Assessment of Aflatoxin and Fumonisin Contamination and Associated Risk Factors in Feed and Feed Ingredients in Rwanda
Abstract
:1. Introduction
2. Results
2.1. Aflatoxin and Fumonisin Contamination among Participants
2.2. Comparison of Feed and Ingredient Sample Contamination over Sample Collection Period
2.3. Aflatoxin Contamination Level in Feeds and Feed Ingredients Samples
Aflatoxin Contamination Weighted Average in Feeds and Feed Ingredients
2.4. Aflatoxin Contamination of Feed Ingredient Types Throughout Sampling Period
2.5. Aflatoxin Contamination Among Geographical Districts
2.6. Socio-Demographic Characteristics of Participants
2.7. Supplement Results
3. Discussion
4. Conclusions
- Feed ingredients and complete feeds were found to be contaminated with aflatoxins and fumonisins. Dairy farmers, poultry farmers, feed vendors, and feed processors had mean aflatoxin levels of 108.83 µg/kg (Median (MD): 43.65 µg/kg), 103.81µg/kg (MD: 48.4 µg/kg), 88.64 µg/kg (MD: 30.90 µg/kg), and 94.95 µg/kg (MD: 70.45 µg/kg), respectively, which were above EU and FDA limits for dairy and poultry. However, fumonisins did not exceed the EU and FDA guidance values for feeds for mature poultry set at 20 mg/kg, and 30 mg/kg for breeding ruminants and breeding poultry.
- Considering the weighted means, mixed feed (54.5 μg/kg) and maize bran (39.8 μg/kg) were the two major contributors to aflatoxin contamination.
- Two risk factors, district and sampling period, showed a significant effect (p < 0.05) on aflatoxin contamination of feed ingredients and complete feeds.
- None of the study participants were aware of the existence of the RSB standard for AFB1 in cattle feed supplements published in Rwanda.
5. Materials and Methods
5.1. Study Areas and Identification of Participants
5.2. Questionnaire Development and Administration
5.3. Sample Collection
5.4. Sample Preparation
5.5. Sample Extraction
5.6. Sample Analysis
5.7. External Validation
5.8. Internal Validation
5.9. Statistical Analysis
5.10. Research Ethics
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kimanya, M.E.; De Meulenaer, B.; Tiisekwa, B.; Ndomondo-Sigonda, M.; Devlieghere, F.; Van Camp, J.; Kolsteren, P. Co-occurrence of fumonisins with aflatoxins in home-stored maize for human consumption in rural villages of tanzania. Food Addit. Contam. - Part A Chem. Anal. Control. Expo. Risk Assess. 2008, 25, 1353–1364. [Google Scholar] [CrossRef]
- Bankole, S.; Schollenberger, M.; Drochner, W. Mycotoxins in food systems in Sub Saharan Africa: A review. Mycotoxin Res. 2006, 22, 163–169. [Google Scholar] [CrossRef]
- Richard, J.L. Some major mycotoxins and their mycotoxicoses—an overview. Int. J. Food Microbiol. 2007, 119, 3–10. [Google Scholar] [CrossRef]
- Binder, E.M.; Tan, L.M.; Chin, L.J.; Handl, J.; Richard, J. Worldwide occurrence of mycotoxins in commodities, feeds and feed ingredients. Anim. Feed Sci. Technol. 2007, 137, 265–282. [Google Scholar] [CrossRef]
- Biomin world mycotoxin survey 2017. Available online: https://www.biomin.net/en/blog-posts/2017-biomin-mycotoxin-survey-results/ (accessed on 5 June 2018).
