereus in milk. Int. J. Food Microbiol. 2005, 98, 193–200. [Google Scholar] [CrossRef]
- Rossland, E.; Langsrud, T.; Sorhaug, T. Influence of controlled lactic fermentation on growth and sporulation of Bacillus cereus in milk. Int. J. Food Microbiol. 2005, 103, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Eom, J.S.; Choi, H.S. Inhibition of Bacillus cereus growth and toxin production by Bacillus amyloliquefaciens RD7-7 in fermented soybean products. J. Microbiol. Biotechnol. 2016, 26, 44–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eom, J.S.; Lee, S.Y.; Choi, H.S. Bacillus subtilis HJ18-4 from traditional fermented soybean food inhibits Bacillus cereus growth and toxin-related genes. J. Food Sci. 2014, 79, M2279–M2287. [Google Scholar] [CrossRef]
- Kabore, D.; Nielsen, D.S.; Sawadogo-Lingani, H.; Diawara, B.; Dicko, M.H.; Jakobsen, M.; Thorsen, L. Inhibition of Bacillus cereus growth by bacteriocin producing Bacillus subtilis isolated from fermented baobab seeds (maari) is substrate dependent. Int. J. Food Microbiol. 2013, 162, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Soria, M.C.; Audisio, M.C. Inhibition of Bacillus cereus strains by antimicrobial metabolites from Lactobacillus johnsonii CRL1647 and Enterococcus faecium SM21. Probiotics Antimicrob. Proteins 2014, 6, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Ripert, G.; Racedo, S.M.; Elie, A.M.; Jacquot, C.; Bressollier, P.; Urdaci, M.C. Secreted compounds of the probiotic Bacillus clausii strain O/C inhibit the cytotoxic effects induced by Clostridium difficile and Bacillus cereus toxins. Antimicrob. Agents Chemother. 2016, 60, 3445–3454. [Google Scholar] [CrossRef] [Green Version]
- Ruas-Madiedo, P.; Medrano, M.; Salazar, N.; De Los Reyes-Gavilan, C.G.; Perez, P.F.; Abraham, A.G. Exopolysaccharides produced by Lactobacillus and Bifidobacterium strains abrogate in vitro the cytotoxic effect of bacterial toxins on eukaryotic cells. J. Appl. Microbiol. 2010, 109, 2079–2086. [Google Scholar] [CrossRef] [Green Version]
- The Commission of the European Communities. Commission Regulation (EC) No 1441/2007 amending Regulation (EC) No 2073/2005 on microbiological criteria for foodstuffs. Off. J. Eur. Union 2007, 332, 12–29. [Google Scholar]
- Jimenez, G.; Urdiain, M.; Cifuentes, A.; Lopez-Lopez, A.; Blanch, A.R.; Tamames, J.; Kampfer, P.; Kolstø, A.B.; Ramon, D.; Martinez, J.F.; et al. Description of Bacillus toyonensis sp. nov., a novel species of the Bacillus cereus group, and pairwise genome comparisons of the species of the group by means of ANI calculations. Syst. Appl. Microbiol. 2013, 36, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Jung, M.Y.; Kim, J.S.; Paek, W.K.; Lim, J.; Lee, H.; Kim, P.I.; Ma, J.Y.; Kim, W.; Chang, Y.H. Bacillus manliponensis sp. nov., a new member of the Bacillus cereus group isolated from foreshore tidal flat sediment. J. Microbiol. 2011, 49, 1027–1032. [Google Scholar] [CrossRef]
- Jung, M.Y.; Paek, W.K.; Park, I.S.; Han, J.R.; Sin, Y.; Paek, J.; Rhee, M.S.; Kim, H.; Song, H.S.; Chang, Y.H. Bacillus gaemokensis sp. nov., isolated from foreshore tidal flat sediment from the Yellow Sea. J. Microbiol. 2010, 48, 867–871. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Liu, G.H.; Hu, G.P.; Sengonca, C.; Lin, N.Q.; Tang, J.Y.; Tang, W.Q.; Lin, Y.Z. Bacillus bingmayongensis sp. nov., isolated from the pit soil of Emperor Qin’s Terra-cotta warriors in China. Antonie Van Leeuwenhoek 2014, 105, 501–510. [Google Scholar] [CrossRef]
- Liu, Y.; Du, J.; Lai, Q.; Zeng, R.; Ye, D.; Xu, J.; Shao, Z. Proposal of nine novel species of the Bacillus cereus group. Int. J. Syst. Evol. Microbiol. 2017, 67, 2499–2508. [Google Scholar] [CrossRef]
