Caffeine Improves Basketball Performance in Experienced Basketball Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Pre-Experimental Procedures
2.3. Experimental Design
2.4. Experimental Protocol
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Perez-Lopez, A.; Salinero, J.J.; Abian-Vicen, J.; Valades, D.; Lara, B.; Hernandez, C.; Areces, F.; Gonzalez, C.; Del Coso, J. Caffeinated energy drinks improve volleyball performance in elite female players. Med. Sci. Sports Exerc. 2015, 47, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Abian, P.; Del Coso, J.; Salinero, J.J.; Gallo-Salazar, C.; Areces, F.; Ruiz-Vicente, D.; Lara, B.; Soriano, L.; Munoz, V.; Abian-Vicen, J. The ingestion of a caffeinated energy drink improves jump performance and activity patterns in elite badminton players. J. Sports Sci. 2015, 33, 1042–1050. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Lara, F.J.; Del Coso, J.; Portillo, J.; Areces, F.; Garcia, J.M.; Abian-Vicen, J. Enhancement of high-intensity actions and physical performance during a simulated brazilian jiu-jitsu competition with a moderate dose of caffeine. Int. J. Sports Physiol. Perform. 2016, 11, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Del Coso, J.; Munoz, G.; Munoz-Guerra, J. Prevalence of caffeine use in elite athletes following its removal from the world anti-doping agency list of banned substances. Appl. Physiol. Nutr. Metab. 2011, 36, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Spriet, L.L. Exercise and sport performance with low doses of caffeine. Sports Med. 2014, 44, S175–S184. [Google Scholar] [CrossRef] [PubMed]
- Magkos, F.; Kavouras, S.A. Caffeine use in sports, pharmacokinetics in man, and cellular mechanisms of action. Crit. Rev. Food Sci. Nutr. 2005, 45, 535–562. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.M.; Zhao, Z.; Stock, H.S.; Mehl, K.A.; Buggy, J.; Hand, G.A. Central nervous system effects of caffeine and adenosine on fatigue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 284, R399–R404. [Google Scholar] [CrossRef] [PubMed]
- Souza, D.B.; Del Coso, J.; Casonatto, J.; Polito, M.D. Acute effects of caffeine-containing energy drinks on physical performance: A systematic review and meta-analysis. Eur. J. Nutr. 2017, 56, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Salinero, J.J.; Lara, B.; Abian-Vicen, J.; Gonzalez-Millán, C.; Areces, F.; Gallo-Salazar, C.; Ruiz-Vicente, D.; Del Coso, J. The use of energy drinks in sport: Perceived ergogenicity and side effects in male and female athletes. Br. J. Nutr. 2014, 112, 1494–1502. [Google Scholar] [CrossRef] [PubMed]
- Del Coso, J.; Ramirez, J.A.; Munoz, G.; Portillo, J.; Gonzalez-Millan, C.; Munoz, V.; Barbero-Alvarez, J.C.; Munoz-Guerra, J. Caffeine-containing energy drink improves physical performance of elite rugby players during a simulated match. Appl. Physiol. Nutr. Metab. 2013, 38, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Lara, B.; Gonzalez-Millan, C.; Salinero, J.J.; Abian-Vicen, J.; Areces, F.; Barbero-Alvarez, J.C.; Munoz, V.; Portillo, L.J.; Gonzalez-Rave, J.M.; Del Coso, J. Caffeine-containing energy drink improves physical performance in female soccer players. Amino Acids 2014, 46, 1385–1392. [Google Scholar] [CrossRef] [PubMed]
- Fernandes-da-Silva, J.; Castagna, C.; Teixeira, A.S.; Carminatti, L.J.; Guglielmo, L.G. The peak velocity derived from the carminatti test is related to physical match performance in young soccer players. J. Sports Sci. 2016, 34, 2238–2245. [Google Scholar] [CrossRef] [PubMed]