- Perrone, G.; Gallo, A. Aspergillus species and their associated mycotoxins. Mycotoxigenic Fungi 2017, 33–49. [Google Scholar] [CrossRef]
- Munkvold, G.P. Fusarium species and their associated mycotoxins. Mycotoxigenic Fungi 2017, 51–106. [Google Scholar] [CrossRef]
- Holmquist, G.U.; Walker, H.W.; Stahr, H.M. Influence of temperature, Ph, water activity and anti-fungal agents on growth of Aspergillus flavus and Aspergillus parasiticus. J. Food Sci. 1983, 48, 778–782. [Google Scholar] [CrossRef]
- Marin, S.; Sanchis, V.; Vinas, I.; Canela, R.; Magan, N. Effect of water activity and temperature on growth and fumonisin B1 and B2 production by Fusarium proliferatum and F. moniliforme on maize grain. Lett. Appl. Microbiol. 1995, 21, 298–301. [Google Scholar] [CrossRef]
- Marasas, W.F.O.; Riley, R.T.; Hendricks, K.A.; Stevens, V.L.; Sadler, T.W.; Gelineau-van Waes, J.; Missmer, S.A.; Cabrera, J.; Torres, O.; Gelderblom, W.C.A.; et al. Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development in embryo culture and in vivo: A potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize. J. Nutr. 2004, 134, 711–716. [Google Scholar] [CrossRef]
- Norred, W.P.; Voss, K.A. Toxicity and role of fumonisins in animal diseases and human esophageal cancer. J. Food Prot. 1994, 57, 522–527. [Google Scholar] [CrossRef]
- Chu, F.S.; Li, G.Y. Simultaneous occurrence of fumonisin B1 and other mycotoxins in moldy corn collected from the People’s Republic of China in regions with high incidences of esophageal cancer. Appl. Environ. Microbiol. 1994, 60, 847–852. [Google Scholar]
- Rheeder, J.P.; Marasas, W.F.; Thiel, P.G.; Sydenham, E.W.; Shephard, G.S.; Van Schalkwyk, D.J. Fusarium monoliforme and fumonisins in corn in relation to human esophageal cancer in Transkei. Phytopathology 1992, 82, 353–357. [Google Scholar] [CrossRef]
- Wan Norhas, W.M.; Abdulamir, A.S.; Abu Bakar, F.; Son, R.; Norhafniza, A.; Wan Norhasima, W.M.; Abdulamir, A.S.; Abu Bakar, F.; Son, R.; Norhafniza, A. The health and toxic adverse effects of Fusarium fungal mycotoxin, fumonisins, on human population. Am. J. Infect. Dis. 2009, 5, 273–281. [Google Scholar] [CrossRef]
- Thaxton, J.P.; Tung, H.T.; Hamilton, P.B. Immunosuppression in chickens by aflatoxin. Poult. Sci. 1974, 53, 721–725. [Google Scholar] [CrossRef]
- Raisuddin, S.; Singh, K.P.; Zaidi, S.I.A.; Paul, B.N.; Ray, P.K. Immunosuppressive effects of aflatoxin in growing rats. Mycopathologia 1993, 124, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Shivachandra, S.B.; Sah, R.L.; Singh, S.D.; Kataria, J.M.; Manimaran, K. Immunosuppression in broiler chicks fed aflatoxin and inoculated with fowl adenovirus serotype-4 (FAV-4) associated with hydropericardium Syndrome. Vet. Res. Commun. 2003, 27, 39–51. [Google Scholar] [CrossRef]
- Khlangwiset, P.; Shephard, G.S.; Wu, F. Aflatoxins and growth impairment: A review. Crit. Rev. Toxicol. 2011, 41, 740–755. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Hounsa, A.; Egal, S.; Turner, P.C.; Sutcliffe, A.E.; Hall, A.J.; Cardwell, K.; Wild, C.P. Postweaning exposure to aflatoxin results in impaired child growth: A longitudinal study in Benin, West Africa. Environ. Health Perspect. 2004, 112, 1334–1338. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.Y.; Cardwell, K.; Hounsa, A.; Egal, S.; Turner, P.C.; Hall, A.J.; Wild, C.P. Dietary aflatoxin exposure and impaired growth in young children from Benin and Togo: Cross sectional study. BMJ 2002, 325, 20–21. [Google Scholar] [CrossRef]
- Lewis, L.; Onsongo, M.; Njapau, H.; Schurz-Rogers, H.; Luber, G.; Kieszak, S.; Nyamongo, J.; Backer, L.; Dahiye, A.M.; Misore, A.; et al. Aflatoxin contamination of commercial maize products during an outbreak of acute aflatoxicosis in eastern and central Kenya. Environ. Health Perspect. 2005, 113, 1763. [Google Scholar] [CrossRef]