- Miller, R.A.; Beno, S.M.; Kent, D.J.; Carroll, L.M.; Martin, N.H.; Boor, K.J.; Kovac, J. Bacillus wiedmannii sp. nov., a psychrotolerant and cytotoxic Bacillus cereus group species isolated from dairy foods and dairy environments. Int. J. Syst. Evol. Microbiol. 2016, 66, 4744–4753. [Google Scholar] [CrossRef]
- Banerjee, P.; Morgan, M.T.; Rickus, J.L.; Ragheb, K.; Corvalan, C.; Robinson, J.P.; Bhunia, A.K. Hybridoma Ped-2E9 cells cultured under modified conditions can sensitively detect Listeria monocytogenes and Bacillus cereus. Appl. Microbiol. Biotechnol. 2007, 73, 1423–1434. [Google Scholar] [CrossRef]
- Ngamwongsatit, P.; Banada, P.P.; Panbangred, W.; Bhunia, A.K. WST-1-based cell cytotoxicity assay as a substitute for MTT-based assay for rapid detection of toxigenic Bacillus species using CHO cell line. J. Microbiol. Methods 2008, 73, 211–215. [Google Scholar] [CrossRef] [PubMed]
Diarrheal | |||||
Year | Location | Consequences | Organism | Reference | |
1950–1985 | Hungary (101–200 reported incidents); Finland (51–100 reported incidents); Bulgaria, Canada, Norway, UK, USA, Sowjet Union (6–50 reported incidents); Australia, Brazil, Chile, China, Denmark, Ireland, Germany, India, Italy, Japan, Netherlands, Poland, Rumania, Spain, Sweden, Yugoslavia (1–5 reported incidents) | Mainly diarrhea | B. cereus | [6] | |
Year | Location | Food | Affected people/consequences | Organism | Reference |
(1906) | Germany | Meatballs | 300 people, diarrhea, stomach cramps | “B. peptonificans” | [53] |
(1955) | Norway | Vanilla sauce | 4 outbreaks, > 400 illnesses, diarrhea, abdominal pain | B. cereus | [54] |
(1976) | Great Britain | Meat loaf | Diarrhea, strain 4433/73 | B. cereus | [55] |
(1976) | USA | Vegetable sprouts | Nausea, vomiting, cramps, diarrhea | B. cereus | [67] |
(1979) | USA | Turkey loaf | 28 hospital patients, abdominal cramps, watery diarrhea | B. cereus | [68] |
(1986) | USA | Rice and chicken in hospital cafeteria | 160 hospital employees, mainly diarrhea and abdominal cramps, some vomiting | B. cereus | [69] |
1985 | USA | Beef stew | 23 illnesses, cramps, diarrhea | B. cereus | [70] |
1989 | USA | Cornish game hens | 55 illnesses, mainly diarrhea and cramps | B. cereus | [71] |
(1993) | USA | Barbecued pork | 139 illnesses, diarrhea, fever | B. cereus | [72] |
1995 | Norway | Stew | 152 people, diarrhea | B. cereus | [49,73] |
1998 | France | Vegetable puree | 44 illnesses, (bloody) diarrhea, three deaths | B. cytotoxicus | [33] |
1999 | Canada | Mayonnaise | Diarrhea | B. cereus | [74] |
2000 | Italy | Cake | 173 people, nausea, watery diarrhea | B. cereus | [75] |
1954–2004 | USA, England | 28 isolates from food, stool or vomit | Isolates linked to 11x diarrhea, 11x emesis, 6x no information | B. cereus | [76] |
1991–2005 | Canada | Mainly Asian food, followed by raw food | 39 outbreaks, 18 enteropathogenic, mainly abdominal cramps and diarrhea | B. cereusB. thuringiensis | [77] |
2006–2008 | India | Not specified | 42 diarrheal cases in 2 years | B. cereus | [78] |
2008 | Oman | Hospital meal | 58 people, mainly diarrhea, some vomiting | B. cereus | [79] |
2010 | Korea | Lunch buffet | Mainly diarrhea and abdominal pain | B. cereus | [80] |
2013 | Australia | Curried prawns, Caesar salad | 125 people, diarrhea, abdominal pain | B. cereus inter alia | [81] |
(2014) | China | Fermented black beans | 139 people, nausea, vomiting, diarrhea; 1 diarrheal isolate | B. cereus | [82] |
2007–2014 | France | Mostly starchy food and vegetables | 74 outbreaks, often mix of emetic and diarrheal syndrome, abdominal pain | B. cereus, B. cytotoxicus (100% nhe, 40% hbl, 5% cytK1) | [27] |
2001–2013 | Australia | Fish balls, mashed potato and gravy, rice | 4 outbreaks, 114 cases total, mainly diarrhea | B. cereus | [83] |
2013 | Austria | 1. mashed potatoes 2. pancake soup 3. fruit salad, deer ragout, cranberry-pear | 3 outbreaks, mainly diarrhea, some vomiting | B. cereus | [84] |