- Del Coso, J.; Portillo, J.; Munoz, G.; Abian-Vicen, J.; Gonzalez-Millan, C.; Munoz-Guerra, J. Caffeine-containing energy drink improves sprint performance during an international rugby sevens competition. Amino Acids 2013, 44, 1511–1519. [Google Scholar] [CrossRef] [PubMed]
- Del Coso, J.; Munoz-Fernandez, V.E.; Munoz, G.; Fernandez-Elias, V.E.; Ortega, J.F.; Hamouti, N.; Barbero, J.C.; Munoz-Guerra, J. Effects of a caffeine-containing energy drink on simulated soccer performance. PLoS ONE 2012, 7, e31380. [Google Scholar] [CrossRef] [PubMed]
- Glaister, M.; Howatson, G.; Abraham, C.S.; Lockey, R.A.; Goodwin, J.E.; Foley, P.; McInnes, G. Caffeine supplementation and multiple sprint running performance. Med. Sci. Sports Exerc. 2008, 40, 1835–1840. [Google Scholar] [CrossRef] [PubMed]
- Astorino, T.A.; Matera, A.J.; Basinger, J.; Evans, M.; Schurman, T.; Marquez, R. Effects of red bull energy drink on repeated sprint performance in women athletes. Amino Acids 2012, 42, 1803–1808. [Google Scholar] [CrossRef] [PubMed]
- Del Coso, J.; Portillo, J.; Salinero, J.J.; Lara, B.; Abian-Vicen, J.; Areces, F. Caffeinated energy drinks improve high-speed running in elite field hockey players. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Del Coso, J.; Perez-Lopez, A.; Abian-Vicen, J.; Salinero, J.J.; Lara, B.; Valades, D. Enhancing physical performance in male volleyball players with a caffeine-containing energy drink. Int. J. Sports Physiol. Perform. 2014, 9, 1013–1018. [Google Scholar] [CrossRef] [PubMed]
- Abian-Vicen, J.; Puente, C.; Salinero, J.J.; Gonzalez-Millan, C.; Areces, F.; Munoz, G.; Munoz-Guerra, J.; Del Coso, J. A caffeinated energy drink improves jump performance in adolescent basketball players. Amino Acids 2014, 46, 1333–1341. [Google Scholar] [CrossRef] [PubMed]
- Tucker, M.A.; Hargreaves, J.M.; Clarke, J.C.; Dale, D.L.; Blackwell, G.J. The effect of caffeine on maximal oxygen uptake and vertical jump performance in male basketball players. J. Strength Cond. Res. 2013, 27, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Share, B.; Sanders, N.; Kemp, J. Caffeine and performance in clay target shooting. J. Sports Sci. 2009, 27, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Portillo, J.; Del Coso, J.; Abian-Vicen, J. Effects of caffeine ingestion on skill performance during an international female rugby sevens competition. J. Strength Cond. Res. 2016. [Google Scholar] [CrossRef] [PubMed]
- Gant, N.; Ali, A.; Foskett, A. The influence of caffeine and carbohydrate coingestion on simulated soccer performance. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Stuart, G.R.; Hopkins, W.G.; Cook, C.; Cairns, S.P. Multiple effects of caffeine on simulated high-intensity team-sport performance. Med. Sci. Sports Exerc. 2005, 37, 1998–2005. [Google Scholar] [CrossRef] [PubMed]
- Foskett, A.; Ali, A.; Gant, N. Caffeine enhances cognitive function and skill performance during simulated soccer activity. Int. J. Sport Nutr. Exerc. Metab. 2009, 19, 410–423. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.; Marfell-Jones, M. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Lower Hutt, New Zealand, 2011; p. 131. [Google Scholar]
- Carter, J. Body composition of montreal olympic athletes. In Physical Structure of Olympic Athletes, Part I: Montreal Olympic Games Anthropological Project; Carter, J., Ed.; Karger: Basel, Switzerland, 1982. [Google Scholar]