- Azziz-Baumgartner, E.; Lindblade, K.; Gieseker, K.; Rogers, H.S.; Kieszak, S.; Njapau, H.; Schleicher, R.; McCoy, L.F.; Misore, A.; DeCock, K.; et al. Case–control study of an acute aflatoxicosis outbreak, Kenya, 2004. Environ. Health Perspect. 2005, 113, 1779. [Google Scholar] [CrossRef]
- Probst, C.; Njapau, H.; Cotty, P.J. Outbreak of an acute aflatoxicosis in Kenya in 2004: Identification of the causal agent. Appl. Environ. Microbiol. 2007, 73, 2762–2764. [Google Scholar] [CrossRef]
- Kang’ethe, E.K.; Sirma, A.J.; Murithi, G.; Mburugu-Mosoti, C.K.; Ouko, E.O.; Korhonen, H.J.; Nduhiu, G.J.; Mungatu, J.K.; Joutsjoki, V.; Lindfors, E.; et al. Occurrence of mycotoxins in food, feed, and milk in two counties from different agro-ecological zones and with historical outbreak of aflatoxins and fumonisins poisonings in Kenya. Food Qual. Saf. 2017, 1, 161–169. [Google Scholar] [CrossRef]
- Kang’Ethe, E.K.; Lang’A, K.A. Aflatoxin B1 and M1 contamination of animal feeds and milk from urban Centers in Kenya. Afr. Health Sci. 2009, 9, 218–226. [Google Scholar] [CrossRef]
- Senerwa, D.M.; Sirma, A.J.; Mtimet, N.; Kang’ethe, E.K.; Grace, D.; Lindahl, J.F. Prevalence of Aflatoxin in Feeds and Cow Milk from Five Counties in Kenya. African J. Food, Agric. Nutr. Dev. 2016, 16, 11004–11021. [Google Scholar] [CrossRef]
- Kaaya, N.A.; Warren, H.L. Review of past and present research on aflatoxin in Uganda. African J. Food, Agric. Nutr. Dev. 2005, 5, 1. Available online: https://www.ajfand.net/Volume5/No1/index1.html (accessed on 12 May 2019).
- Nyangi, C.; Mugula, J.K.; Beed, F.; Boni, S.; Koyano, E.; Sulyok, M. Aflatoxins and fumonisin contamination of marketed maize, maize bran and maize used as animal feed in Northern Tanzania. African J. Food, Agric. Nutr. Dev. 2016, 16, 11054–11065. [Google Scholar] [CrossRef]
- Churchill, K.A. The carry-over of aflatoxins in dairy feed to milk of modern holstein dairy cows. Ph.D. Thesis, Cornell University, New York, NY, USA, 2017. [Google Scholar]
- Britzi, M.; Friedman, S.; Miron, J.; Solomon, R.; Cuneah, O.; Shimshoni, J.; Soback, S.; Ashkenazi, R.; Armer, S.; Shlosberg, A. Carry-over of aflatoxin B1 to aflatoxin M1 in high yielding israeli cows in mid- and late-lactation. Toxins 2013, 5, 173–183. [Google Scholar] [CrossRef]
- Becker-Algeri, T.A.; Castagnaro, D.; de Bortoli, K.; de Souza, C.; Drunkler, D.A.; Badiale-Furlong, E. Mycotoxins in bovine milk and dairy products: A review. J. Food Sci. 2016, 81, R544–R552. [Google Scholar] [CrossRef]
- Atherstone, C.; Grace, D.; Lindahl, J.; Kang’ethe, E.; Nelson, F. Assessing the impact of aflatoxin consumption on animal health and productivity. African J. Food, Agric. Nutr. Dev. 2016, 16, 10949–10966. [Google Scholar] [CrossRef]
- Alshannaq, A.; Yu, J.H. Occurrence, toxicity, and analysis of major mycotoxins in food. Int. J. Environ. Res. Public Health 2017, 14, 632. [Google Scholar] [CrossRef]
- Mitchell, N.J.; Bowers, E.; Hurburgh, C.; Wu, F. Potential economic losses to the USA corn industry from aflatoxin contamination. Food Addit. Contam. Part A 2016, 33, 540–550. [Google Scholar] [CrossRef] [Green Version]
- Ladeira, C.; Frazzoli, C.; Orisakwe, O.E. Engaging one health for non-communicable diseases in Africa: Perspective for mycotoxins. Front. Public Heal. 2017, 5. [Google Scholar] [CrossRef]
- Udomkun, P.; Wiredu, A.N.; Nagle, M.; Bandyopadhyay, R.; Müller, J.; Vanlauwe, B. Mycotoxins in Sub-Saharan Africa: Present situation, socio-economic impact, awareness, and outlook. Food Control 2017, 72, 110–122. [Google Scholar] [CrossRef]
- National institute of statistics of rwanda. Stastistical rear book 2017. Available online: http://www.statistics.gov.rw/publication/statistical-yearbook-2017 (accessed on 8 March 2018).
