Changes in Fatty Acid Composition of Human Milk in Response to Cold-Like Symptoms in the Lactating Mother and Infant
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Participant Characteristics
3.2. Fatty Acids
3.3. Effect of the Health of Mother, Infant, or both on FA Proportions in Milk
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lönnerdal, B. Breast milk: A truly functional food. Nutrition 2000, 16, 509–511. [Google Scholar] [CrossRef]
- Jakaitis, B.M.; Denning, P.W. Human breast milk and the gastrointestinal innate immune system. Clin. Perinatol. 2014, 41, 423–435. [Google Scholar] [CrossRef] [PubMed]
- Newburg, D.S. Innate immunity and human milk. J. Nutr. 2005, 135, 1308–1312. [Google Scholar] [PubMed]
- Hamosh, M.; Peterson, J.A.; Henderson, T.R.; Scallan, C.D.; Kiwan, R.; Ceriani, R.L.; Armand, M.; Mehta, N.R.; Hamosh, P. Protective function of human milk: The milk fat globule. Semin. Perinatol. 1999, 23, 242–249. [Google Scholar] [CrossRef]
- Kabara, J.J.; Swieczkowski, D.M.; Conley, A.J.; Truant, J.P. Fatty acids and derivatives as antimicrobial agents. Antimicrob. Agents Chemother. 1972, 2, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Thormar, H.; Isaacs, C.; Brown, H.; Barshatzky, M.; Pessolano, T. Inactivation of enveloped viruses and killing of cells by fatty acids and monoglycerides. Antimicrob. Agents Chemother. 1987, 31, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Isaacs, C.E.; Litov, R.E.; Thormar, H. Antimicrobial activity of lipids added to human milk, infant formula, and bovine milk. J. Nutr. Biochem. 1995, 6, 362–366. [Google Scholar] [CrossRef]
- Isaacs, C.E.; Thormar, H.; Pessolano, T. Membrane-disruptive effect of human milk: Inactivation of enveloped viruses. J. Infect. Dis. 1986, 154, 966–971. [Google Scholar] [CrossRef] [PubMed]
- Isaacs, C.; Schneidman, K. Enveloped viruses in human and bovine-milk are inactivated by added fatty-acids (FAs) and monoglycerides (MGs). FASEB J. 1991, 5, A1288. [Google Scholar]
- Isaacs, C.E. Human milk inactivates pathogens individually, additively, and synergistically. J. Nutr. 2005, 135, 1286–1288. [Google Scholar] [PubMed]
- Neville, M.C.; Allen, J.C.; Watters, C. The mechanisms of milk secretion. In Lactation; Plenum Press: New York, NY, USA, 1983. [Google Scholar]
- Neville, M.C.; Picciano, M.F. Regulation of milk lipid secretion and composition. Annu. Rev. Nutr. 1997, 17, 159–184. [Google Scholar] [CrossRef] [PubMed]
- Hachey, D.L.; Silber, G.H.; Wong, W.W.; Garza, C. Human lactation ii: Endogenous fatty acid synthesis by the mammary gland. Pediatr. Res. 1989, 25, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Insull, W., Jr.; Hirsch, J.; James, T.; Ahrens, E., Jr. The fatty acids of human milk. II. Alterations produced by manipulation of caloric balance and exchange of dietary fats. J. Clin. Investig. 1959, 38, 443. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, E.; Insull, W.; Blomstrand, R.; Hirsch, J.; Tsaltas, T.; Peterson, M. The influence of dietary fats on serum-lipid levels in man. Lancet 1957, 269, 943–953. [Google Scholar] [CrossRef]
- Jensen, R.; Bitman, J.; Carlson, S.; Couch, S.; Hamosh, M.; Newburg, D.S. Human milk lipids. In Handbook of Milk Composition; Jensen, R., Ed.; Academic Press: London, UK, 1995; pp. 495–573. [Google Scholar]
- Nasser, R.; Stephen, A.M.; Goh, Y.K.; Clandinin, M.T. The effect of a controlled manipulation of maternal dietary fat intake on medium and long chain fatty acids in human breast milk in saskatoon, Canada. Int. Breastfeed. J. 2010, 5, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lönnerdal, B. Effects of maternal dietary intake on human milk composition. J. Nutr. 1986, 116, 499–513. [Google Scholar] [PubMed]
- Hachey, D.L.; Thomas, M.R.; Emken, E.A.; Garza, C.; Brown-Booth, L.; Adlof, R.; Klein, P.D. Human lactation: Maternal transfer of dietary triglycerides labeled with stable isotopes. J. Lipid Res. 1987, 28, 1185–1192. [Google Scholar] [PubMed]