- Rocha, M.S.L. Peso ósseo do brasileiro de ambos os sexos de 17 a 25 años. Arq. Anat. Antropol. 1975, 1, 445–451. [Google Scholar]
- Würch, A. La femme et le sport. Med. Sp. Fr. 1974, 4, 441–445. [Google Scholar]
- Armstrong, L.E. Caffeine, body fluid-electrolyte balance, and exercise performance. Int. J. Sport Nutr. Exerc. Metab. 2002, 12, 189–206. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Rosell, D.; Mora-Custodio, R.; Franco-Marquez, F.; Yanez-Garcia, J.M.; Gonzalez-Badillo, J.J. Traditional vs. Sport-specific vertical jump tests: Reliability, validity and relationship with the legs strength and sprint performance in adult and teen soccer and basketball players. J. Strength Cond. Res. 2017, 31, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Lockie, R.G.; Schultz, A.B.; Callaghan, S.J.; Jeffriess, M.D.; Berry, S.P. Reliability and validity of a new test of change-of-direction speed for field-based sports: The change-of-direction and acceleration test (codat). J. Sports Sci. Med. 2013, 12, 88–96. [Google Scholar] [PubMed]
- Arrieta, H.; Torres-Unda, J.; Gil, S.M.; Irazusta, J. Relative age effect and performance in the u16, u18 and u20 European basketball championships. J. Sports Sci. 2016, 34, 1330–1334. [Google Scholar] [CrossRef] [PubMed]
- Duncan, M.J.; Hankey, J. The effect of a caffeinated energy drink on various psychological measures during submaximal cycling. Physiol. Behav. 2013, 116, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Lara, B.; Ruiz-Vicente, D.; Areces, F.; Abian-Vicen, J.; Salinero, J.J.; Gonzalez-Millan, C.; Gallo-Salazar, C.; Del Coso, J. Acute consumption of a caffeinated energy drink enhances aspects of performance in sprint swimmers. Br. J. Nutr. 2015, 114, 908–914. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.; Dawson, B.; Schneiker, K.; Goodman, C.; Lay, B. Effect of caffeine supplementation on repeated sprint running performance. J. Sports Med. Phys. Fitness 2008, 48, 472–478. [Google Scholar] [PubMed]
- Kopec, B.J.; Dawson, B.T.; Buck, C.; Wallman, K.E. Effects of sodium phosphate and caffeine ingestion on repeated-sprint ability in male athletes. J. Sci. Med. Sport 2016, 19, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Puente, C.; Coso, J.D.; Salinero, J.J.; Abián-Vicén, J. Basketball performance indicators during the ACB regular season from 2003 to 2013. Int. J. Perform. Anal. Sport 2015, 15, 935–948. [Google Scholar] [CrossRef]
- Garcia, J.; Ibanez, S.J.; De Santos, R.M.; Leite, N.; Sampaio, J. Identifying basketball performance indicators in regular season and playoff games. J. Hum. Kinet. 2013, 36, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Lyons, M.; Al-Nakeeb, Y.; Nevill, A. The impact of moderate and high intensity total body fatigue on passing accuracy in expert and novice basketball players. J. Sports Sci. Med. 2006, 5, 215–227. [Google Scholar] [PubMed]
- Malarranha, J.; Figueira, B.; Leite, N.; Sampaio, J. Dynamic modeling of performance in basketball. Int. J. Perform. Anal. Sport 2013, 13, 377–387. [Google Scholar]
- Skinner, T.L.; Jenkins, D.G.; Coombes, J.S.; Taaffe, D.R.; Leveritt, M.D. Dose response of caffeine on 2000-m rowing performance. Med. Sci. Sports Exerc. 2010, 42, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M.; Hawley, J.A.; Wong, S.H.; Jeukendrup, A.E. Carbohydrates for training and competition. J. Sports Sci. 2011, 29, S17–S27. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Lara, F.J.; Del Coso, J.; Garcia, J.M.; Portillo, L.J.; Areces, F.; Abian-Vicen, J. Caffeine improves muscular performance in elite brazilian jiu-jitsu athletes. Eur. J. Sport Sci. 2016, 16, 1079–1086. [Google Scholar] [CrossRef] [PubMed]