2003–2013 | Southern Brazil | Mainly cereals, sauce | 346 patients, mainly diarrhea and cramps, some vomiting | B. cereus | [85] |
2016 | USA | Refried beans | 179 illnesses, 1 diarrheal isolate; mostly vomiting, some diarrhea | B. cereus | [86] |
2018 | Australia | Multi-course-dinner (beef) | Diarrhea and vomiting, mostly enteropathogenic B. cereus found | B. cereus | [87] |
Emetic | |||||
Year | Location | Consequences | Organism | Reference | |
1971–1985 | UK (101–200 reported incidents); Netherlands (51–100 reported incidents); Australia, Canada, Ireland, India, Japan, USA (6–50 reported incidents); Belgium, Bulgaria, Chile, China, Denmark, Finland, France, Germany, Hungary, Norway, Singapore, Spain (1–5 reported incidents) | Mainly emesis, nausea | B. cereus | [6] | |
Year | Location | Food | Affected people/consequences | Organism | Reference |
1971 | Great Britain | Fried rice | 13 illnesses, vomiting, nausea | B. cereus | [55,56] |
1975 | Finland | Boiled rice | 18 illnesses, nausea, abdominal pain, vomiting | B. cereus | [88] |
(1976) | Japan | Chinese noodles | Heart and liver degeneration, death | B. cereus | [89] |
(1981) | USA | Macaroni and cheese | 8 illnesses, nausea, abdominal cramps, vomiting | B. cereus | [90] |
1981 | Singapore | Fried rice | Mainly vomiting abdominal cramps, headache, diarrhea | B. cereus | [91] |
1993 | USA | Chicken fried rice | 14 acute gastrointestinal illnesses | B. cereus | [92] |
1991–1994 | Japan | Faecal specimens, foods, not specified | 5 outbreaks, emesis | B. cereus | [93] |
(1997) | Switzerland | Spaghetti and pesto | Vomiting, liver failure, death | B. cereus | [34] |
1998 | USA | Contaminated hands/rice | Emesis | B. cereus | [94] |
(2003) | Greece | No information | Vomiting, abdominal pain, liver abscess, death | B. cereus, presumably emetic | [95] |
2003 | Belgium | Pasta salad | Vomiting, liver failure, death | B. cereus | [31] |
(2005) | Finland | Pasta and meat dish | Emesis with diarrhea | B. cereus | [96] |
2006 | Germany | 1. Rice dish 2. cooked cauliflower | 17 children, vomiting, collapse 1 adult, vomiting | B. cereus | [97] |
1991–2005 | Canada | Mainly Asian food, followed by raw food | 39 outbreaks, 5 emetic, mainly abdominal cramps and vomiting | B. cereus | [77] |
(2008) | Switzerland | Pasta | Abdominal pain, emesis, hepatitis, renal and pancreatic insufficiency, liver failure | B. cereus | [36] |
(2010) | Japan | Fried rice | Gastroenteritis, acute encephalopathy, liver failure | B. cereus | [98] |
(2010) | Korea | Cooked and fried rice | Emesis | B. cereus | [99] |
(2010) | Japan | Reheated fried rice | Vomiting, acute encephalopathy, one dead | B. cereus | [38] |
1954–2004 | USA, England | 28 isolates from food, stool or vomit | Isolates linked to 11x diarrhea, 11x emesis, 6x no information | B. cereus | [76] |
2007 | Spain | Tuna fish | Emesis | B. cereus | [100] |
2007 | Germany | Rice pudding | 43 children, three adults, emesis | B. cereus | [101] |
2008 | Belgium | Spaghetti | Vomiting, watery diarrhea, death | B. cereus | [35] |
2004–2006 | Korea | Not specified | Sporadic food poisoning cases | B. cereus | [102] |
(2012) | Belgium | Rice | Family outbreak | B. cereus | [103] |
2008 | France | Pasta | Emesis, abdominal pain, liver failure | B. cereus | [104] |
2012 | Italy | Basmati rice | 12 illnesses, mostly vomiting, nausea, abdominal pain; diarrhea | B. cereus | [105] |
2007–2013 | Germany | Different foods | Emetic B. cereus in 32 samples, vomiting | B. cereus | [106] |
(2014) | China | Fermented black beans | 139 people, nausea, vomiting, diarrhea; 2 emetic isolates | B. cereus | [82] |
(2015) | Argentina | Chicken | Vomiting and watery diarrhea, “intermediate isolate” | B. cereus | [107] |