- Mitoulas, L.; Sherriff, J.; Hartmann, P. Relationships between fatty acids in human milk. FASEB J. 2000, 14, A506. [Google Scholar]
- Chen, B.J.; Takeda, M.; Lamb, R.A. Influenza virus hemagglutinin (h3 subtype) requires palmitoylation of its cytoplasmic tail for assembly: M1 proteins of two subtypes differ in their ability to support assembly. J. Virol. 2005, 79, 13673–13684. [Google Scholar] [CrossRef] [PubMed]
- Boutin, J.A. Myristoylation. Cell. Signal. 1997, 9, 15–35. [Google Scholar] [CrossRef]
- Villamor, E.; Koulinska, I.N.; Furtado, J.; Baylin, A.; Aboud, S.; Manji, K.; Campos, H.; Fawzi, W.W. Long-chain n-6 polyunsaturated fatty acids in breast milk decrease the risk of hiv transmission through breastfeeding. Am. J. Clin. Nutr. 2007, 86, 682–689. [Google Scholar] [PubMed]
- Badiou, S.; Tuaillon, E.; Viljoen, J.; Escudié, J.; Cristol, J.; Newell, M.; van de Perre, P.; Neveu, D. Association between breast milk fatty acids and hiv-1 transmission through breastfeeding. Prostaglandins Leukot. Essent. Fat. Acids (PLEFA) 2016, 105, 35–42. [Google Scholar] [CrossRef] [PubMed]
Group | FAs | Mean % of Total FAs (±SE) by Weight | Range |
---|---|---|---|
De novo FAs | Caprylic (C8:0) | 0.14 (±0.1) | 0.06–0.28 |
Capric (C10:0) | 1.13 (±0.3) | 0.40–2.19 | |
Lauric (C12:0) | 5.90 (±0.8) | 1.76–11.85 | |
Myristic (C14:0) | 7.87 (±1.0) | 2.29–17.00 | |
Preformed FAs | Palmitic (C16:0) | 23.86 (±0.5) | 17.26–30.91 |
Palmitoleic (C16:1 n-7) | 2.29 (±0.4) | 1.06–4.56 | |
Stearic (C18:0) | 7.39 (±0.6) | 3.91–12.68 | |
Oleic (C18:1 n-9) | 35.79 (±0.7) | 25.73–52.11 | |
Arachidic (C20:0) | 0.49 (±0.2) | 0.23–0.85 | |
Gadoleic (C20:1 n-9) | 0.30 (±0.1) | 0.18–0.48 | |
Dihomo-γ-linolenic (C20:3 n-6) | 0.25 (±0.1) | 0.14–0.25 | |
Essential FAs | Linoleic (C18:2 n-6) | 10.90 (±0.9) | 5.41–23.95 |
α- linolenic (C:18:3 n-3) | 1.00 (±0.4) | 0.45–2.35 | |
Conditionally essential FAs | Arachidonic (C20:4 n-6) | 0.35 (±0.1) | 0.21–0.54 |
DHA (C22:6 n-3) | 0.36 (±0.3) | 0.14–0.98 |
Fatty Acid | Maternal Health | Infant Health | Dyad Health |
---|---|---|---|
Capric acid | p = 0.014 0.04% lower in unwell | p = 0.006 0.05% lower in unwell | p = 0.004 0.05% lower in unwell |
Lauric acid | p = 0.008 0.30% lower in unwell | p = 0.020 0.29% lower in unwell | p = 0.006 0.31% lower in unwell |
Myristic acid | p = 0.824 | p = 0.996 | p = 0.891 |
Palmitic acid | p = 0.008 0.45% higher in unwell | p = 0.154 | p = 0.004 0.49% higher in unwell |
Palmitoleic acid | p = 0.087 | p = 0.045 0.10% lower in unwell | p = 0.215 |
Stearic acid | p = 0.476 | 0.001 0.41% lower in unwell | p = 0.516 |
Oleic acid | p = 0.285 | p = 0.758 | p = 0.450 |
Linoleic acid | p = 0.672 | p = 0.080 | p = 0.867 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gardner, A.S.; Rahman, I.A.; Lai, C.T.; Hepworth, A.; Trengove, N.; Hartmann, P.E.; Geddes, D.T. Changes in Fatty Acid Composition of Human Milk in Response to Cold-Like Symptoms in the Lactating Mother and Infant. Nutrients 2017, 9, 1034. https://doi.org/10.3390/nu9091034
Gardner AS, Rahman IA, Lai CT, Hepworth A, Trengove N, Hartmann PE, Geddes DT. Changes in Fatty Acid Composition of Human Milk in Response to Cold-Like Symptoms in the Lactating Mother and Infant. Nutrients. 2017; 9(9):1034. https://doi.org/10.3390/nu9091034
Chicago/Turabian StyleGardner, Andrew S., Ibrahim A. Rahman, Ching T. Lai, Anna Hepworth, Naomi Trengove, Peter E. Hartmann, and Donna T. Geddes. 2017. "Changes in Fatty Acid Composition of Human Milk in Response to Cold-Like Symptoms in the Lactating Mother and Infant" Nutrients 9, no. 9: 1034. https://doi.org/10.3390/nu9091034
APA StyleGardner, A. S., Rahman, I. A., Lai, C. T., Hepworth, A., Trengove, N., Hartmann, P. E., & Geddes, D. T. (2017). Changes in Fatty Acid Composition of Human Milk in Response to Cold-Like Symptoms in the Lactating Mother and Infant. Nutrients, 9(9), 1034. https://doi.org/10.3390/nu9091034