- Salinero, J.J.; Lara, B.; Ruiz-Vicente, D.; Areces, F.; Puente-Torres, C.; Gallo-Salazar, C.; Pascual, T.; Del Coso, J. Cyp1a2 genotype variations do not modify the benefits and drawbacks of caffeine during exercise: A pilot study. Nutrients 2017, 9, 269. [Google Scholar] [CrossRef] [PubMed]
- Beaumont, R.; Cordery, P.; Funnell, M.; Mears, S.; James, L.; Watson, P. Chronic ingestion of a low dose of caffeine induces tolerance to the performance benefits of caffeine. J. Sports Sci. 2017, 35, 1920–1927. [Google Scholar] [CrossRef] [PubMed]
Variable | Placebo | Caffeine | Diff. | 95% CI | Effect Size | p Value |
---|---|---|---|---|---|---|
Points | 8.2 ± 6.9 | 8.8 ± 6.1 | 0.6 ± 7.0 | −2.7 to 3.9 | 0.09 | 0.354 |
2-point field goals made | 2.5 ± 2.4 | 2.7 ± 2.6 | 0.2 ± 3.2 | −1.2 to 1.7 | 0.10 | 0.365 |
2-point field goals attempted | 3.8 ± 3.0 | 4.5 ± 3.3 | 0.7 ± 4.1 | −1.2 to 2.7 | 0.25 | 0.213 |
Accuracy in 2-point field goals (%) | 54.7 ± 30.5 | 52.9 ± 37.2 | −1.8 ± 50.2 | −28.5 to 25.0 | 0.05 | 0.446 |
3-point field goals made | 0.9 ± 1.2 | 0.8 ± 1.1 | −0.1 ± 1.1 | −0.7 to 0.4 | 0.19 | 0.273 |
3-point field goals attempted | 2.8 ± 2.1 | 2.4 ± 2.3 | −0.4 ± 2.1 | −1.3 to 0.6 | 0.17 | 0.228 |
Accuracy in 3-point field goals (%) | 27.4 ± 31.5 | 23.7 ± 27.5 | −3.7 ± 33.4 | −21.5 to 14.1 | 0.11 | 0.333 |
Free throws made | 0.6 ± 0.8 | 1.1 ± 1.1* | 0.5 ± 1.2 | 0.1 to 1.0 | 0.67 | 0.030 |
Free throws attempted | 0.9 ± 1.1 | 1.5 ± 1.5* | 0.6 ± 1.6 | 0.0 to 1.3 | 0.57 | 0.042 |
Accuracy in free throws (%) | 71.4 ± 40.5 | 73.8 ± 20.7 | 2.3 ± 39.9 | −34.5 to 39.3 | 0.18 | 0.440 |
Offensive rebounds | 0.5 ± 0.6 | 1.2 ± 1.6* | 0.7 ± 1.4 | 0.2 to 1.2 | 1.16 | 0.020 |
Defensive rebounds | 2.1 ± 1.7 | 2.6 ± 1.8 | 0.5 ± 2.1 | −0.5 to 1.5 | 0.30 | 0.146 |
Total rebounds | 2.5 ± 2.0 | 3.7 ± 2.6* | 1.2 ± 2.7 | 0.2 to 2.3 | 0.64 | 0.026 |
Assists | 1.1 ± 0.9 | 2.1 ± 1.6* | 1.0 ± 2.0 | 0.2 to 1.8 | 1.10 | 0.019 |
Steals | 0.9 ± 1.1 | 1.2 ± 1.3 | 0.4 ± 1.6 | −0.5 to 1.0 | 0.23 | 0.240 |
Turnovers | 1.7 ± 1.5 | 1.7 ± 1.3 | 0.0 ± 2.1 | −1.0 to 1.0 | 0.08 | 0.500 |
Blocks committed | 0.0 ± 0.0 | 0.1 ± 0.3 | 0.1 ± 0.3 | −0.1 to 0.2 | 0.22 | 0.081 |
Blocks received | 0.1 ± 0.3 | 0.0 ± 0.0 | −0.1 ± 0.3 | −0.2 to 0.1 | 0.32 | 0.081 |
Fouls committed | 1.3 ± 1.0 | 1.0 ± 0.9 | 0.3 ± 1.1 | −0.3 to 0.8 | 0.22 | 0.165 |
Fouls received | 1.0 ± 0.9 | 1.3 ± 1.0 | −0.3 ± 1.3 | − 0.8 to 0.4 | 0.20 | 0.253 |
Performance index rating | 8.4 ± 8.3 | 11.6 ± 7.3* | 3.2 ± 8.0 | 0.1 to 6.2 | 0.38 | 0.037 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puente, C.; Abián-Vicén, J.; Salinero, J.J.; Lara, B.; Areces, F.; Del Coso, J. Caffeine Improves Basketball Performance in Experienced Basketball Players. Nutrients 2017, 9, 1033. https://doi.org/10.3390/nu9091033
Puente C, Abián-Vicén J, Salinero JJ, Lara B, Areces F, Del Coso J. Caffeine Improves Basketball Performance in Experienced Basketball Players. Nutrients. 2017; 9(9):1033. https://doi.org/10.3390/nu9091033
Chicago/Turabian StylePuente, Carlos, Javier Abián-Vicén, Juan José Salinero, Beatriz Lara, Francisco Areces, and Juan Del Coso. 2017. "Caffeine Improves Basketball Performance in Experienced Basketball Players" Nutrients 9, no. 9: 1033. https://doi.org/10.3390/nu9091033