- Minagri. One cow per poor family (GIRINKA). Available online: http://www.minagri.gov.rw/index.php?id=28 (accessed on 17 February 2018).
- Nishimwe, K.; Wanjuki, I.; Karangwa, C.; Darnell, R.; Harvey, J. An initial characterization of aflatoxin B1 contamination of maize sold in the principal retail markets of Kigali, Rwanda. Food Control 2017, 73, 574–580. [Google Scholar] [CrossRef]
- Mbuza, F.; Manishimwe, R.; Mahoro, J.; Simbankabo, T.; Nishimwe, K. Characterization of broiler poultry production system in Rwanda. Trop. Anim. Health Prod. 2017, 49, 71–77. [Google Scholar] [CrossRef]
- Mutimura, M.; Lussa, A.B.; Mutabazi, J.; Myambi, C.B.; Cyamweshi, R.A.; Ebong, C. Status of animal feed resources in Rwanda. Trop. Grasslands – Forrajes Trop. 2013, 1, 109–110. [Google Scholar] [CrossRef]
- Nyangi, C.; Beed, F.; Mugula, J.K.; Boni, S.; Koyano, E.; Mahuku, G.; Sulyok, M.; Bekunda, M. Assessment of pre-harvest aflatoxin and fumonisin contamination of maize in Babati District, Tanzania. African J. Food Agric. Nutr. Dev. 2016, 16, 11039–11053. [Google Scholar] [CrossRef]
- Kang’ethe, E.K.; Korhonen, H.; Marimba, K.A.; Nduhiu, G.; Mungatu, J.K.; Okoth, S.A.; Joutsjoki, V.; Wamae, L.W.; Shalo, P. Management and mitigation of health risks associated with the occurrence of mycotoxins along the maize value chain in two counties in Kenya. Food Qual. Saf. 2017, 1, 268–274. [Google Scholar] [CrossRef] [Green Version]
- Knutsen, H.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; Grasl-Kraupp, B.; et al. Risks for animal health related to the presence of fumonisins, their modified forms and hidden forms in feed. EFSA J. 2018, 16. [Google Scholar] [CrossRef]
- USFDA. Search for FDA guidance documents - guidance for industry: Fumonisin levels in human foods and animal feeds. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-fumonisin-levels-human-foods-and-animal-feeds (accessed on 12 May 2019).
- RSB. Cattle Feed Supplements — Specification; Rwanda Stand. RS 1002017 - Cattle Feed Suppl. - Specif.; Rwanda Standards Board: Kigali, Rwanda, 2017.
- Campbell, A.D.; Whitaker, T.B.; Pohland, A.E.; Dickens, J.W.; Park, D.L. Sampling, sample preparation, and sampling plans for foodstuffs for mycotoxin analysis. Pure Appl. Chem. 1986, 58, 305–314. [Google Scholar] [CrossRef]
- Matumba, L.; Van Poucke, C.; Njumbe Ediage, E.; De Saeger, S. Keeping mycotoxins away from the food: Does the existence of regulations have any impact in Africa? Crit. Rev. Food Sci. Nutr. 2017, 57, 1584–1592. [Google Scholar] [CrossRef]
- Magamba, K.; Matumba, L.; Matita, G.; Gama, A.P.; Singano, L.; Monjerezi, M.; Njoroge, S.M.C. Aflatoxin risk management in commercial groundnut products in Malawi (Sub-Saharan Africa): A call for a more socially responsible industry. J. fur Verbraucherschutz und Leb. 2017, 12, 309–316. [Google Scholar] [CrossRef]
- Sirma, A.J.; Lindahl, J.F.; Makita, K.; Senerwa, D.; Mtimet, N.; Kang’ethe, E.K.; Grace, D. The impacts of aflatoxin standards on health and nutrition in Sub-Saharan Africa: The case of Kenya. Glob. Food Sec. 2018, 18, 57–61. [Google Scholar] [CrossRef]
- Eastern africa community policy brief on aflatoxin prevention and control - disposal and alternative use of aflatoxin contaminated food. Available online: https://www.eac.int/documents/category/aflatoxin-prevention-and-control (accessed on 15 December 2018).