(2015) | Germany | Rice meal | Vomiting, abdominal pain, liver failure | B. cereus | [37] |
2007–2014 | France | Mostly starchy food and vegetables | 74 outbreaks, often mix of emetic and diarrheal syndrome, abdominal pain | B. cereus (16% ces) | [27] |
2001–2013 | Australia | Fried rice and honey chicken | 1 outbreak, vomiting | B. cereus | [83] |
2012 | Great Britain | Pearl haricot beans | Several nurseries, vomiting | B. cereus | [108] |
2016 | USA | Refried beans | 179 illnesses, 6 emetic isolates, mostly vomiting, some diarrhea | B. cereus | [86] |
(2019) | Germany | Buck wheat | Massive vomiting, diarrhea, esophageal perforation, Boerhaave syndrome | B. cereus | [109] |
Enteropathogenic | |||
Food | Species | Location | Reference |
Pasteurized milk | B. cereus | Netherlands | [213] |
Dietary supplements | B. cereus | Scotland | [214] |
Milk-based infant formulae | B. cereus | Scotland | [120] |
Milk and meat products | B. cereus | Norway | [4] |
Chicken meat products | B. cereus | USA | [215] |
Fish, meat, milk and vegetable products, oils, flavourings, ready-to-eat foods, pastry | B. cereus (mainly enteropathogenic) | Netherlands | [216] |
Dried milk products | B. cereus | Chile | [217] |
Fresh and heat-treated milk | B. cereus, B. thuringiensis, B. weihenstephanensis | Poland | [218] |
Condiments | B. cereus | Africa | [219] |
Pasteurized full fat milk | B. cereus, B. thuringiensis, B. mycoides | China | [220] |
Raw rice | B. cereus, B. thuringiensis | USA | [221] |
Honey | B. cereus, B. megaterium | [119] | |
Different foods from local markets and restaurants | B. cereus (mainly enteropathogenic) | Jordan | [222] |
Cooked pasta, lasagne, béchamel and bolognaise sauce, fresh minced beef, fresh-cut vegetables, raw basmati rice | B. cereus | Belgium | [179] |
Fermented African locust bean Benin condiments | B. cereus | Africa/Denmark | [223] |
Sunsik (ready-to-eat) | B. cereus (emetic and enteropathogenic) | Korea | [224] |
Ugba (African oil bean seeds) | B. cereus | Nigeria | [225] |
Ice cream | B. cereus | Turkey | [226] |
Potato products | B. cytotoxicus | Germany | [227] |
Vegetables | B. cereus | Mexico | [228] |
Fermented soybean paste, green tea, rice, vegetables | Mainly B. cereus (emetic and enteropathogenic) | Korea | [229] |
Ready-to-eat vegetables | B. cereus | Korea | [230] |
Bread ingredients and bread | B. cereus | Italy | [152] |
Spices | B. cereus, B. thuringiensis | USA | [231] |
Infant formulas, ready-to-eat foods | B. cereus | Korea | [232] |
Fermented soybean products | B. cereus | Korea | [233] |
Meat products | B. cereus | India | [234] |
Fermented soybean products | B. cereus sensu lato | Korea | [235] |
1489 food samples | 5.4% enteropathogenic B. cereus | Netherlands | [236] |
Milk/dairy farms | B. cereus, B. thuringiensis | China | [125] |
Fermented soybean food | B. cereus (enteropathogenic and emetic) | Korea | [237] |
Probiotics | B. cereus, B. thuringiensis | China | [238] |
Pasteurized and UHT milk | B. cereus, B. thuringiensis | Brazil | [239] |
Dairy products | B. cereus (mainly enteropathogenic) | Ghana | [240] |
Pasteurized milk | B. cereus | Canada | [241] |
Beef products | B. cereus | Egypt | [242] |
Spices from Asia, India, Mexico, powdered infant formulas, fish feed, dietary supplements | B. cereus | USA | [243] |
Edible insects | B. cereus, B. cytotoxicus, B. thuringiensis | Italy | [244] |
Pasteurized milk | B. cereus (mainly enteropathogenic) | China | [126] |
Powdered infant formula (PIF), mashed potato powder | B. cereus, 1 B. cytotoxicus | Switzerland | [245] |
Cooked food, army catering | B. cereus (mainly enteropathogenic) | Switzerland | [246] |
Raw vegetables | B. cereus | Korea | [247] |
Raw milk, dairy products | B. cereus (mainly enteropathogenic) | Brazil | [248] |