- PACA. about PACA|PACA. Available online: http://www.aflatoxinpartnership.org/about-paca (accessed on 1 December 2018).
Aflatoxins (µg/kg) | Fumonisins (mg/kg) | ||||||
---|---|---|---|---|---|---|---|
Sample Number (%) | Mean | SD | Median | Mean | SD | Median | |
Dairy Farmers | 1180 (35.46) | 108.83 | 144.90 | 43.65 | 1.52 | 1.83 | 0.71 |
Poultry Farmers | 1726 (51.86) | 103.81 | 135.91 | 48.40 | 1.21 | 1.54 | 0.56 |
Feed Vendors | 365 (10.97) | 88.64 | 128.59 | 30.90 | 1.48 | 1.74 | 0.76 |
Feed Processors | 57 (1.71) | 94.95 | 103.19 | 70.45 | 1.03 | 1.27 | 0.47 |
Factors | Dairy Farmers | Poultry Farmers | Feed Vendors | F. Pr./G. M.a | Overall | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
# | % | # | % | # | % | # | % | # | % | ||
Gender | Male | 176 | 29.2 | 234 | 38.9 | 50 | 8.30 | - | - | 460 | 76.4 |
Female | 49 | 8.10 | 75 | 12.5 | 18 | 3.00 | - | - | 142 | 23.6 | |
Education | Primary | 88 | 14.6 | 114 | 18.9 | 13 | 2.20 | - | - | 215 | 35.7 |
Secondary | 74 | 12.3 | 98 | 16.3 | 36 | 6.00 | - | - | 208 | 34.6 | |
University | 53 | 8.80 | 87 | 14.5 | 19 | 3.20 | - | - | 159 | 26.4 | |
None | 9 | 1.50 | 9 | 1.50 | 0 | 0.00 | - | - | 18 | 2.99 | |
Other | 1 | 0.200 | 1 | 0.200 | 0 | 0.00 | - | - | 2 | 0.330 | |
Age | 18–25 | 0 | 0 | 8 | 2.59 | 13 | 19.1 | - | - | 21 | 3.49 |
26–40 | 108 | 48.0 | 193 | 62.5 | 39 | 57.4 | - | - | 340 | 56.5 | |
>40 | 117 | 52.0 | 108 | 35.0 | 16 | 23.5 | - | - | 241 | 40.0 | |
Awareness | Yes | 8 | 1.30 | 27 | 4.50 | 9 | 1.50 | 2 | 0.300 | 46 | 7.62 |
No | 213 | 35.3 | 278 | 46.0 | 59 | 9.80 | 8 | 1.30 | 558 | 92.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishimwe, K.; Bowers, E.; Ayabagabo, J.d.D.; Habimana, R.; Mutiga, S.; Maier, D. Assessment of Aflatoxin and Fumonisin Contamination and Associated Risk Factors in Feed and Feed Ingredients in Rwanda. Toxins 2019, 11, 270. https://doi.org/10.3390/toxins11050270
Nishimwe K, Bowers E, Ayabagabo JdD, Habimana R, Mutiga S, Maier D. Assessment of Aflatoxin and Fumonisin Contamination and Associated Risk Factors in Feed and Feed Ingredients in Rwanda. Toxins. 2019; 11(5):270. https://doi.org/10.3390/toxins11050270
Chicago/Turabian StyleNishimwe, Kizito, Erin Bowers, Jean de Dieu Ayabagabo, Richard Habimana, Samuel Mutiga, and Dirk Maier. 2019. "Assessment of Aflatoxin and Fumonisin Contamination and Associated Risk Factors in Feed and Feed Ingredients in Rwanda" Toxins 11, no. 5: 270. https://doi.org/10.3390/toxins11050270
APA StyleNishimwe, K., Bowers, E., Ayabagabo, J. d. D., Habimana, R., Mutiga, S., & Maier, D. (2019). Assessment of Aflatoxin and Fumonisin Contamination and Associated Risk Factors in Feed and Feed Ingredients in Rwanda. Toxins, 11(5), 270. https://doi.org/10.3390/toxins11050270