Herbs, spices, cereals, pasta, rice, infant formulas, pasteurized milk, cheeses | B. cereus (mainly enteropathogenic) | Poland | [124] |
Fresh vegetables and salad | B. cereus | Germany | [249] |
Cereals, spices, vegetables, seafood, dairy and meat products | B. cereus (mainly enteropathogenic) | Tunisia | [250] |
Flour products | B. cereus (mainly enteropathogenic) | Switzerland | [251] |
Potato flakes, millet flour, salted potato chips, soups | B. cytotoxicus | Belgium/Mali | [252] |
Retail fish, ground beef | Bacillus (enterotoxin-positive) | Turkey | [253] |
Ready-to-eat foods | B. cereus (mainly enteropathogenic) | China | [129] |
Vegetables | B. cereus (mainly enteropathogenic) | China | [128] |
Milk powder, Ras-cheese | B. cereus (enteropathogenic and emetic) | Egypt | [254] |
Artisanal Mexican cheese | B. cereus group | Mexico | [255] |
Green leave lettuce | B. cereus | Korea | [256] |
Ready-to-eat foods and powdered milk | B. cereus group | Colombia | [127] |
Dairy products | B. cereus (mainly enteropathogenic) | China | [257] |
Meat | B. cereus | Iran | [121] |
Emetic | |||
Food | Species | Location | Reference |
Potato skin | B. cereus (4 emetic strains) | Scotland | [118] |
Fish, meat, milk and vegetable products, oils, flavourings, ready-to-eat foods, pastry | B. cereus (8% emetic) | Netherlands | [216] |
Pasta, rice, Asian food, milk products, blackcurrant, honey, parsley | Mainly B. cereus | Belgium | [258] |
(Boiled) rice | B. cereus (cereulide; 7.4–12.9% of samples) | Belgium | [103] |
Sunsik (ready-to-eat) | B. cereus (emetic and enteropathogenic) | Korea | [224] |
Potato | Mainly B. cereus | Finland | [259] |
Fermented soybean paste, green tea, rice, vegetables | Mainly B. cereus (emetic and enteropathogenic) | Korea | [229] |
Farinaceous foods, vegetables, fruit, cheese and meat products, sauces, soups, salads | B. cereus (1% of 4300 food samples emetic) | Germany | [106] |
Fermented soybean products | B. cereus sensu lato (17% emetic) | Korea | [235] |
1489 food samples | 0.067% emetic B. cereus | Netherlands | [236] |
Milk/dairy farms | B. cereus, B. thuringiensis (1% emetic) | China | [125] |
Fermented soybean food | B. cereus (enteropathogenic and emetic) | Korea | [237] |
Cooked rice, pasta, infant formula | B. cereus | China | [260] |
Pasteurized milk | B. cereus (5% emetic) | China | [126] |
Powdered infant formula (PIF) | B. cereus | Switzerland | [245] |
Vegetables, army catering | B. cereus (1 emetic strain) | Switzerland | [246] |
Raw milk, dairy products | B. cereus (2 emetic isolates) | Brazil | [248] |
Herbs, spices, cereals, pasta, rice, infant formulas, pasteurized milk, cheeses | B. cereus (1.7 and 0.9% emetic) | Poland | [124] |
Flour products | B. cereus (2 emetic isolates) | Switzerland | [251] |
Ready-to-eat foods | B. cereus (7% emetic) | China | [129] |
Vegetables | B. cereus (3% emetic) | China | [128] |
Milk powder, Ras-cheese | B. cereus (enteropathogenic and emetic) | Egypt | [254] |
Dairy products | B. cereus (11.1% emetic) | China | [257] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jessberger, N.; Dietrich, R.; Granum, P.E.; Märtlbauer, E. The Bacillus cereus Food Infection as Multifactorial Process. Toxins 2020, 12, 701. https://doi.org/10.3390/toxins12110701
Jessberger N, Dietrich R, Granum PE, Märtlbauer E. The Bacillus cereus Food Infection as Multifactorial Process. Toxins. 2020; 12(11):701. https://doi.org/10.3390/toxins12110701
Chicago/Turabian StyleJessberger, Nadja, Richard Dietrich, Per Einar Granum, and Erwin Märtlbauer. 2020. "The Bacillus cereus Food Infection as Multifactorial Process" Toxins 12, no. 11: 701. https://doi.org/10.3390/toxins12110701
APA StyleJessberger, N., Dietrich, R., Granum, P. E., & Märtlbauer, E. (2020). The Bacillus cereus Food Infection as Multifactorial Process. Toxins, 12(11), 701. https://doi.org/10.3390/toxins12110701